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Abstract

Alzheimer’s disease (AD) is the most common form of de-
mentia that causes progressive impairment of memory and
other cognitive functions. Multivariate regression models
have been studied in AD for revealing relationships between
neuroimaging measures and cognitive scores to understand
how structural changes in brain can influence cognitive sta-
tus. Existing regression methods, however, do not explic-
itly model dependence relation among multiple scores de-
rived from a single cognitive test. It has been found that
such dependence can deteriorate the performance of these
methods. To overcome this limitation, we propose an effi-
cient sparse Bayesian multi-task learning algorithm, which
adaptively learns and exploits the dependence to achieve
improved prediction performance. The proposed algorithm
is applied to a real world neuroimaging study in AD to pre-
dict cognitive performance using MRI scans. The effective-
ness of the proposed algorithm is demonstrated by its supe-
rior prediction performance over multiple state-of-the-art
competing methods and accurate identification of compact
sets of cognition-relevant imaging biomarkers that are con-
sistent with prior knowledge.

1. Introduction
Alzhiemer’s disease (AD) is a neurodegenerative dis-

order characterized by progressive impairment of memory
and other cognitive functions. Substantial attention has re-
cently been given to identifying neuroimaging predictors
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for cognitive decline in AD in the fields of medical image
analysis and pattern recognition. Regression models have
been investigated to predict clinical scores from individual
magnetic resonance imaging (MRI) and/or positron emis-
sion tomography (PET) scans [14, 17, 18, 24]. In [17],
stepwise regression was performed in a univariate, pair-
wise fashion to relate each imaging measure to each cog-
nitive score. In [14], using relevance vector regression,
morphometric features of the entire brain were jointly an-
alyzed to predict each selected clinical score. Two most
recent studies [18, 24] employed multi-task learning strate-
gies and aimed to select features that could predict all or
most clinical scores, using ℓ2,1-norm coupled with ℓ1-norm
[18] and multi-task feature selection coupled with support
vector machine [24]. Both methods used a simple concate-
nation to bundle multiple clinical scores together without
learning their dependence relation.

In this study we propose a new sparse Bayesian multi-
task learning method, which is built on a multivariate re-
gression model and explicitly models the correlation struc-
ture within each row of the regression coefficient matrix.
This is motivated by the fact that if a biomarker plays a role
in one score of a cognitive test, then it often has more or
less influence in another score of the same test. The pro-
posed method is evaluated in an empirical study using the
MRI and cognitive data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database [19]. This method
not only demonstrates superior performance over multi-
ple state-of-the-art competing methods, but also identifies
cognition-relevant imaging biomarkers that are consistent
with prior knowledge.

2. Sparse Bayesian Multi-Task Learning
The multiple measurement vector (MMV) model, orig-

inally designed for sparse signal recovery [5], is adopted
here for multivariate regression of cognitive scores Y on
neuroimaging measures Φ:

Y = ΦX+V, (1)
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where Φ ∈ RN×M and Y ∈ RN×L are respectively the
M neuroimaging measures and L cognitive scores of the N
subjects, V is an unknown noise matrix (or called model
error matrix), and X ∈ RM×L is an unknown coefficient
matrix. X is expected to have a sparse loading (i.e., only
a few nonzero rows), since the brain circuitry relevant to a
certain cognition task typically involves a small number of
imaging markers, and these markers more or less affect all
the cognitive scores under the task. Here a nonzero row is
allowed to contain some zero entries.

