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Abstract. Blind source extraction (BSE) is of advantages over blind
source separation (BSS) when obtaining some underlying source signals
from high dimensional observed signals. Among a variety of BSE al-
gorithms, a large number of algorithms are based on linear prediction
(LP-BSE). In this paper we analyze them from practical point of view.
We reveal that they are, in nature, minor component analysis (MCA) al-
gorithms, and thus they have some problems that are inherent in MCA
algorithms. We also find a switch phenomenon of online LP-BSE algo-
rithms, showing that different parts of a single extracted signal are the
counterparts of different source signals. The two issues should be noticed
when one applies these algorithms to practical applications. Computer
simulations are given to confirm these observations.

1 Introduction

Blind source extraction (BSE) [1] is a powerful technique that is closely related
to blind source separation (BSS). The basic task of BSE is to estimate some of
underlying source signals that are linearly combined in observations. Compared
with BSS, BSE has some advantages [1]. An attractive one is its ability to extract
a small subset of source signals from high-dimensional observed signals. Hence
it is often recommended to be used in EEG/MEG fields and alike [1–3].

There are many BSE algorithms for extracting source signals based on their
temporal structures [1, 4]. Among them there is a class of algorithms based on
linear prediction. For example, Cichocki, Mandic, and Liu et al. [2, 6–8] proposed
several BSE algorithms based on short-term linear prediction. Barros et al. [5]
proposed a BSE algorithm based on long-term linear prediction. Later Smith et
al. [3] proposed a BSE algorithm combining short-term prediction and long-term
prediction. And recently Liu et al.[9] extended a basic linear prediction based
algorithm to the one suitable for noisy environment.

In this paper we consider some possible problems when applying the linear
prediction based BSE (LP-BSE) algorithms to practical applications, especially
EEG/MEG fields.



2 The Linear Prediction Based Algorithms

Suppose that unknown source signals s(k) = [s1(k), · · · , sn(k)]T are zero-mean
and spatially uncorrelated, and suppose that x(k) = [x1(k), · · · , xn(k)]T is a
vector of observed signals, which is a linear instantaneous mixture of source
signals by x(k) = As(k), where k is time index and A ∈ Rn×n is an unknown
mixing matrix of full rank. The goal of BSE is to find a demixing vector w
such that y(k) = wT x(k) = wT As(k) is an estimate of a source signal. To cope
with ill-conditioned cases and to make algorithms simpler and faster, before
extraction whitening [1] is often used to transform the observed signals x(k) to
z(k) = Vx(k) such that E{z(k)z(k)T } = I, where V ∈ Rn×n is a prewhitening
matrix and VA is an orthogonal matrix.

Assuming that the underlying source signals have temporal structures, the
class of LP-BSE algorithms is derived by minimizing the normalized mean square
prediction error given by [6, 8]

J1 =
E{e(k)2}
E{y(k)2} =

E{(y(k)− bT y(k))2}
E{y(k)2} (1)

where y(k) = wT x(k), b = [b1, b2, · · · , bP ]T , y(k) = [y(k−1), y(k−2), · · · , y(k−
P )]T and P is AR order that is set before running algorithms. If one performs
the whitening and normalizes the demixing vector w, the objective function (1)
reduces to [2, 5]:

J2 = E{e(k)2} = E{(y(k)− bT y(k))2} (2)

where y(k) = wT z(k) = wT Vx(k) and ‖w‖ = 1.
Without loss of generality, we only consider the objective function (2) in the

following. After some algebraic calculations, from (2) we obtain

J2 = E{e(k)2} = wT R̂zw = wT VAR̂sAT VT w = qT R̂sq, (3)

in which q = AT VT w, and

R̂z = Rz(0)−
P∑

p=1

bpRz(p)−
P∑

q=1

bqRz(−q) +
P∑

p=1

P∑
q=1

bpbqRz(q − p) (4)

