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ABSTRACT

Iterative reweighted algorithms, as a class of algorithms for sparse
signal recovery, have been found to have better performance than
their non-reweighted counterparts. However, for solving the prob-
lem of multiple measurement vectors (MMVs), all the existing
reweighted algorithms do not account for temporal correlations
among source vectors and thus their performance degrades signifi-
cantly in the presence of the correlations. In this work we propose an
iterative reweighted sparse Bayesian learning (SBL) algorithm ex-
ploiting the temporal correlations, and motivated by it, we propose a
strategy to improve existing reweighted `2 algorithms for the MMV
problem, i.e. replacing their row norms with Mahalanobis distance
measure. Simulations show that the proposed reweighted SBL al-
gorithm has superior performance, and the proposed improvement
strategy is effective for existing reweighted `2 algorithms.

Index Terms— Sparse Signal Recovery, Compressed Sensing,
Iterative Reweighted `2 Algorithms, Sparse Bayesian Learning,
Temporal Correlation

1. INTRODUCTION

The multiple measurement vector (MMV) model for sparse signal
recovery is given by [1]

Y = ΦX + V, (1)

where Φ ∈ RN×M (N ¿ M) is the dictionary matrix whose any
N columns are linearly independent, Y ∈ RN×L is the measure-
ment matrix consisting of L measurement vectors, X ∈ RM×L

is the source matrix with each row representing a possible source,
and V is the white Gaussian noise matrix with each entry satisfy-
ing Vij ∼ N (0, λ). The key assumption under the MMV model is
that the support (i.e. locations of nonzero entries) of every column
vector X·i (∀i) 1 is identical (referred as the common sparsity as-
sumption in the literature [1]). The MMV problem is often encoun-
tered in practical applications, such as neuroelectromagnetic source
localization and direction-of-arrival estimation.

Among many algorithms for the MMV problem, iterative
reweighted methods have received attention because of their im-
proved performance compared to their non-reweighted counterparts
[2, 3]. In [3], an iterative reweighted `1 minimization framework is
employed. The framework can be directly used for the MMV prob-
lem and many MMV algorithms based on mixed norm optimization
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1The i-th column of X is denoted by X·i. The i-th row of X is denoted

by Xi· (also called the i-th source).

can be improved via the framework. On the other hand, iterative
reweighted `2 algorithms were also proposed [2, 4]. The reweighted
`2 minimization framework for the MMV problem (in noisy case)
computes the solution at the (k + 1)-th iteration as follows 2:

X(k+1) = arg min
x
‖Y −ΦX‖2F + λ

∑
i

w
(k)
i (‖Xi·‖q)

2(2)

= W(k)ΦT (
λI + ΦW(k)ΦT )−1

Y (3)

where typically q = 2, W(k) is a diagonal weighting matrix at the
k-th iteration with i-th diagonal element being 1/w

(k)
i , and w

(k)
i

depends on the previous estimate of X. Recently, Wipf et al [2]
unified most existing iterative reweighted algorithms as belonging to
the family of separable reweighted algorithms, whose weighting wi

of a given row Xi· at each iteration is only a function of that indi-
vidual row from the previous iteration. Further, they proposed non-
separable reweighted algorithms via variational approaches, which
outperform many existing separable reweighted algorithms.

In our previous work [5, 6] we showed that temporal correla-
tions 3 in sources Xi· seriously deteriorates recovery performance
of existing algorithms and proposed a block sparse Bayesian learn-
ing (bSBL) framework, in which we incorporated temporal corre-
lations and derived effective algorithms. These algorithms operate
in the hyperparameter space, not in the source space as most sparse
signal recovery algorithms do. Therefore, it is not clear what the
connection of the bSBL framework is to other sparse signal recovery
frameworks, such as the reweighted `2 in (2). In this work, based
on the cost function in the bSBL framework, we derive an iterative
reweighted `2 SBL algorithm with superior performance, which di-
rectly operates in the source space. Furthermore, motivated by the
intuition gained from the algorithm and analytical insights, we pro-
pose a strategy to modify existing reweighted `2 algorithms to incor-
porate the temporal correlations, and use two typical algorithms as
illustrations. The strategy is shown to be effective.