There are many algorithms for this problem. Most of
them calculate the solution by solving the following uncon-
strained problem (or its equivalent constrained problem)

X = argmin
X
∥Y −ΦX∥2F + λg1(X) (2)

with the mixed ℓq,1 penalty (typically, q = 2 or q =∞) 1

g1(X) ,
M∑
i=1

∥Xi·∥q, (3)

where an ℓq norm is applied on each row of X, and an ℓ1
norm is applied on the M calculated ℓq norms. λ is a regu-
larizer, which is generally tuned by cross-validation. Algo-
rithms using this penalty include group Lasso (the variant
used for the MMV model) [23], MMV based Basis Pursuit
(M-BP) [4], and many domain-specific algorithms for fea-
ture extraction [13]. Note that the penalty g1(X) is a convex
penalty. In some scenarios non-convex penalty based algo-
rithms can yield better performance. A typical non-convex
penalty is:

g2(X) ,
M∑
i=1

(
∥Xi·∥2

)p
, 0 < p < 1 (4)

The MMV based FOCal Underdetermined System Solver
(M-FOCUSS) method [5] is a representative in this group.

However, instead of using these algorithms in our prob-
lem, we prefer the T-MSBL2 algorithm [26], a recently
derived variant in the family of sparse Bayesian learning
(SBL) [15]. SBL is a powerful approach for regression and
classification. It relies on a parameterized prior that encour-
ages models with a few nonzero rows in X (i.e. encourages
row-wise sparsity). But among various SBL algorithms we
prefer T-MSBL due to the following specific reasons.

First, in our case a given imaging marker can affect mul-
tiple cognitive scores, so the coefficients in the same row of
X are largely correlated. Recently, it has been found [26]

1Throughout the paper Xi· and X·j denotes the i-th row and the j-th
column of X, respectively.

2T-MSBL stands for Temporal MMV Sparse Bayesian Learning. Note
that the concept of “Temporal” was derived from sparse signal recovery,
the original application domain of T-MSBL. In our application, the tempo-
ral dimension corresponds to the dimension of multiple cognitive scores.

that when such correlation is present, most existing methods
have seriously degraded performance due to the ignorance
of the correlation3. In contrast, T-MSBL can adaptively es-
timate and exploit the correlation structure in Xi·(∀i) to im-
prove performance. Extensive experiments have verified its
superior performance to most algorithms.

Second, in our case the columns of Φ is highly coher-
ent. In some data sets used in our experiments the maxi-
mum correlation reaches 0.95. The coherent Φ can result
in poor performance of most algorithms. In contrast, ex-
periments have shown that T-MSBL maintains its superior
performance in this situation.

Third, T-MSBL has an effective learning rule to choose a
suitable value for the regularizer λ. This relaxes the efforts
of users to choose a value for λ as in many algorithms (e.g.
M-BP and M-FOCUSS).

However, the T-MSBL is slow due to the use of the
Expectation-Maximization (EM) method. In the follow-
ing, we first briefly describe T-MSBL, and then propose a
much faster algorithm, which is suitable for large-scale data
sets. Further, we reveal its connection to some popular algo-
rithms, including those using the mixed ℓ2,1 penalty (3) and
those using kernels for regularization. This connection pro-
vides insights to the advantages of the proposed algorithm,
and motivates the design of new algorithms in the future.

2.1. The TMSBL Algorithm

In T-MSBL, each row Xi· is assumed to satisfy a param-
eterized Gaussian distribution, given by

p(Xi·; γi,Bi) ∼ N (0, γiBi), i = 1, · · · ,M

where γi and Bi are hyperparameters. γi is a nonnegative
scalar controlling the row sparsity of X. When γi = 0,
the corresponding i-th row, Xi·, becomes zero. Due to the
mechanism of automatic relevance determination [12, 15],
most γi become zero in noiseless cases or tend to very small
values in noisy cases. Generally a threshold is used to prune
out these γi, which equivalently prunes out the correspond-
ing rows in X. Bi is an unknown positive definite matrix
modeling correlation structure in Xi·, which is adaptively
learned from data. It is worthy of emphasizing that the data-
adaptive learning of the correlation structure is very impor-
tant, which can effectively prevent T-MSBL from converg-
ing to local solutions in most cases [26].

