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1. Introduction

A trend in compressed sensing (CS) is to exploit struc-
ture for improved reconstruction performance. In the
basic CS model (i.e. the single measurement vec-
tor model), exploiting the clustering structure among
nonzero elements in the solution vector has drawn
much attention, and many algorithms have been pro-
posed such as group Lasso (Yuan & Lin, 2006). How-
ever, few algorithms explicitly consider correlation
within a cluster. Meanwhile, in the multiple mea-
surement vector (MMV) model (Cotter et al., 2005)
correlation among multiple solution vectors is largely
ignored. Although several recently developed algo-
rithms consider the exploitation of the correlation,
such as the Kalman Filtered Compressed Sensing (KF-
CS) (Vaswani, 2008), these algorithms need to know
a priori the correlation structure, thus limiting their
effectiveness in practical problems.

Recently, we developed a sparse Bayesian learning
(SBL) algorithm, namely T-SBL, and its variants
(Zhang & Rao, 2011a;b; 2010), which adaptively learn
the correlation structure and exploit such correla-
tion information to significantly improve reconstruc-
tion performance. Here we establish their connec-
tions to other popular algorithms, such as the group
Lasso, iterative reweighted `1 and `2 algorithms, and
algorithms for time-varying sparsity. We also provide
strategies to improve these existing algorithms.

2. T-SBL: Exploiting Correlation in the
MMV Model

The MMV model is expressed as:

Y = ΦX + V. (1)

Here Y , [Y·1, · · · ,Y·L] ∈ RN×L is an available mea-
surement matrix consisting of L measurement vectors.
Φ ∈ RN×M (N ¿ M) is a known dictionary matrix,

and any N columns of Φ are linearly independent.
X , [X·1, · · · ,X·L] ∈ RM×L is an unknown and full
column-rank solution matrix. A key assumption here
is that X has only a few nonzero rows (i.e. the com-
mon sparsity assumption (Cotter et al., 2005)). V is
an unknown noise matrix.

Most existing algorithms ignore the correlation struc-
ture in each row of X. In contrast, T-SBL considers
such correlation by assuming the joint density of each
row vector of X to be

p(Xi·; γi,Bi) ∼ N (0, γiBi), i = 1, · · · ,M

where γi is a nonnegative hyperparameter determining
whether the i-th row Xi· is zero or not. Bi is a positive
definite matrix that captures the correlation structure
of Xi·.

By letting y = vec(YT ) ∈ RNL×1, D = Φ ⊗ IL,
x = vec(XT ) ∈ RML×1, and v = vec(VT ), we can
transform the MMV model (1) to the following one

y = Dx + v, (2)

where x is block-sparse with each block being xi ∈
RL×1, i.e, x = [xT

1 , · · · ,xT
M ]T . Here ⊗ indicates the

Kronecker product, and vec(·) is the vectorization op-
erator.

In the SBL framework (Tipping, 2001), the T-SBL al-
gorithm was derived as follows (Zhang & Rao, 2011a):

x = (λΣ−1
0 + DT D)−1DT y

Σx = Σ0 −Σ0DT
(
λI + DΣ0DT

)−1
DΣ0

γi =
1
L

Tr
[
B−1Σi

x

]
+

1
L

Tr
[
xT

i B−1xi

]
, ∀i (3)

B =
1
M

M∑

i=1

Σi
x + xi(xi)T

γi

where Σi
x is the i-th principal diagonal block of size

L × L in Σx. Σ0 is a block diagonal matrix with
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each block given by γiB. In this algorithm we as-
sume Bi = B (∀i) to avoid overfitting. λ is the noise
variance, which is also estimated in T-SBL; for clarity
we omit its learning rule here (and we also omit such
learning rules in the following algorithms). A simpli-
fied version, which has much less computational load,
is also derived in (Zhang & Rao, 2011a).

We now describe an experiment (Zhang & Rao, 2011a)
showing that the proposed T-SBL and its simplified
version T-MSBL have superior performance when cor-
relation exists among the solution vectors. In the ex-
periment the Gaussian random dictionary matrix Φ
had the size of 25 × 125, the number of nonzero rows
of X was K = 12, and L varied from 1 to 4. The cor-
relation among solution vectors was 0 and 0.9 in two
cases, respectively. Five algorithms were compared
(for details see (Zhang & Rao, 2011a)) to T-SBL and
T-MSBL. To avoid the disturbance of the regulariza-
tion parameters of all the algorithms, we considered a
noiseless case. Results (Fig.1) show that when the so-
lution vectors are highly correlated, all the compared
algorithms have very poor performance, due to their
inability to exploit such correlation.