2. THE BSBL FRAMEWORK

The block sparse Bayesian learning (bSBL) framework [5, 6] trans-
forms the MMV problem to a single measurement vector problem.
This makes the modeling of temporal correlations much easier. First,
we assume the rows of X are mutually independent, and the density
of each row Xi· is multivariate Gaussian, given by

p(Xi·; γi,Bi) ∼ N (0, γiBi), i = 1, · · · , M

2For convenience, we omit the superscript, k, on the right hand side of
learning rules in the following.

3By temporal correlations, we mean the correlations of elements in each
nonzero row in X.



where γi is a nonnegative hyperparameter controlling the row spar-
sity of X as in the basic sparse Bayesian learning [7, 8]. When
γi = 0, the associated i-th row of X becomes zero. Bi is an un-
known positive definite matrix.

By letting y = vec(YT ) ∈ RNL×1, D = Φ ⊗ IL
4, x =

vec(XT ) ∈ RML×1 and v = vec(VT ), where vec(A) denotes the
vectorization of the matrix A formed by stacking its columns into a
single column vector, we can transform the MMV model (1) to the
block single vector model as follows

y = Dx + v. (4)

To elaborate on the block sparsity model (4), we rewrite it as y =
[Φ1 ⊗ IL, · · · ,ΦM ⊗ IL][xT

1 , · · · ,xT
M ]T + v =

∑M
i=1(Φi ⊗

IL)xi + v, where Φi is the i-th column of Φ, xi ∈ RL×1 is the
i-th block in x and it is the transposed i-th row of X in the original
MMV model (1), i.e. xi = XT

i· . K nonzero rows in X means K
nonzero blocks in x. Thus we refer to x as block-sparse.

For the block model (4), the Gaussian likelihood is p(y|x; λ) ∼
Ny|x(Dx, λI). The prior for x is given by p(x; γi,Bi,∀i) ∼
Nx(0,Σ0), where Σ0 is a block diagonal matrix with the i-
th diagonal block γiBi (∀i). Given the hyperparameters Θ ,
{λ, γi,Bi,∀i}, the Maximum-A-Posterior (MAP) estimate of x
can be directly obtained from the posterior of the model. To es-
timate these hyperparameters, we can use the Type-II maximum
likelihood method [8], which marginalizes over x and then performs
maximum likelihood estimation, leading to the cost function:

L(Θ) , −2 log

∫
p(y|x; λ)p(x; γi,Bi, ∀i)dx

= log |λI + DΣ0D
T |+ yT (λI + DΣ0D

T )−1y,(5)

where γ , [γ1, · · · , γM ]T . We refer to the whole framework in-
cluding the solution estimation of x and the hyperparameter estima-
tion as the bSBL framework. Note that in contrast to the original
SBL framework, the bSBL framework models the temporal correla-
tion structures of sources in the prior density via the matrix Bi (∀i).

3. ITERATIVE REWEIGHTED SPARSE BAYESIAN
LEARNING ALGORITHM

Based on the cost function (5), we can derive efficient algorithms that
exploit temporal correlations of sources [5, 6]. But these algorithms
directly operate in the hyperparameter space (i.e. the γ-space). So,
it is not clear what their connection is to other sparse signal recovery
algorithms which directly operate in the source space (i.e. the X-
space) by minimizing penalties on the sparsity of X. Particularly, it
is interesting to see if we can transplant the benefits gained from the
bSBL framework to other sparse signal recovery frameworks such as
the iterative reweighted `2 minimization framework (2), and improve
algorithms belonging to those frameworks. Following the approach
developed by Wipf et al [2] for the single measurement vector prob-
lem, in the following we use the duality theory [9] to obtain a penalty
in the source space, based on which we derive an iterative reweighted
algorithm for the MMV problem.

3.1. Algorithm Development

First, we find that assigning a different covariance matrix Bi to each
source Xi· will result in overfitting in the learning of the hyperpa-

4We denote the L × L identity matrix by IL. When the dimension is
evident from the context, for simplicity we use I. ⊗ is the Kronecker product.

rameters. To overcome the overfitting, we simplify and consider us-
ing one matrix B to model all the source covariance matrixes. Thus
Σ0 = Γ ⊗ B with Γ , diag(γ). Simulations will show that this
simplification leads to good results even if different sources have
different temporal correlations (see Section 5).