To conveniently derive T-MSBL, the MMV model (1) is
equivalently transformed to the block sparsity model

y = Dx+ v, (5)

where y = vec(YT ) ∈ RNL×1, x = vec(XT ) ∈ RML×1,

3For example, the operator ∥Xi·∥q in (3) and (4) does not consider
correlation structure among the entries in Xi·



v = vec(VT ), and D = Φ ⊗ IL
4. Here v is assumed to

be a Gaussian distribution p(v;λ) = N (0, λI). Using the
Bayes rule, the posterior is p(x|y; Θ) = N (µ,Σ) with

µ =
1

λ
ΣDTy (6)

Σ = (Σ−1
0 +

1

λ
DTD)−1 (7)

= Σ0 −Σ0D
T (λI+DΣ0D

T )−1DΣ0 (8)

where Θ denotes the set of all the hyperparameters
{λ, γi,Bi, ∀i}, and Σ0 , diag{γ1B1, · · · , γMBM}5.
Once these hyperparameters are estimated, the estimate of
x is readily given by the mean of the posterior, i.e. µ. The
original T-MSBL uses the EM method to estimate these hy-
perparameters, and thus it is slow. In the following we will
derive a much faster algorithm based on MacKay’s fixed-
point method [11].

2.2. The New Algorithm: TMSBLFP

We estimate the hyperparameters in the evidence max-
imization framework [11, 15]. In this framework the cost
function is

L(Θ) , −2 log
∫

p(y|x;λ)p(x; γi,Bi, ∀i)dx

= yT (Σy)
−1y + log |Σy|, (9)

where Σy , λI + DΣ0D
T . As in T-MSBL, all the

Bi(∀i) are constrained to be the same matrix B to prevent
overfitting. Thus Σ0 = Γ ⊗ B with Γ , diag(γ) and
γ , [γ1, · · · , γM ]T .

To conveniently derive learning rules for these hyperpa-
rameters, we first simplify L(Θ). First, note that

yT (Σy)
−1y =

1

λ
yT

[
y −D(λΣ−1

0 +DTD)−1DTy
]

=
1

λ
yT

[
y −Dµ

]
(10)

=
1

λ

[
∥y −Dµ∥22 + µTDTy − µTDTDµ

]
=

1

λ
∥y −Dµ∥22

+µT
(
Σ−1 − 1

λ
DTD

)
µ (11)

=
1

λ
∥y −Dµ∥22 + µTΣ−1

0 µ (12)

where (10) and (11) both used the equation (6), and (12)

4We denote the L × L identity matrix by IL. When the dimension
is evident from the context, we simply use I. ⊗ denotes the Kronecker
product. vec(·) denotes the vectorization of a matrix formed by stacking
its columns into a single column vector.

5diag{γ1B1, · · · , γMBM} indicates a block diagonal matrix with its
i-th diagonal block given by γiBi.

used the equation (7). Next, using the Sylvester’s Determi-
nant Theorem, we have

log |Σy| = log |λINL|

+ log |Σ−1
0 +

1

λ
DTD|+ log |Σ0|.(13)

Combining (12) and (13), the cost function becomes

L(Θ) =
1

λ
∥y −Dµ∥22 + µTΣ−1

0 µ+ log |λINL|

+ log
∣∣Σ−1

0 +
1

λ
DTD

∣∣+ log |Σ0|. (14)

Now it is convenient to minimize the cost function with re-
spect to each hyperparameter.

