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Abstract— Sparse Bayesian learning (SBL) is an important
family of algorithms for sparse signal recovery and compressed
sensing. It has shown superior recovery performance in chal-
lenging practical problems, such as highly underdetermined
inverse problems, recovering signals with less sparsity, recovering
signals based on highly coherent measuring/sensing/dictionary
matrices, and recovering signals with rich structure. However,
its advantages are smeared in current literature due to some
misunderstandings on the parameters of SBL and incorrect
parameter settings in algorithm comparison and practical use.
This work clarifies some important issues, and serves as a
guidance for correctly using SBL.

Index Terms— Sparse Bayesian Learning (SBL), Sparse Signal
Recovery, Compressed Sensing, Sparse Representation

I. INTRODUCTION TO SPARSE BAYESIAN LEARNING

The sparse signal recovery problem can be mathematically
expressed as

Y = ΦX+V, (1)

where Y , [Y·1, · · · ,Y·L] ∈ RN×L is an available measure-
ment matrix (data matrix), Φ ∈ RN×M is a known matrix,
and X is an unknown coefficient matrix (in literature it is also
called solution matrix or source matrix). V is an unknown
noise matrix. The model is called the single measurement
vector (SMV) model when L = 1, which is the most common
model in compressed sensing. When L > 1, it is called the
multiple measurement vector (MMV) model [1].

Numerous algorithms have been proposed for the model
(1). Among them, sparse Bayesian learning (SBL) [2]–[10] is
one important family. In the general SBL framework [7], each
coefficient row in X is assumed to have the parameterized
Gaussian distribution

p(Xi·; γi,Bi) = N (0, γiBi), i = 1, · · · ,M (2)

where γi and Bi are hyperparameters. Bi is a positive definite
and symmetric matrix, functioning as a regularizer 1. To
prevent overfitting, the constraint Bi = B(∀i) is widely used
[6], [7]. γi is a nonnegative scalar, controlling the row-sparsity
of X. When γi = 0, the corresponding i-th row of X becomes
zeros. During the learning procedure, most γi(∀i) tend to zero,
due to the mechanism of automatic relevance determination
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1In some algorithms Bi(∀i) are the identity matrix [5].

[2], [11]. Thus the row-sparsity is encouraged. It also has
been mathematically shown that the global solution is the
sparsest solution [7]. The sparsity-encouraging mechanism can
also be seen after transferring the ordinary SBL algorithms
(optimizing in the γ parameter space) to equivalent forms
optimizing in the X parameter space [6], [12]–[14]. Note
that in the presence of noise, γi will never be zero. Thus a
threshold θ will be used to prune out small γi(∀i). Generally,
θ = 10−2 ∼ 10−4. Besides, each element of the noise matrix
V is assumed to be Gaussian: p(Vij) = N (0, λ).

Recently SBL has drawn much attention due to its su-
per ability to handle challenging problems, such as highly
underdetermined inverse problems, recovering signals with
less sparsity, and recovering signals based on highly coherent
measuring/sensing/dictionary matrices. However, due to some
misunderstandings on the parameters of SBL, its ability is
smeared. In the following we will clarify these issues.

II. CLARIFY THE NOISE VARIANCE TERM λ

One misunderstanding is the λ, which models the noise
variance in the SBL framework (1). In computer simulations
and practical problems, people thus set λ to the true noise
variance or the estimated noise variance [15], believing that
this setting can allow SBL algorithms to reach their full
strength. But we have to point out that the optimal value of λ
is not the true noise variance.

Here we carry out a simple experiment to show that the
optimal value of λ is largely different to the true noise
variance.

The Gaussian dictionary matrix Φ was of size 40 by 120.
The number of measurement vectors, L, was 3. The true noise
variance was 0.01 (SNR was around 10dB). The number of
nonzero rows in the coefficient matrix, K, was set to be 4,
12, and 16. For each different K, the experiment was repeated
200 times. In each trial, the M-SBL algorithm [5] was fed with
different values of λ. Its performance was measured by two
measures: the failure rate, defined in [5], and the mean square
error (MSE). The performance curves of M-SBL are shown in
Fig.1, from which we have the following observations:

1) The optimal value of λ, which corresponds to the best
performance, is not equal to the true noise variance.