In the following we connect T-SBL to other related
models.
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Figure 1. Failure rates of various algorithms.

3. Connection to Iterative Reweighted
`2 Framework in the MMV Model

The iterative reweighted `2 minimization framework
extended for the MMV problem (in noisy case) com-
putes the solution at the (k+1)-th iteration as follows
(Wipf & Nagarajan, 2010):

X(k+1) = arg min
x
‖Y −ΦX‖2F + λ

∑

i

w
(k)
i (‖Xi·‖q)2 (4)

where w
(k)
i is the weight depending on the previous

estimate of X. Typically q = 2 or q = ∞. In
(Zhang & Rao, 2011b) we have shown that T-SBL can

be interpreted as an iterative reweighted `2 algorithm:

X(k+1) = arg min
X

{
‖Y −ΦX‖2F +

λ

M∑

i=1

(γ(k)
i )−1Xi·(B(k))−1XT

i·
}

.

The learning rules for γ
(k)
i and B(k) are given in

(Zhang & Rao, 2011b). Note that Xi·B−1XT
i· is the

quadratic Mahalanobis distance (MD) measure of Xi·.

This interpretation reveals the potential advantage of
T-SBL is due to using the MD measure of Xi· in
the penalty, instead of using typical `q (q = 2,∞)
norms of Xi· (Negahban & Wainwright, 2011). By
comparing it to M-SBL (Wipf & Rao, 2007), another
SBL algorithm ignoring the correlation in each Xi·,
we found that T-SBL applies the MD measure also on
the weights (γ(k)

i )−1. These observations motivated us
to modify existing iterative reweighted `2 algorithms
for better performance, as shown in (Zhang & Rao,
2011b).

Although a strict mathematical proof is missing, these
empirical results suggest that the mixed norm based
penalties as shown in (4) are not very effective for solv-
ing the MMV problem in practice, since the unknown
solution vectors are often correlated.

4. Connection to Iterative Reweighted
`1 Framework and Block Sparsity
Model

The iterative reweighted `1 minimization framework
(Candes & et al, 2008) extended for the MMV prob-
lem is given by (Wipf & Nagarajan, 2010)

X(k+1) = arg min
x
‖Y −ΦX‖2F + λ

∑

i

w
(k)
i ‖Xi·‖q. (5)

We now connect T-SBL to this framework.

For the model (2) the cost function to estimate all the
hyperparameters Θ , {B, γi, ∀i} is:

L(Θ) , −2 log
∫

p(y|x;λ)p(x; γi,Bi, ∀i)dx

= log |λI + DΣ0DT |+ yT (λI + DΣ0DT )−1y.

Using the identity yT (λI + DΣ0DT )−1y ≡
minx

[
1
λ‖y −Dx‖22 + xT Σ−1

0 x
]
, we can upper-bound

the above cost function as follows:

L(x,Θ) = log |λI + DΣ0DT |+ 1
λ
‖y −Dx‖22 + xT Σ−1

0 x.

By first minimizing over each member of Θ and then
minimizing over x, we can get the solution:

x = arg min
x

{
‖y −Dx‖22 + λgTC(x)

}
, (6)
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with the penalty defined by gTC(x) ,
minBÂ0,γi≥0,∀i

{
xT Σ−1

0 x + log |λI + DΣ0DT |}.
Using the duality theory (Boyd & Vandenberghe,
2004) as in (Wipf & Nagarajan, 2010), we can
re-express the optimization problem (6) as follows:

x(k+1) = arg min
x

‖y −Dx‖22

+λ
∑

i

w
(k)
i

√
xT

i (B(k))−1xi. (7)

The learning rules for w
(k)
i and B(k) can be derived

using the duality theory and the gradient method.
Further, using the approximation in (Zhang & Rao,
2011a) we have:

X(k+1) = arg min
X
‖Y −ΦX‖2F

+λ
∑

i

w
(k)
i

√
Xi·(B(k))−1XT

i· . (8)

The learning rules for w
(k)
i and B(k) are given by

wi ← 2
(
LΦT

i

(
λI + ΦΓΦT

)−1
Φi

) 1
2

B ← 1
C

M∑

i=1

XT
i·Xi·
γi

, with γi , 2

√
Xi·B−1XT

i·
wi

(9)

where C ,
∑M

i=1 γiΦT
i (λI + ΦΓΦT )−1Φi and Γ ,

diag(γ1, · · · , γM ). Note that in each iteration k we
need an inner loop to iteratively compute wi, γi and
B until convergence for a better estimate of B. The
inner loop generally takes several iterations, and the
whole algorithm needs very few outer-loop iterations
to achieve its best performance (see Fig.2). In fact,
each iteration of (8) yields a sparse solution.