The derivative of L(Θ) with respect to γi is

∂L
∂γi

= −µT
i B

−1µi

γ2
i

−
Tr

(
ΣiB

−1
)

γ2
i

+
L

γi

where µi , µ((i − 1)L + 1 : iL), and Σi , Σ((i −
1)L + 1 : iL , (i − 1)L + 1 : iL) (using the MATLAB
notations). Letting ∂L

∂γi
= 0 and following MacKay’s fixed-

point approach [11, 15], we have

γi ←
µT

i B
−1µi

L− Tr
(
ΣiB−1

)
/γi

, i = 1, · · · ,M (15)

Similarly, we derive the learning rules for B and λ:

B ← 1

M

M∑
i=1

µiµ
T
i +Σi

γi
(16)

λ ←
∥y −Dµ∥22 + λ

[
ML− Tr(ΣΣ−1

0 )
]

NL
. (17)

The learning rules (6), (7), (15), (16), and (17) comprise
our algorithm. This algorithm operates in the block sparsity
model (5), not the original MMV model (1). But we can
simplify it using the approximation equation [26]:

(λINL +DΣ0D
T )−1 ≈ (λI+ΦΓΦ)−1 ⊗B−1. (18)

This approximation performs quite well over a broader
range of conditions, especially when SNR is high or the
correlation in each Xi· is weak. It becomes exact when
λ = 0 or B = I. Using (18) and following the simplifica-
tion procedure in [26] we obtain the simplified algorithm as
follows:

Ξ ←
(
Γ−1 +

1

λ
ΦTΦ

)−1

X ← ΓΦT
(
λI+ΦΓΦT

)−1
Y

γi ←
Xi·B

−1XT
i·

L(1−Ξii/γi)
, ∀i



B ← B̃/∥B̃∥F , with B̃ =

M∑
i=1

XT
i·Xi·

γi

λ ← 1

NL
∥Y −ΦX∥2F

+
λ

N
Tr

[
ΦΓΦT (λI+ΦΓΦT )−1

]
where Ξii is the (i, i)-th element of Ξ. We call the algo-
rithm T-MSBL-FP (i.e, T-MSBL-Fixed Point). Note that
the robustness of the λ learning rule in noisy environment
can be improved by setting the off-diagonal elements of
ΦΓΦT to zeros [26]. Also, the robustness of the learning
rule for B can be improved by adopting the regularization
method in [26]. The initialization values of γi(∀i), B, and
λ can be chosen 1, I, and any guessed noise variance, re-
spectively.

T-MSBL-FP not only is much faster than T-MSBL, but
also has better prediction performance. More interestingly,
from its cost function (9) we can connect it to many well-
established algorithms, providing insights to our algorithm
and motivations to design new algorithms. We elaborate
this next.

2.3. Connection to Existing Algorithms

Our motivation of connecting T-MSBL-FP to existing al-
gorithms is inspired by the work in [20, 25]. In [20] Wipf
and Nagarajan connected the basic SBL algorithm [15] to
ℓ1 minimization algorithms in the single measurement vec-
tor model, a related but different model to the MMV model
considered here. In [25] Zhang and Rao connected T-MSBL
to iterative reweighted ℓ2 algorithms. Now we connect T-
MSBL-FP to the algorithms based on the ℓq,1 penalty (3)
and those employing kernel regularizers [22, 13, 21].

We consider to transform the cost function (9). Using the
identity yT (λI +DΣ0D

T )−1y ≡ minx
[
1
λ∥y −Dx∥22 +

xTΣ−1
0 x

]
, the upper-bound of the cost function (9) is

L(x, γ,B) = log |λI+DΣ0D
T |

+
1

λ
∥y −Dx∥22 + xTΣ−1

0 x.

By first minimizing it over γ and B and then minimizing
over x, we have:

x = argmin
x

{
∥y −Dx∥22 + λgC(x)

}
, (19)

with the penalty gC(x) given by 6

gC(x) , min
γ≽0,B≻0

{
xTΣ−1

0 x+ log |λI+DΣ0D
T |
}
. (20)

6γ ≽ 0 means each element of γ is nonnegative. B ≻ 0 means B is a
positive definite matrix.