2) Different measures correspond to different optimal val-
ues of λ. In other words, for given experiment settings,
the optimal value of λ in terms of MSE is different to
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the optimal one in terms of the failure rate. We found
this observation is more obvious when using T-SBL/T-
MSBL [7].

3) Changing any experiment setting (e.g. K,L,N,M ), the
optimal value of λ may accordingly change.

Next we will see that for different SBL algorithms, under the
same experiment settings, the optimal values of λ are different.

III. CLARIFY THE λ LEARNING RULES

In the previous section we discussed the issue of setting
λ to a fixed value, and we now understand that changing an
experiment setting requires to seek the optimal value again.
This brings much inconvenience in practical use and computer
simulations. Fortunately, many SBL algorithms have their own
learning rules for λ. However, we emphasize that many of
these learning rules are sensitive to strong noise, and thus the
estimate of λ cannot allow the algorithms to achieve the best
recovery performance.

To clearly see this, we carry out the following experiment.
The experiment is a comparison of 4 SBL algorithms in the
single measurement vector (SMV) model (i.e. L = 1 in the
model (1)) in a noisy environment. The noise variance was
0.01. The 4 SBL algorithms were EM-SBL [4], ExCoV [8],
BCS [9], and T-MSBL [7]. Note that although T-MSBL was
derived for the multiple measurement vector model, it can also
be used in the SMV model. In this case, T-MSBL is similar
to EM-SBL. But their key difference is the λ learning rule.
The dictionary matrix Φ is a Gaussian random matrix of the
size 30 × 80. The number of nonzero elements K = 5. The
nonzero elements are generated using the Matlab command:
sign(randn(K, 1)). ∗ (rand(K, 1) ∗ 0.5 + 0.5).

First, let’s see how the λ’s value affects their recovery
performance. We didn’t use their λ learning rules. Instead,
we fed them with fixed λ values (ranging from 0.001 to
0.33). Note in this case, EM-SBL and T-MSBL had the
same performance curve. The performance curves of these
algorithms as functions of λ are plotted in Fig.2 using red,
blue, and green solid lines.

Fig. 1. M-SBL’s performance as functions of λ.

Fig. 2. The effect of fixed λ values and λ learning rules on the performance
of T-MSBL, EM-SBL, ExCov and BCS.

As we can see, if we could obtain the optimal λ for each
algorithm, then EM-SBL(T-MSBL for SMV) and ExCov had
the similar performance, while BCS had the poorer perfor-
mance. However, if we chose a wrong λ, say λ = 0.0381
(this value was calculated according to the suggestion in
[16]), then we might conclude that the EM-SBL had the best
performance while ExCov had the worst performance. But if
we chose λ = 0.0042 (this value was calculated according to
the suggestion in [?]), then we might conclude that ExCov had
the best performance while BCS had the worst performance.
So, unthoughtful choices of λ may lead to wrong conclusions.
Again, we’ve seen the noise variance (0.01) was not the
optimal lambda values of all the SBL algorithms.

Next, let’s see how λ learning rules affect the recovery
performance. The dashed lines in Fig.2 show the performance
of EM-SBL, ExCov and T-MSBL when they used their λ
learning rules (The code of BCS does not provide the λ
learning rule, so we did not compare it here). Clearly, we
can see all the λ learning rules could not allow the associated
SBL algorithms to achieve their full strength. We also see the
λ learning rule of EM-SBL resulted in very poor performance,
so poor that even setting λ to a random guessed value might
lead to better performance. In contrast, the λ learning rule of
T-MSBL was the most effective one, which led to near-optimal
performance.

Base on the above observations, we believe the work of
deriving more effective λ learning rules has the same value
as the work of deriving new SBL algorithms. Take the ExCov
and the EM-SBL for example. In the above experiment, when
both algorithms chose their optimal λ values, ExCov had
slightly better performance than EM-SBL. On the other hand,
if both algorithms used their λ learning rules, ExCov had
much better performance than EM-SBL. But if EM-SBL used
the λ learning rule of T-MSBL, EM-SBL could have better
performance than ExCov (see the performance curve denoted
by ‘T-MSBL for SMV case’).
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Fig. 3. Effects of the γ-pruning threshold θ.

