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Abstract. In many applications, such as biomedical engineering, it is
often required to obtain specific periodic source signals. In this paper, we
propose a two-stage based approach for extracting periodic signals. At
the first stage, the autocorrelation property of the desired source signal
is exploited to roughly extract the desired source signal. At the second
stage, the extracted signal is further processed as cleanly as possible,
based on the higher-order statistics. Simulations on artificially gener-
ated data and real-world ECG data have showed its better performance,
compared with many existing extraction algorithms.

1 Introduction

Blind source extraction (BSE) [1] is a powerful technique that is closely related
to blind source separation (BSS) [2]. The basic task of BSE is to estimate some
components of source signals that are linearly combined in observations.

Compared with BSS, BSE has many advantages [1]. One advantage is that it
can extract only the “interesting” signals from noisy mixed signals by exploiting
their desired properties. That is to say, it requires certain additional a priori
information of the desired source signal. Thus it generally is implemented in
a semi-blind way. In many applications [3–6], such as the fetal ECG extraction
[7, 8], the desired source signal is periodic or quasi-periodic. Therefore the period
property can be used to extract the desired source signals.

Barros and Cichocki [3] first proposed an algorithm that can quickly extract
the desired source signal with a specific period. But the algorithm’s performance
strongly depends on the precise estimation of an optimal time delay. In addition,
the literature did not provide methods to find the optimal time delay, and only
used the fundamental or multiple period of the desired source signal as the
optimal time delay. In fact, the fundamental or multiple period is not necessarily
the optimal time delay [7].

To overcome the drawbacks, several approaches recently have been proposed.
Jafari et al. [6] proposed a fast algorithm that can instantaneously extract all
the periodic source signals from the mixtures. It only needs to know the period
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of one of the source signals to extract, without knowing the optimal time delay.
Another advantage is its tolerance of large estimate errors of the period. But its
performance degrades if the period is not small enough, or if the periods of the
source signals are close to each other.

On the other hand, we proposed an extraction algorithm [8], whose perfor-
mance is not affected by the value of the period of the desired source signal. But
the algorithm also needs to know the optimal time delay. In practice, it also takes
the fundamental period of the desired source signal as the optimal time delay.
However, compared with the one in [3], the algorithm can achieve better extrac-
tion performance due to exploitation of higher-order statistics information, and
to some extent it is tolerant of estimate errors of the period. But the algorithm
may fail in some complicated situations (see simulations in Section 4).

Recently, Lu et al. [9] proposed the so-called constrained ICA algorithm, which
needs to elaborately design a reference signal that is closely related to the desired
source signal. However, to design such reference signal, one should obtain lots of
a priori information, which is not available in many cases.

In this paper, we propose an extraction algorithm, which only needs to es-
timate the period of the desired signal, and it is non-sensitive to the estimate
errors of the period. Simulations on the artificially generated data and real-world
data have showed its validity and good performance.

2 Problem Statement

Suppose one observes an n-dimentional stochastic signal vector x that is regarded
as the linear transformation of an m-dimensional mutually independent zero-
mean and unit-variance source vector s, i.e., x = As, where A is an unknown
mixing matrix. The goal of source extraction is to find a vector w such that
y = wT x = wT As is an estimated source signal up to a scalar. To cope with ill-
conditioned cases and to make algorithms simpler and faster, whitening is often
used to transform the observed signals x to x̃ = Vx such that E{x̃x̃T } = I,
where V is a whitening matrix. For convenience, in the following discussion we
assume that x are the whitened observed signals and n = m.

Since our goal is to extract the periodic source signal, we further assume the
desired periodic signal si satisfies the following relations for a specific integer τ∗:{

E {si(k)si(k − τ∗)} > 0
E {sj(k)sj(k − τ∗)} = 0 ∀j �= i

(1)

where sj are other source signals, k is the time index, and τ∗ is the so-called
optimal time delay [3].

Ideally, under the constraint ‖w‖ = 1, maximizing the objective function

J(w) = E{y(k)y(k − τ∗)} = wT E{x(k)x(k − τ∗)T }w (2)

leads to perfect recovery of the desired periodic source signal si. The reason for
this formulation is that for the desired signal si, this delayed autocorrelation has
a large positive value, while for other source signals this value is zero.
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Using the standard gradient approach and neglecting the small difference
between Rx(τ∗) and Rx(τ∗)T , from the objective function (2) we can derive the
Barros’s algorithm [3]: {

w+ = Rx(τ∗)w
w = w+/‖w+‖ (3)

where Rx(τ∗) = E{x(k)x(k − τ∗)T }. Note here the Barros’s algorithm is de-
rived from a different aspect. The algorithm is simple and fast. However, some
important practical issues should be considered.

One important issue is the optimal time delay τ∗. In most cases such opti-
mal time delay does not exist. In other words, although the desired signal si is
strongly autocorrelated at the time delay τ∗, several other source signals may
be also autocorrelated at the delay τ∗ (i.e., E {sj(k)sj(k − τ∗)} �= 0, j �= i).