We now look at the concavity of gC(x). Since the
function h(γ) , log |λI + DΣ0D

T | is concave and non-
decreasing with respect to γ ≽ 0, we have

log |λI+DΣ0D
T | , min

z≽0
zTγ − h∗(z) (21)

where h∗(z) is the concave conjugate of h(γ) [2], and z ,
[z1, · · · , zM ]T . Thus using (21) we can express (20) as

gC(x) = min
γ,z≽0,B≻0

xTΣ−1
0 x+ zTγ − h∗(z)

= min
γ,z≽0,B≻0

∑
i

(xT
i B

−1xi

γi
+ ziγi

)
− h∗(z)

(22)

where xi , x((i − 1)L + 1 : iL), i.e. xi , XT
i· . Mini-

mizing (22) over γi for fixed x, z and B, we get

γi = z
− 1

2
i

√
xT
i B

−1xi, ∀i (23)

Substituting this expression into (22) leads to

gC(x) = min
z≽0,B≻0

∑
i

(
2z

1
2
i

√
xT
i B

−1xi

)
− h∗(z). (24)

Now, from (19) and (24) we have:

x = argmin
x
∥y −Dx∥22

+λ
[

min
z≽0,B≻0

∑
i

(
2z

1
2
i

√
xT
i B

−1xi

)
− h∗(z)

]
(25)

To obtain the solution x, we need to first calculate the opti-
mal values of B and zi.

The optimal value of B can be obtained from (20).
Note that ∂

∂B [xTΣ−1
0 x + log |λI + DΣ0D

T |] =
∑

i

[
−

B−1xix
T
i B

−1/γi + γiD
T
i Σ

−1
y Di

]
, where Di = Φi ⊗ IL

and Φi is the i-th column of Φ. Setting it to zero, we have

B−1
∑
i

xix
T
i

γi
B−1 =

∑
i

γiD
T
i Σ

−1
y Di

=
∑
i

γi(Φ
T
i ⊗ I)

(
λINL + (ΦΓΦT )⊗B

)−1
(Φi ⊗ I)

≈
∑
i

γi(Φ
T
i ⊗ I)

[
(λIN +ΦΓΦT )−1 ⊗B−1

]
·(Φi ⊗ I) (26)

=
[∑

i

γiΦ
T
i (λI+ΦΓΦT )−1Φi

]
B−1

where (26) used the approximation (18). Thus, we obtain
the learning rule

B =
1

C

M∑
i=1

xix
T
i

γi
=

1

C

M∑
i=1

XT
i·Xi·

γi
(27)



with C ,
∑M

i=1 γiΦ
T
i (λI+ΦΓΦT )−1Φi.

According to the duality property [2] in convex optimiza-
tion, from the relation (21) we can directly obtain the opti-
mal zi as follows zi =

∂ log |λI+DΣ0D
T |

∂γi
= Tr

[
BDT

i

(
λI+

DΣ0D
T )−1Di

]
. So,

z
1
2
i =

(
Tr

[
BDT

i

(
λI+DΣ0D

T )−1Di

]) 1
2

≈
√
LΦT

i (λI+ΦΓΦT )−1Φi, (28)

where we used the approximation (18) again.
Based on the above development, we see that the opti-

mal values of B and zi depend on X itself. Thus the whole
learning procedure is an iterative algorithm. In the k-th it-
eration, once having used the updating rules (23) (27) and
(28) to obtain B(k) and the weight w(k)

i , 2z
1/2
i , we only

need to solve the following optimization problem:

x(k+1) = argmin
x
∥y −Dx∥22

+λ
∑
i

w
(k)
i

√
xT
i (B

(k))−1xi, (29)

or equivalently,

X(k+1) = argmin
X
∥Y −ΦX∥2F

+λ
∑
i

w
(k)
i

√
Xi·(B(k))−1XT

i· . (30)

Now we draw its connection to existing algorithms.
First, from (30) we can see our penalty is a correlation-
aware penalty, and the correlation structure is adaptively
learned from data. This is entirely different to the penalties
in (3) and (4), which is blind to the correlation. Further,
the matrix B(k) in our penalty can be viewed as a data-
adaptive kernel. This is different to the non-adaptive ker-
nels used in some existing ℓ2,1-norm penalties [22], which
generally need users to design kernels according to some a
priori knowledge or by cross-validation. Note that the data-
adaptive kernel is advantageous over the user-defined ker-
nels, because in some applications such as our application, a
priori knowledge may not be available. Also, user-designed
kernels may not accurately capture the correlation structure
of data.