When B(k) = I and no iteration was performed, the
problem (8) reduces to the group Lasso (for the MMV
model). When B(k) = I (∀k) and iterative reweighting
was performed, the problem (8) is a typical iterative
reweighted `1 algorithm. Thus, T-SBL can be viewed
as a variant of iterative reweighted `1 algorithms. Sim-
ilar to the `2 interpretation in the previous section,
this interpretation also suggests replacing `q norms im-
posed on Xi· by the MD measure in both the penalty
and the weights.

To clearly see the advantage of our suggestion,
we conduct the same simulation as in Fig.1 (b)
when L = 4. We used the reweighted `1 ver-
sion of T-SBL, the reweighted `1 version of M-SBL
(which corresponds to the `1 version of T-SBL with
B = I) (Wipf & Nagarajan, 2010), and the orig-
inal reweighted `1 algorithm (5) with q = 2 and
w

(k)
i = (‖X(k)

i· ‖2 + ε)−1. We also modified this original
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Figure 2. Performance improved when exploiting the cor-
relation.

reweighted `1 algorithm to exploit the correlation by
changing the weights to :

w
(k)
i =

(√
X(k)

i· (B(k))−1(X(k)
i· )T + ε

)−1

,

where B(k) can be estimated by the learning rule (9).
But here we set B(k) (∀k) to be the true value. The
result (Fig.2) shows the algorithms are improved when
exploiting the correlation. It is worthwhile to notice
that the original iterative reweighted `1 algorithm is
greatly improved after we replace the `2 norm by the
MD measure in its weights.

Note that the model (2) is essentially the same
as the block sparsity model (Yuan & Lin, 2006;
Eldar & Mishali, 2009) 1, a variant of the basic CS
model. Thus T-SBL can be applied to this model.

5. Connection to the Time-Varying
Sparsity Model

The time-varying sparsity model is a natural exten-
sion of the MMV model. It considers the case when
the support of each column of X is time-varying.
Several algorithms have been proposed, such as the
Kalman Filtered Based Compressed Sensing (KF-CS)
(Vaswani, 2008) and Least-Square Compressed Sens-
ing (LS-CS) (Vaswani, 2010). Since this model gen-
erally assumes the support is changing slowly, we can
view such a time-varying sparsity model as concate-
nation of several MMV models, where in each MMV
model the support does not change. Therefore, T-SBL
can be used in this model. Note that in this model
exploiting the multiple measurement vectors is impor-
tant because of the enhanced support-recovery ability
afforded by the MMV model, but unfortunately this
strategy is missing in current approaches.

To verify this strategy, we conduct an experiment us-
ing KF-CS, LS-CS, T-SBL and M-SBL. The Gaussian

1Now D is the original dictionary matrix.
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Figure 3. Performance in a time-varying sparsity case.

dictionary matrix was of the size 60×256. The column
number of X was 50. The number of nonzero rows, K,
during the first 15 columns of X was 15. K was in-
creased by 10 since the 16-th and the 31-th column of
X, respectively. But since the 26-th column 5 nonzero
rows were set to zeros. Each nonzero row had temporal
correlation varying from 0.7 to 0.99, and had a dura-
tion of 20 columns (if was not set to zeros). SNR was
about 20 dB. KF-CS and LS-CS were fed with the true
noise variance and the true correlation information.
However, both T-SBL and M-SBL learned the noise
variance. T-SBL also learned the correlation struc-
tures. When performing T-SBL and M-SBL, we ap-
proximated the time-varying sparsity model using two
methods. One was using the concatenation of 25 MMV
models, each MMV model containing 2 columns. The
second was using 10 MMV models, each containing
5 columns. The experiment was repeated 100 times.
Figure 3 shows that the two MMV algorithms have
better performance than KF-CS and LS-CS. Further-
more, T-SBL is super to M-SBL. The experiment code
can be downloaded from the first author’s website.

6. Conclusions

A general methodology to capture sparsity structure
of signals is to use combinations/hierarchy of various
norms (Zhao et al., 2009). However, our work showed
that another effective way is to use covariance esti-
mation methods to learn the sparsity structures in
the framework of SBL. Besides, we showed that it-
erative reweighted `1 and `2 algorithms for the MMV
model and the block sparsity model can be greatly
improved through replacing their `q norms imposed
on the blocks/groups by the Mahalanobis distance
measure, whose covariance matrix is learned data-
adaptively.
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