Another issue is the effect of finite samples [7, 10]. Even if the source signals are
strictly mutually uncorrelated, in practice the calculated correlations of source
signals using limited samples are generally non-zero, due to the fact that the ex-
pectation operator is replaced by the mathematical average. That is to say, even
if E {si(k)sj(k − τ∗)} = 0 and E {sj(k)sj(k − τ∗)} = 0, j �= i, it is very possible
that

∑N−1
k=τ∗ si(k)sj(k − τ∗)/(N − τ∗) �= 0 and

∑N−1
k=τ∗ sj(k)sj(k − τ∗)/(N − τ∗)

�= 0.
According to the results in [7], the performance of the Barros’s algorithm (3)

greatly degrades due to the joint effect of the above two issues.
The third issue is the exploitation of the higher-order statistics. In many

applications the source signals are physically mutually independent. Therefore,
suitable use of the higher-order statistics, rather than only using the second-order
statistics, is expected to improve the extraction performance.

Considering the above issues, in the next section we will propose an effi-
cient two-stage algorithm, which achieves better performance than many existing
algorithms.

3 Proposed Algorithm

3.1 Framework of the Proposed Algorithm

First, we estimate the fundamental period τ of the desired source signal. For
estimating τ , there are many methods, such as the autocorrelation method [3],
and the instantaneous frequency estimation technique [4]. In addition, in some
applications, e.g., biomedical signal processing, this type of information is often
readily available [3, 5, 9]. Note that τ is not necessarily the optimal time delay.

The following procedure is roughly divided into two stages. The first stage is
called the capture stage. In this stage, the algorithm coarsely extracts the desired
source signal by using the estimated period. After the algorithm converges, we
obtain the weight vector ŵ. But due to some reasons (discussed below), ŵ is only
close to the ideally optimal weight vector w∗ (in the sense that the extracted
desired source signal y∗ = wT∗ x is not mixed by any crosstalk noise). Therefore
the captured source signal ŷ = ŵT x is mixed by some noise and interference.
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Next, in the second stage, we run the fixed-point algorithm [1, 11] on the
original mixtures, using ŵ as its initial weight vector. The initial weight vector
ŵ can ensure the fixed-point algorithm converges to the sub-optimal solution
w̄, which is much closer to w∗ than ŵ is. Then we finally obtain the estimated
desired source signal ȳ = w̄T x, which is almost not mixed by any interference.

3.2 The First Stage: Coarse Capture

In the first stage, the goal is to roughly extract the desired source signal, ex-
ploiting its autocorrelation structure. First, consider the objective function (2):

J(w) =
1
2
J(w) +

1
2
J(w)T

=
1
2
wT E{x(k)x(k − τ)T }w +

1
2
wT E{x(k − τ)x(k)T }w

=
1
2
wT

(
Rx(τ) + Rx(τ)T

)
w

=
1
2
wT Rw, (4)

which implies that under the constraint ‖w‖ = 1 maximizing (2) is equivalent
to finding the eigenvector corresponding to the maximal eigenvalue of the real
symmetric matrix R. Thus we directly obtain the following algorithm:

w = EIG(R), (5)

where EIG(R) is the operator that calculates the normalized eigenvector cor-
responding to the maximal eigenvalue of the real symmetric matrix R. After
convergence, the algorithm gives the solution ŵ.

If τ is the optimal time delay, then the solution ŵ is just the optimal solution
w∗, and the captured signal ŷ = ŵT x is just the desired source signal, without
any noise or distortion. However, the optimal time delay generally does not exist,
then the optimal solution w∗ is ideal. Therefore, in fact the solution ŵ is only
near w∗, and the captured desired source signal is noisy.

Note that if ŵ is not close enough to w∗, the algorithms in the second stage
may converge to other local maxima, and thus cannot obtain the desired source
signal. Therefore we should make ŵ approximate w∗ as closely as possible. In [7]
we have showed that the larger the autocorrelations of undesired source signals
at the delay τ are, and/or the larger the absolute value of the cross-correlation
between any two source signals at the delay τ is, the farther ŵ deviates from
w∗. To ensure ŵ is close enough to w∗, we modify the former objective function
(2) as follows:

J(w) = wT
{ P∑

l=1

(
Rx(lτ) + Rx(lτ)T

)}
w, (6)

and its corresponding algorithm is given by

w = EIG
( P∑

l=1

(
Rx(lτ) + Rx(lτ)T

))
, (7)
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where P is a positive integer, and τ is the fundamental period of the desired
source signal. The algorithm is based on the averaged eigen-structure of corre-
lation matrices of source signals over multi-delays. In [7] we have showed that
both the averaged auto-correlations of undesired source signals and the averaged
absolute value of cross-correlation between any two source signals at the delay τ
tend to zero with P increasing. Thus the converged solution ŵ is closer to w∗,
ensuring the successful fine extraction of the second stage.

3.3 The Second Stage: Fine Extraction

In this stage we use the one-unit fixed-point algorithm [11] to make the solution
ŵ from the previous stage further close to the optimal solution w∗, which implies
the extracted source signal is cleaner, with less noise and interference. ŵ is taken
as the initial weight value of the fixed-point algorithm:{

w+ = E{x(wT x)3} − 3w
w = w+/‖w+‖.