Second, one can see (30) is an MMV-model based it-
erative reweighted ℓ1 minimization algorithm [3], since its
weights w(k)

i depends on the estimate of X in the previous
iteration. In contrast, the framework expressed in (2)-(3)
is a non-iterative-reweighted one. It is known that iterative
reweighted algorithms have better performance than their
non-iterative-reweighted counterparts and can provide more
sparse solutions [3].

The above observations give us an intuitive, although
not rigorous, explanation why our algorithm has superior

Table 1. Participant characteristics.
Category HC AD p-value
Gender (M/F) 114/108 86/85 0.835
Handedness (R/L) 205/17 161/10 0.482
Baseline Age (years) 75.93± 5.08 75.67± 7.36 0.680
Education (years) 15.97± 2.84 14.74± 3.08 < 0.001

performance as shown in the experiments described below.
And they motivate us how to improve algorithms based on
the ℓq,1 norm and kernel regularizers, especially how to
adaptively learn the correlation structure of data.

3. Experimental Results
3.1. Data Sets

Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.ucla.edu). One goal of
ADNI has been to test whether serial MRI, PET, other bi-
ological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD. For up-to-
date information, see www.adni-info.org. All the healthy
control (HC) and AD participants with no missing cogni-
tive and MRI measures were included in this study. Their
characteristics are summarized in Table 1.

For one baseline scan of each participant, FreeSurfer V4
was employed to automatically label cortical and subcorti-
cal tissue classes [6, 8] and to extract target region volume
and cortical thickness, as well as to extract total intracranial
volume (ICV). For each hemisphere, thickness measures of
34 cortical regions of interest (ROIs) and volume measures
of 15 cortical and subcortical ROIs (Fig. 1) were included
in this study. Three sets of baseline cognitive scores [1]
were employed to test the proposed methods: Mini-Mental
State Exam (MMSE), Rey Auditory Verbal Learning Test
(RAVLT), and Trail Making (TRAILS). Details about these
assessments are available in the ADNI procedure manuals
(www.adni-info.org). Table 2(a) summarizes these cogni-
tive scores. Using the regression weights derived from the
healthy participants, all the FreeSurfer measures were ad-
justed for the baseline age, gender, education, handedness,
and ICV, and all the cognitive measures were adjusted for
the baseline age, gender, education and handedness.

3.2. Competing Methods

To show the superior performance of our algorithm, we
selected several state-of-the-art or classical algorithms for
comparison; each algorithm represents a group of meth-
ods using different frameworks. They are the Mixed ℓ2/ℓ1
Program [7], M-FOCUSS [5], Simultaneous Orthogonal
Matching Pursuit (S-OMP) [16], Multi-Task Compressive
Sensing (MT-CS) [10], and Ridge Regression [9]. The
Mixed ℓ2/ℓ1 Program belongs to the group (2)-(3) with



Table 2. Comparison of cross-validation prediction performances measured by correlation coefficients
(a) Description of Cognitive Measures (b) Cross-validation Prediction Performances

Score Name Description T-MSBL-FP T-MSBL M-FOCUSS Mixed ℓ2/ℓ1 S-OMP RIDGE MT-CS
MMSE MMSE score 0.735 0.735 0.690 0.689 0.721 0.685 0.680

R
AV

LT TOTAL Total score of the first 5 trials 0.634 0.617 0.589 0.586 0.604 0.570 0.579
T30 30min delay total # of words recalled 0.586 0.572 0.550 0.543 0.545 0.486 0.512
RECOG 30min delay recognition score 0.561 0.559 0.526 0.501 0.539 0.504 0.509