In order to transform the cost function (5) to the source space, we
use the identity: yT (λI+DΣ0D

T )−1y ≡ minx

[
1
λ
‖y−Dx‖22 +

xT Σ−1
0 x

]
, by which we can upper-bound the cost function (5) and

obtain the bound

L(x, γ,B) = log |λI + DΣ0D
T |+ 1

λ
‖y −Dx‖22 + xT Σ−1

0 x.

By first minimizing over γ and B and then minimizing over x, we
can get the cost function in the source space:

x = arg min
x
‖y −Dx‖22 + λgTC(x), (6)

where the penalty gTC(x) is defined by

gTC(x) , min
γº0,BÂ0

xT Σ−1
0 x + log |λI + DΣ0D

T |. (7)

From the definition (7) we have

gTC(x) ≤ xT Σ−1
0 x + log |λI + DΣ0D

T |
= xT Σ−1

0 x + log |Σ0|+ log | 1
λ
DT D + Σ−1

0 |+ NL log λ

≤ xT Σ−1
0 x + log |Σ0|+ zT γ−1 − f∗(z) + NL log λ

where in the last inequality we have used the conjugate relation

log
∣∣ 1

λ
DT D + Σ−1

0

∣∣ = min
zº0

zT γ−1 − f∗(z). (8)

Here we denote γ−1 , [γ−1
1 , · · · , γ−1

M ]T , z , [z1, · · · , zM ]T , and
f∗(z) is concave conjugate of f(γ−1) , log | 1

λ
DT D + Σ−1

0 |. Fi-
nally, reminding of Σ0 = Γ⊗B, we have

gTC(x) ≤ NL log λ− f∗(z) + M log |B|+
M∑

i=1

[xT
i B−1xi + zi

γi
+ L log γi

]
. (9)

Therefore, to solve the problem (6) with (9), we can perform the
coordinate descent method over x,B, z and γ, i.e,

min
x,B,zº0,γº0

‖y −Dx‖22 + λ
[ M∑

i=1

(xT
i B−1xi + zi

γi

+L log γi

)
+ M log |B| − f∗(z)

]
. (10)

Compared to the framework (2), 1/γi can be seen as the weighting
for the corresponding xT

i B−1xi. But instead of applying `q norm
on xi (i.e. the i-th row of X) as done in existing iterative reweighted
`2 algorithms, our algorithm computes xT

i B−1xi, i.e. the quadratic
Mahalanobis distance of xi and its mean.

By minimizing (10) over x, the updating rule for x is given by

x(k+1) = Σ0D
T (λI + DΣ0D

T )−1y. (11)

According to the dual property [9], from the relation (8), the optimal
z is directly given by

zi =
∂ log | 1

λ
DT D + Σ−1

0 |
∂(γ−1

i )

= Lγi − γ2
i Tr

[
BDT

i

(
λI + DΣ0D

T )−1
Di

]
, ∀i (12)



where Tr(·) denotes the trace of a matrix, and Di consists of
columns of D from the ((i− 1)L + 1)-th to the (iL)-th. From (10)
the optimal γi for fixed x, z,B is given by γi = 1

L
[xT

i B−1xi + zi].
Substituting Eq.(12) into it, we have

γ
(k+1)
i =

xT
i B−1xi

L
+ γi

−γ2
i

L
Tr

[
BDT

i

(
λI + DΣ0D

T )−1
Di

]
, ∀i (13)

By minimizing (10) over B, the updating rule for B is given by

B(k+1) = B/‖B‖F , with B =

M∑
i=1

xix
T
i

γi
. (14)

The updating rules (11) (13) and (14) are our reweighted algo-
rithm minimizing the penalty based on quadratic Mahalanobis dis-
tance of xi. Since for a given i, the weighting 1/γi depends on the
whole estimated source matrix in the previous iteration (via B and
Σ0), the algorithm is a nonseparable reweighted algorithm.

The complexity of this algorithm is high because it learns the
parameters in a higher dimensional space than the original problem
space. For example, the dictionary matrix in the bSBL framework
is of size NL × ML, while in the original MMV model is of size
N × M . We now simplify the algorithm and develop an efficient
variant. Using the approximation:

(
λINL + DΣ0D

T )−1 ≈ (
λIN + ΦΓΦT )−1 ⊗B−1, (15)

which takes the equal sign when λ = 0 or B = I, the updating rule
(11) can be transformed to

X(k+1) = WΦT (
λI + ΦWΦT )−1

Y, (16)

where W , diag([1/w1, · · · , 1/wM ]) with wi , 1/γi. Using the
same approximation, the last term in (13) becomes

Tr
[
BDT

i

(
λINL + DΣ0D

T )−1
Di

]

≈ Tr
[
B(ΦT

i ⊗ I)
[
(λIN + ΦWΦT )−1 ⊗B−1](Φi ⊗ I)

]

= LΦT
i (λIN + ΦWΦT )−1Φi.