(8)

To improve the robustness to outliers and spiky noise, we can adopt the
modified fixed-point algorithm [1]:

{
w+ = E{y3x}

E{y4} − w
w = w+/‖w+‖.

(9)

When the algorithm (8) or (9) has converged, we obtain the solution w̄, which
is much closer to the optimal solution w∗ than ŵ is. Therefore, we finally get
the estimated desired source signal ȳ = w̄T x.

4 Simulations

In the first simulation, we generated five zero-mean and unit-variance source sig-
nals, shown in Fig.1(a). Each signal has 3000 samples. Three signals are periodic
(or quasi-periodic), respectively given by s1(k) = sin(2πf1k + 6 cos(2π200k)),
s2(k) = cos(2πf2k), and s3(k) = cos(2πf3k+2), where ts = 1×10−4, f1 = 0.061,
f2 = 0.054, and f3 = 0.028. ts is the sampling period, and fi(i = 1, 2, 3) are
normalized frequencies. The other two signals are Gaussian noise. Note that
s1 is the desired source signal, and its fundamental period is assumed to be
known.

The source signals were randomly mixed (Fig.1(b)). After whitening the mixed
signals, we ran the Barros’s algorithm [3], the algorithm in [8], the one in [7] and
the proposed one in this paper. The results are shown in Fig.1(c), from which it
is clear to see that the algorithms in [3] and the one in [8] extracted the wrong
source signal, while the other two algorithms correctly extracted the desired
source signals. To evaluate the extraction performance of the two algorithms
that obtained the correct signal, we adopted the following measure:

PI = −10E{lg(s(k) − s̃(k))2}, (dB) (10)
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Fig. 1. Simulation on artificially generated data. (a) The five source signals. (b) The
randomly mixed signals. (c) The extracted signals, respectively by the algorithm in [3]
(y1), the one in [8] (y2), the one in [7] (y3) and the proposed one in this paper (y4). (d)
The reference signals (r1, r2, r3) and the corresponding extracted signals (y1, y2, y3) by
the constrained ICA [9].

where s(k) was the desired source signal, and s̃(k) was the extracted signal
(both of them were normalized to be zero-mean and unit-variance). The higher
PI was, the better the performance was. The averaged performance over 400
independent running of the algorithm in [7] and of the proposed algorithm was,
respectively, 23.4 dB and 48.9 dB. The results showed the proposed algorithm
has better extraction performance.

Next, we used the constrained ICA [9] to extract the desired source signal.
Fig.1(d) shows the results, where r1, r2, r3 are the very similar reference signals,
having the same fundamental period. The rectangular pulse width of r2 is larger
than that of r1 by only a sampling period, while keeping the same pulse oc-
currence time. r3 has the same rectangular pulse width as r1, but is delayed
by a sampling period. y1, y2 and y3 are the extracted signals, respectively by
using the reference signal r1, r2 and r3. Clearly, only y1 was well recovered. This
means that the algorithm’s performance is greatly affected by the reference sig-
nal. To achieve good performance, the elaborately designed reference signal is
necessary, which cannot be obtained in many cases. In addition, the selection of
some parameters of the algorithm is crucial to the algorithm.
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Fig. 2. Simulation on real-world ECG data. (a) The ECG data. (b) The separated
signals by [6]. (c) The extracted signals, respectively by the algorithm in [3], the one
in [8], the one in [7] and the proposed one by this paper, from the top down. (d)The
extracted signals when the estimate errors were introduced. y1-y3 were extracted by
the proposed algorithm, while y4 and y5 by the Barros’s algorithm [3].

Next we used the real-world ECG data [12] (Fig.2(a)). Our goal was to ex-
tract the fetal ECG, which was very weak and almost only visible in x1. Us-
ing the method in [8] we estimated that the period of the fetal ECG was 112
sampling periods. After whitening the sensor signals, we respectively ran the
algorithm in [6], the one in [3], the one in [8], the one in [7] and the proposed
one. The results are shown in Fig.2(b) and (c). We can see that the algorithm
in [6] had poor performance. The reason is that the period of the fetal ECG
was not small, violating the basic assumption of the algorithm. In addition,
the extracted fetal ECG by the Barros’s algorithm [3] also showed the poor
performance.

In practice, the estimate errors of the period of the desired source signal
are inevitable. Suppose the estimated period of the Fetal ECG deviates from its
true value. The extraction results are shown in Fig.2(d), where y1, y2, y3 were the
corresponding extracted signals by the proposed algorithm when the estimated
period was 108, 114, and 118 sampling periods, respectively. y4, y5 were the
extracted signals by the Barros’s algorithm [3] when the estimated period was
110 and 113 sampling periods, respectively. Clearly, the proposed algorithm is
not sensitive to the estimate errors.
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5 Conclusions

In this paper we present a two-stage algorithm for extracting periodic signals. It
converges quickly, due to the use of efficient eigenvalue decomposition methods at
the first stage and the fast fixed-point algorithm in the second stage. And it has
good extraction performance. Furthermore, the algorithm is tolerant of estimate
errors of the period of the desired source signal. In addition, the algorithm does
not need to design the so-called reference signals.
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