T
R

A
IL

S TRAILSA Trail making A score 0.467 0.450 0.391 0.380 0.400 0.312 0.344
TRAILSB Trail making B score 0.565 0.555 0.491 0.461 0.508 0.464 0.476
TR(B-A) TRAILSB-TRAILSA 0.488 0.464 0.401 0.351 0.409 0.336 0.355

q = 2. It is shown [7] that it has better performance than
many other members in this group. M-FOCUSS represents
the group using the non-convex penalty (4). In our experi-
ment, we set p = 0.8 as suggested in [5]. S-OMP represents
the group of greedy pursuit algorithms for the MMV model.
MT-CS is an SBL algorithm, which treats the MMV model
(1) as L dependent single measurement vector (SMV) mod-
els, i.e. Y·i = ΦX·i + V·i (i = 1, · · · , L), where every
X·i(∀i) shares a common prior. Note that this model is an
alternative one to the MMV model in multi-task learning.
Ridge Regression is a traditional regression approach for an
SMV model. To use it in our problem, we applied it to each
Y·i = ΦX·i +V·i (i = 1, · · · , L) independently.

3.3. Improved Performance

Regression was performed separately on each cognitive
task (MMSE, RAVLT, or TRAILS) using the MRI measures
as predictors, where the proposed T-MSBL-FP method and
all the competing methods (T-MSBL, M-FOCUSS, Mixed
ℓ2/ℓ1, S-OMP, RIDGE, MT-CS) were evaluated. Similar to
prior studies [14, 24], in each experiment, Pearson’s corre-
lation coefficients r between the actual and predicted cogni-
tive scores were computed to measure the prediction perfor-
mance. Using a 5-fold cross-validation strategy, the testing
samples across five trials were pulled together to obtain an
unbiased estimate of these correlation coefficients.

Shown in Table 2(b) is the performance comparison
among all seven methods. Both T-MSBL-FP and T-MSBL
outperformed the other five competing algorithms in all
three prediction cases. In the multi-task learning cases (i.e.,
RAVLT and TRAILS, where L > 1 for Y in the MMV
model (1)), T-MSBL-FP outperformed T-MSBL. Besides
better prediction accuracy, T-MSBL-FP also achieved sig-
nificantly improved computational performance by almost
one order of magnitude7 over T-MSBL, i.e., 0.31s vs. 2.12s
for MMSE, 0.11s vs. 4.68s for RAVLT, and 0.17s vs 1.36s
for TRAILS.

Using T-MSBL-FP, the MRI measures could predict the
MMSE score the best, with a correlation coefficient r =
0.7352. This result is better than or competitive to a few

7Since in SBL algorithms the thresholds to prune out small γi affect
their speed, the thresholds of the two algorithms were set to be the same
(10−3), making the speed comparison fair.
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(a) T−MSBL−FP (b) T−MSBL (c) Mixed L2/L1

Figure 1. Heat maps of average regression weights of 5-fold cross-
validation trials for (a) T-MSBL-FP, (b) T-MSBL, and (c) Mixed
ℓ2/ℓ1. Each row corresponds to an MRI measure and each column
to a cognitive score. Results for volume measures are shown in
top 15 rows, and those for thickness measures in bottom 34 rows.
Results for left (L) and right (R) hemispheres are shown in separate
panels.

prior MMSE prediction results: r = 0.504 using MRI only
in [24], r = 0.697 using MRI, PET and CSF jointly in [24],
and r = 0.70 using MRI in [14]. Relatively high predic-
tion performance has also been achieved for RAVLT scores,
from r = 0.561 to r = 0.634. In [14], a different, but rele-
vant RAVLT score was predicted using MRI, with r = 0.13
only.