R̂s = Rs(0)− 2
P∑

p=1

bpRs(p) +
P∑

p=1

P∑
q=1

bpbqRs(q − p) (5)

where Rz(p) = E{z(k)z(k − p)T }, and Rs(p) = E{s(k)s(k− p)T } is a diagonal
matrix due to the assumptions. Also, R̂s is a diagonal matrix, whose diagonal
elements are given by

ρi = ri(0)− 2
P∑

p=1

bpri(p) +
P∑

p=1

P∑
q=1

bpbqri(q − p), i = 1, · · · , n (6)



where ri is the autocorrelation function of si.
Now we calculate the concrete value of ρi. Suppose when J2 achieves its

minimum, b achieves b∗ = [b∗1, b
∗
2, · · · , b∗p]T . We express all the source signals as

si(k) =
P∑

p=1

b∗psi(k − p) + ei(k), i = 1, · · · , n (7)

where ei(k) is called residual processes. Then we have

ri(0) = E
{( P∑

p=1

b∗psi(k − p) + ei(k)
)( P∑

q=1

b∗qsi(k − q) + ei(k)
)}

=
P∑

p=1

P∑
q=1

b∗pb
∗
qri(q − p) + 2E{ei(k)si(k)} − E{ei(k)2} (8)

where we use the relationship (7). On the other hand, we also have

ri(0) = E
{( P∑

p=1

b∗psi(k − p) + ei(k)
)
si(k)

}
=

P∑
p=1

b∗pri(p) + E{ei(k)si(k)}. (9)

Substitute (8) and (9) into (6), we obtain

ρi = E{ei(k)2}, (10)

implying that ρi(i = 1, · · · , n) are just the powers of residual processes of linear
prediction to the source signals given the coefficients b∗p(p = 1, · · · , P ). Obviously,
calculating the minimum of J2 is equivalently finding the minimum among all
ρi(i = 1, · · · , n), which are the eigenvalues of R̂s and are also the ones of R̂z.
And the demixing vector w is the associated eigenvector. Thus the LP-BSE
algorithms are in nature the MCA algorithms [10, 11, 15].

3 Analysis of the LP-BSE Algorithms

It is recognized that MCA algorithms have some flaws in practical applications
[10, 11]. First, in practice the small eigenvalues of the covariance matrix R̂z
are often close to each other, which reduces the estimate accuracy of associated
eigenvectors [14] and brings difficulties to global convergence [10, 11]. Moreover
the performance of MCA algorithms often suffers from outliers and noise [12].

Naturally, the LP-BSE algorithms inherit some of these flaws when dealing
with high dimensional observed signals. Take the extraction of event-related
potentials as an example. The number of sensor signals are often larger than 64,
and some underlying source signals have similar time structures [13]. According
to (10) and (7) the small eigenvalues of R̂z are close to each other, which makes
the estimation of the minor eigenvector sensitive to sensor noise [12].



Now consider online versions of LP-BSE algorithms. Suppose the current
extracted source is s1(k), whose current residual process’s power level is e2

1(k).
This implies that given the prediction AR order P in algorithms, e2

1(k) is the
smallest among all e2

j (k), j = 1, · · · , n. If at time k +1, s1(k +1)’s true AR order
starts to change but the given prediction AR order does not change, e2

1(k + 1)
may become larger 3. Then there may be another source signal, say s2(k + 1),
whose e2

2(k +1) with the given prediction order is smaller than that of s1(k +1).
Consequently, the algorithms switch to extract s2(k+1). Therefore the extracted
signal is still mixed by the two source signals in the sense that the first part of the
extracted signal is the counterpart of s1 and the second part is the counterpart of
s2. We call this the switch phenomenon. The essential reason to the existence of
the switch phenomenon is the use of the fixed prediction order that is set before
performing LP-BSE algorithms. Similarly, if the true AR coefficients of source
signals vary fast and bi(i = 1, · · · , P ) cannot be adjusted in the same pace, the
switch phenomenon may also occur. Remind that in the EEG data processing,
especially in the even-related brain potential extraction, the underlying source
signals’ AR order and coefficients may quickly vary. Thus the phenomenon may
occur in these cases.