Therefore, from the updating rule of γi in (13) we have

w
(k+1)
i =

[ 1

L
Xi·B

−1XT
i· + {(W−1 +

1

λ
ΦT Φ)−1}ii

]−1

. (17)

Accordingly, the updating rule for B becomes

B(k+1) = B/‖B‖F , with B =

M∑
i=1

wiX
T
i·Xi·. (18)

We denote the updating rules (16) (17) and (18) by ReSBL-QM.

3.2. Estimate of the Regularization Parameter λ

To estimate the regularization parameter λ, many methods have been
proposed, such as the modified L-curve method [1]. Here, straight-
forwardly following the Expectation-Maximization method in [5]
and using the approximation (15), we derive a learning rule for λ,
given by:

λ(k+1) =
1

NL
‖Y −ΦX‖2F +

λ

N
Tr

[
G(λI + G)−1].

where G , ΦWΦT .

3.3. Theoretical Analysis in the Noiseless Case

For the noiseless inverse problem Y = ΦX, denote the generating
sources by Xgen, which is the sparsest solution among all the pos-
sible solutions. Assume Xgen is full column-rank. Denote the true
nonzero source number (i.e. the number of nonzero rows in Xgen)
by K0. Now we have the following result on the global minimum of
the cost function (5):

Theorem 1 In the noiseless case, assuming K0 < (N +
L)/2, for the cost function (5) the unique global minimum γ̂ =

[γ̂1, · · · , γ̂M ] produces a source estimate X̂ that equals to Xgen

irrespective of the estimated B̂i, ∀i, where X̂ is obtained from
vec(X̂T ) = x̂ and x̂ is computed using Eq.(11).

The proof is given in [6]. The theorem implies that even if the
estimated B̂i is different from the true Bi, the estimated sources are
the true sources at the global minimum of the cost function. As a re-
minder, in deriving our algorithm, we assumed Bi = B (∀i) to avoid
overfitting. The theorem ensures that this strategy does not harm the
global minimum property; in other words, once at the global conver-
gence, our algorithm returns the true source matrix.

In our work [6] we have shown that B plays a role of whitening
sources in the SBL procedure, which can be seen in our algorithm
as well. This gives us a motivation to improve some state-of-the-art
reweighted `2 algorithms by whitening the estimated sources in their
weighting rules and penalties, detailed in the next section.

4. MODIFIED EXISTING REWEIGHTED `2 METHODS

Motivated by the above results and our analysis in [6], we can modify
many reweighted `2 algorithms via replacing the `2 norm of Xi· by
some suitable function of its Mahalanobis distance. Note that similar
modifications can be applied on reweighted `1 algorithms.

The regularized M-FOCUSS [1] is a typical reweighted `2 al-
gorithm, which solves a reweighted `2 minimization with weights
w

(k)
i = (‖X(k)

i· ‖22)p/2−1 in each iteration. It is given by

X(k+1) = W(k)ΦT (
λI + ΦW(k)ΦT )−1

Y (19)

W(k) = diag{[1/w
(k)
1 , · · · , 1/w

(k)
M ]}

w
(k)
i =

(‖X(k)
i· ‖22

)p/2−1
, p ∈ [0, 2],∀i (20)

We can modify the algorithm by changing (20) to the following one:

w
(k)
i =

(
X

(k)
i· (B(k))−1(X

(k)
i· )T )p/2−1

, p ∈ [0, 2],∀i (21)

The matrix B can be calculated using the learning rule (18). We
denote the modified algorithm by tMFOCUSS.