3.4. Biomarker Identification

Both T-MSBL-FP and T-MSBL are sparse models that
are able to identify a compact set of relevant neuroimaging
biomarkers and to explain the underlying brain structural
changes related to cognitive status. Shown in Fig. 1 are



the heat maps of the regression weights (or coefficients) of
the MRI measures for each cognitive score calculated by T-
MSBL-FP, T-MSBL, and the Mixed ℓ2/ℓ1 Program. Blue
indicates negative correlation, while red indicates positive
correlation. The bigger the magnitude of an coefficient is,
the more important its MRI measure is in predicting the cor-
responding cognitive score.

T-MSBL-FP clearly yielded a more sparse pattern than
Mixed ℓ2/ℓ1 (Fig. 1), making the results easier to interpret.
The pattern obtained by T-MSBL-FP was also more sparse
and cleaner than those obtained by T-MSBL and other com-
pared algorithms (not shown due to space constraint). Fig. 2
shows these regression weights mapped on the brain, where
each row corresponds to one cognitive score and each col-
umn corresponds to a specific view of the brain.

The imaging biomarkers identified by T-MSBL-FP
yielded promising patterns (Fig. 2) that are expected based
on prior knowledge on neuroimaging and cognition. MMSE
measures overall cognitive impairment; and thus its re-
sult includes important AD-relevant imaging markers such
as hippocampal volume, amygdala volume, and entorhinal
cortex thickness. RAVLT measures verbal learning mem-
ory; and thus its result includes regions relevant to learn-
ing and memory, such as hippocampus, entorhinal cortex,
and middle temporal gyri. TRAILS measures a combina-
tion of visual, motor and executive functions; and thus its
result includes regions in sensory-motor cortex (e.g., para-
central lobule), parietal lobe (relevant to visual processing),
and frontal lobe (relevant to executive function).

All the above results have demonstrated that the pro-
posed T-MSBL-FP method not only yields superior perfor-
mance on prediction accuracy and computational time, but
also is a powerful tool for discovering a small set of imaging
biomarkers that predict cognitive performance. These re-
sults provide important information for understanding brain
structural changes related to cognitive status and can poten-
tially help characterize the progression of AD.

4. Conclusion
We have proposed a new sparse Bayesian multi-task

learning algorithm, T-MSBL-FP, and demonstrated its ef-
fectiveness by applying it to the ADNI cohort for predict-
ing cognitive outcomes from MRI scans. The proposed T-
MSBL-FP method adaptively learns and exploits the cor-
relation structure within each coefficient row in the multi-
ple measurement vector model, which improves its perfor-
mance. Its computational cost has been improved by one
order of magnitude over its predecessor T-MSBL, making it
possible to be used in applications with large-scale data sets.
We have also revealed its connection to existing algorithms
such as those based on ℓ2,1-norm and kernel regularization,
which demonstrates that our algorithm can be viewed as
an iterative reweighted ℓ2,1 algorithm using a data-adaptive

Figure 2. Regression weights (or coefficients) mapped onto brain:
Each row corresponds to one cognitive score. Each column corre-
sponds to a specific view of the brain

kernel, providing motivation to design new algorithms.
In its application to the ADNI cohort, compared to

multiple state-of-the-art algorithms, T-MSBL-FP not only
demonstrated superior prediction performances over the
competing methods, but also identified compact sets of
cognition-relevant imaging biomarkers. These imaging
biomarkers can predict multiple cognitive scores simulta-
neously and have a potential to play an important role in
determining cognitive functions and characterizing AD pro-
gression. The identified biomarkers are consistent with the
prior knowledge in existing literatures. All the results have
clearly demonstrated the effectiveness of T-MSBL-FP. Po-
tential future directions include (1) extension of T-MSBL-
FP to multi-model imaging data (e.g. PET, fMRI) to pre-
dict cognitive performance, (2) extension of T-MSBL-FP to
exploit more complex correlation structure inherent in data
and among data sets, and (3) improving the ℓq,1-norm based
algorithms such that they can also exploit correlation struc-
ture while still maintaining their fast speed.
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