4 Simulations

In the first simulation we illustrated unsatisfying performance of LP-BSE algo-
rithms due to their MCA nature. We used the data set ABio7, a benchmark in
ICALAB [17]. Three typical LP-BSE algorithms, i.e. the ones in [2, 7, 8], were
used to extract these signals. To make comparison, we intuitively gave a PCA-
like BSE algorithm, a variation of our algorithm [4], as follows 4:

w = PCAi

( P∑

i=1

Rz(τi)
)

= PCAi(R̃z), (11)

where Rz(τi) = E{z(k)z(k − τi)T }, τi was time delay, and PCAi(R̃z) was the
operator that calculated the i-th principal eigenvector of R̃z. Using a priori
knowledge one can choose a specific set of time delays to achieve better perfor-
mance [4]. Actually, (11) is only a framework, and can be implemented offline or
online by using many efficient and robust methods [14, 16]. Note that the PCA-
like BSE algorithm obtains principal eigenvectors, while the LP-BSE algorithms
obtain minor ones. All the algorithms were implemented offline.

The source signals were randomly mixed and whitened. Then each algorithm
was performed on these signals. The step-size of the algorithm in [8] was 0.1.

3 It also may become smaller. So in this case the switch phenomenon does not occur.
4 Note that we present the PCA-like algorithm in purpose to show that the class

of LP-BSE algorithms may not achieve satisfying results when applied to practical
applications. Admittedly, better algorithms than the algorithm may be developed,
which is not the topic in this paper.



The learning rate parameter µ0 of the algorithm in [7] (see Equ.(16) in [7]) was
0.5. The extraction performance was measured by

PI =
1

n− 1

( n∑

i=1

q2
i

maxi q2
i

− 1
)

(12)

where q = [q1, · · · , qn] = wT VA was a global vector, V was the whitening
matrix, A was the mixing matrix and w was the demixing vector obtained by
algorithms. PI’s value lay in [0,1] for any vector q = [q1, · · · , qn]. The smaller it
was, the better the extraction performance was. Simulations were independently
carried out 50 trials. The results are shown in Table 1, from which we can see
that the LP-BSE algorithms generally performed poorly.

Table 1. The averaged performance indexes of the algorithms in the first simulation.
For the three LP-BSE algorithms the parameter P was the prediction order, while for
the PCA-like algorithm P meant that the time delay set was {1, · · · , P}.

P 1 2 3 4 5 6 7 8 9 10 12 20 30 40 50 400

Alg. (11) 0.00 0.00 0.01 0.09 0.02 0.07 0.01 0.01 0.06 0.02 0.01 0.05 0.04 0.07 0.03 0.01

Alg. [8] 0.19 0.17 0.17 0.18 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Alg. [2] 0.02 0.00 0.07 0.07 0.06 0.03 0.03 0.02 0.04 0.08 0.10 0.05 0.06 0.07 0.08 0.14

Alg. [7] 0.11 0.14 0.11 0.09 0.12 0.09 0.10 0.11 0.13 0.12 0.13 0.06 0.13 0.08 0.16 0.08

In the second simulation we used the 122-dimension MEG data set (Fig.1
(a)) in [18] to show performance of a typical LP-BSE algorithm in extracting
horizontal eye movements, which occurred at about the 4000-th sampling point
and the 15500-th sampling point. Since the movements resulted from the same
group of muscles, we safely believed that artifacts associated with the movements
occurring at different time should appear in the same extracted signal.

After performing the same preprocessing as that in [18], we used the offline
LP-BSE algorithm in [8] to extract the artifacts with different levels of data di-
mension reduction. Its step-size was 0.5 and prediction order was 10. The results
are shown in Fig.1 (b), where y1, y2, y3 and y4 were extracted by the LP-BSE
algorithm with data dimension reduced to 120, 80, 60, and 40, respectively. y5