In [4] Chartrand and Yin proposed an iterative reweighted `2
algorithm based on the classic FOCUSS algorithm. Its MMV exten-
sion (denoted by Iter-L2) changed (20) to:

w
(k)
i =

(‖X(k)
i· ‖22 + ε

)p/2−1
, p ∈ [0, 2], ∀i (22)

Their algorithm adopts the strategy: initially use a relatively large
ε, and then repeat the process of decreasing ε after convergence and
repeating the iteration (19). This dramatically improves the recovery
ability. Similarly, we can modify the weighting (22) to the following
rule incorporating the temporal correlations of sources:

w
(k)
i =

(
X

(k)
i· (B(k))−1(X

(k)
i· )T + ε

)p/2−1
, p ∈ [0, 2], ∀i(23)

and adopts the same ε-decreasing strategy. B is also given by (18).
We denote the modified algorithm by tIter-L2.



The proposed tMFOCUSS and tIter-L2 have convergence prop-
erties similar to M-FOCUSS and Iter-L2, respectively. Due to space
limit we omit theoretical analysis, and instead, provide some repre-
sentative simulation results in the next section.

5. EXPERIMENTS

In our experiments, a dictionary matrix Φ ∈ RN×M was created
with columns uniformly drawing from the surface of a unit hyper-
sphere. The source matrix Xgen ∈ RM×L was randomly gener-
ated with K nonzero rows of unit norms, whose row locations were
randomly chosen. Amplitudes of the i-th nonzero row were gen-
erated as an AR(1) process whose AR coefficient was denoted by
βi

5. Thus βi indicates the temporal correlation of the i-th source.
The measurement matrix was constructed by Y = ΦXgen + V,
where V was a zero-mean homoscedastic Gaussian noise matrix
with variance adjusted to have a desired value of SNR. For each
different experiment setting, we repeated 500 trials and averaged re-
sults. The performance measurement was the Failure Rate defined
in [7], which indicated the percentage of failed trials in the 500 trials.
When noise was present, since we could not expect any algorithm to
recover Xgen exactly, we classified a trial as a failure trial if the K
largest estimated row-norms did not align with the support of Xgen.

The compared algorithms included our proposed ReSBL-QM,
tMFOCUSS, tIter-L2, the reweighted `2 SBL in [2] (denoted by
ReSBL-L2), M-FOCUSS [1], Iter-L2 presented in Section 4, and
Candes’ reweighted `1 algorithm [3] (extended to the MMV case
as suggested by [2], denoted by Iter-L1). For tMFOCUSS, M-
FOCUSS, and Iter-L2, we set p = 0.8, which gave the best perfor-
mance in our simulations. For Iter-L1, we used 5 iterations.

In the first experiment we fixed N = 25, M = 100, L = 3 and
SNR = 25dB. The number of nonzero sources K varied from 10 to
16. Fig.1 (a) shows the results when each βi was uniformly chosen
from [0, 0.5) at random. Fig.1 (b) shows the results when each βi

was uniformly chosen from [0.5, 1) at random.
In the second experiment we fixed N = 25, L = 4, K = 12,

and SNR = 25dB, while M/N varied from 1 to 25. βi (∀i) in Fig.2
(a) and (b) were generated as in Fig.1 (a) and (b), respectively. This
experiment aims to see algorithms’ performance in highly underde-
termined inverse problems, which met in some applications such as
neuroelectromagnetic source localization.

From the two experiments we can see that: (a) in all cases, the
proposed ReSBL-QM has superior performance to other algorithms,

5Since in our experiments the measurement vector number is very small
(L = 3 or 4), generating sources as AR(1) with various AR coefficient values
is sufficient.
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Fig. 1. Performance when the nonzero source number changes.
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Fig. 2. Performance when M/N changes.

capable to recover more sources and solve more highly underdeter-
mined inverse problems; (b) without considering temporal correla-
tions of sources, existing algorithms’ performance significantly de-
grades with increasing correlations; (c) after incorporating the tem-
poral correlations, the modified algorithms, i.e. tMFOCUSS and
tIter-L2, have better performance than the original M-FOCUSS and
Iter-L2, respectively. Also, we note that our proposed algorithms
are more effective when the norms of nonzero sources have no large
difference (results are not shown here due to space limit).

6. CONCLUSIONS

In this paper, we derived an iterative reweighted sparse Bayesian al-
gorithm exploiting the temporal correlations among source vectors.
Its simplified variant was also obtained, which has less computa-
tional load. Motivated by our analysis we modified some state-of-
the-art reweighted `2 algorithms achieving improved performance.
This work not only provides some effective reweighted algorithms,
but also provides a strategy to design effective reweighted algorithms
enriching current algorithms on this topic.
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