was extracted by the PCA-like algorithm (11) without data dimension reduction
(τi = {1, · · · , 5}). y6 was extracted by FastICA, which was also used in [18]. Since
Vigário et al. have shown that FastICA can perfectly extract the horizontal eye
movent artifacts, we regarded y6 as a benchmark. From y1 − y3 we see that the
artifacts were not perfectly extracted, since the horizontal eye movement arti-
fact at about the 15500-th sampling point was not extracted. Although in y4 all
the artifacts were extracted, it was mixed by artifacts resulting from eye blinks
[18]. Besides, we see that the extraction performance of the LP-BSE algorithm
was affected by the dimension reduction. When the dimension was reduced to a
certain degree, the extraction performance became relatively better. In contrast,
in y5 all the horizontal eye movement artifacts were extracted without mixed
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Fig. 1. A subset of the MEG data set [18] (a) and extracted artifacts (b).

by other artifacts, and we found the extraction quality was not affected by the
data dimension (the extraction results with dimension reduction are not shown
here due to limited space). We also ran other LP-BSE algorithms and almost
obtained the same results. Due to space limit we omit the report.

In the last simulation we showed the switch phenomenon of online LP-BSE
algorithms. We generated three AR(6) Gaussian signals of 5-second duration
time (Fig.2). Each source signal had zero mean and unit variance. The sampling
frequency was 1000 Hz. The AR coefficients of each signal were unchanged during
the first 2.5 second, given by:

source1 : b = [−1.6000, 0.9000,−0.2000, 0.0089, 0.0022,−0.0002]
source2 : b = [−0.1000,−0.4300, 0.0970, 0.0378,−0.0130, 0.0009]
source3 : b = [−2.3000, 2.0400,−0.8860, 0.1985,−0.0216, 0.0009]

And hereafter the AR coefficients changed to:

source1 : b = [−1.6000, 0.9000,−0.2000, 0.0089, 0.0022,−0.0002]
source2 : b = [−2.3000, 2.0400,−0.8860, 0.1985,−0.0216, 0.0009]
source3 : b = [−0.1000,−0.4300, 0.0970, 0.0378,−0.0130, 0.0009]

We used the online version of the LP-BSE algorithm in [8] to extract a signal.
Its step-size was 0.01 and prediction order was 10. The result is shown in Fig.2
(see y1), from which we see that the first part of y1 (before 2.5 second) was
the counterpart of source signal s3, but from 3.6 second or so the signal was
clearly the counterpart of source signal s1. To further confirm this, we measured
the similarity between the extracted signal and the source signals, using the
performance index PI2 = −10 lg(E{(s(k) − s̃(k))2})(dB), where s(k) was the
desired source signal, and s̃(k) was the extracted signal (both of them were
normalized to be zero-mean and unit-variance). The higher PI2 is, the better
the performance. Denote by Part1 the extracted signal’s segment from 2.0 s to
2.5 s, and denote by Part2 the extracted signal’s segment from 4.0 s to 5.0 s.



The PI2 of Part1 measuring the similarity between Part1 and the counterpart
of s3 was 18.5 dB, showing Part1 was very similar to the counterpart of s3. The
PI2 of Part2 measuring the similarity between Part2 and the counterpart of s1

was 19.7 dB, showing Part2 was very similar to the counterpart of s1.
Next we used an online version of the PCA-like algorithm (11), implemented

by the OJAN PCA algorithm [16], to extract a source signal. The extracted
signal is shown in Fig.2 (see y2), from which we can see that the extracted signal
was just s3 and the switch phenomenon did not occur. We also calculated the
algorithm’s PI2 at Part1 and Part2. The PI2 of Part1 measuring the similarity
between Part1 and the counterpart of s3 was 22.3 dB, showing Part1 was very
similar to the counterpart of s3. The PI2 of Part2 measuring the similarity
between Part2 and the counterpart of s3 was 19.9 dB, showing Part2 was very
similar to the counterpart of s3 as well. The results show that the online version
has well extracted the whole source signal s3.

5 Conclusion

In this paper we analyze a class of linear prediction based BSE algorithms,
revealing that they are in nature the MCA algorithms and showing a switch
phenomenon of their online versions. Based on these results, careful attentions
should be paid when one applies these algorithms to practical applications such
as EEG and MEG fields.
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