IV. EFFECT OF THE THRESHOLD TO PRUNE OUT γi

Many SBL algorithms have the pruning mechanism, namely,
during the learning procedure, once a γi for some i is smaller
than a user-defined threshold, θ, the γi is pruned out and
the associated i-th coefficient (in the SMV model) or the i-
th coefficient row (in the MMV model) is set to zero and
never used again. It has been shown [3], [4], [17] that in
noiseless cases the final values of γj (∀j) after convergence are
either zeros or some positive values 2. Therefore, in noiseless
experiments the threshold θ can be arbitrarily small, e.g.
θ = 10−5 or θ = 10−10. However, in noisy cases, one needs
to be very careful to choose the value of θ. Unfortunately,
this issue didn’t draw enough attention and resulted in wrong
conclusions in some published works.

We point out that setting the value of θ in a suitable range
significantly affects the performance measured by various
performance indexes.

To see this, we carry out the following experiment, in
which we consider an MMV model with temporally correlated
source vectors. T-MSBL [7] was used here (Using other
SBL algorithms lead to the same conclusions.). The matrix
Φ was of the size 100 × 200. The coefficient matrix X
was of the size 200 × 3. Its each nonzero row was gen-
erated from a Gaussian distribution N (0,Σ), where Σ ,
Toeplitz([1, β, β2]) with β = 0.8. The number of nonzero
rows was 20. Noise variance was 0.01. We measured the
algorithm’s performance in terms of failure rates, MSE, speed,
and sparsity (the number of nonzero rows). We considered
various cases, in which the threshold θ chose the values:
10−1, 5× 10−2, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8.

Results are shown in Fig.3 and Fig.4. In Fig.4 each nonzero
row of X was normalized to have unit Euclidean norm. We

2The original literature [3], [17] showed 1/γi is either infinity or positive.
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Fig. 4. Effects of the γ-pruning threshold θ when all the nonzero rows of
X were normalized.

have the following observations and comments.
Remark 1: Larger θ values result in faster speed (Fig.3(d)

and Fig.4 (d)). Obviously, the faster speed is due to the fact that
a larger number of γi(∀i) are pruned out by a larger θ and thus
the algorithm effectively operates on a smaller sized parameter
space. Note that the running time can differ in several orders-
of-magnitude when using different θ values.

Remark 2: Larger θ values result in fewer nonzero rows
in the estimated X̂ (Fig.3(c) and Fig.4(c)). In other words,
when θ is very small, there are many γi not pruned out, which
correspond to zero rows in X. As a result, there are lots of
nonzero ‘residual rows’ in X̂, which should be zero rows.
But note that these residual rows have very tiny elements.
To see this, we plot a result of a trial in Fig. 5, in which
the ℓ2 norm of each row of the estimated X̂ is calculated
and plotted. The top subfigure corresponds to the true X, the
middle subfigure corresponds to the case when θ = 10−2,
and the bottom subfigure corresponds to θ = 10−5. When
θ = 10−2, the number of nonzero rows in X̂ was 20, while
when θ = 10−5, the number of nonzero rows in X̂ was 182.
However, by comparing the middle and the bottom subfigures,
we cannot find any discernable difference. This is because
the ℓ2 norms of the ‘residual rows’ (or equivalently, their
associated γi) are smaller than the ℓ2 norms of true nonzero
rows (or equivalently, the associated γi) by several orders-in-
magnitude (see Fig.6).

These residual rows generally have negligible negative
effect on the recovery performance in some applications such
as source localization, DOA estimation and power spectrum
estimation. In these fields, people generally are only interested
in the nonzero coefficient rows with large ℓ2 norms (and thus
the failure rate is preferred to MSE).

However, in other applications such as compressed sensing
of videos and MRI image series, people more tend to use
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MSE as performance measure. In these applications the MSE
of algorithms generally ranges from -15dB to -30dB. In this
case, the residual rows can have significant effect on the MSE.
Figure 7 shows a comparison result using a large-scale dataset.
In the experiment, the matrix Φ was of the size N ×M with
M fixed to 5000, where N varied such that M/N ranged from
5 to 25. The number of nonzero rows in X was N/3. SNR
was 25dB. The number of measurement vectors was L = 4.
The figure shows that the MSE differed largely when θ chose
10−2 and 10−3, respectively.

Fortunately, since the ℓ2 norms of the residual rows are
smaller than the ℓ2 norms of the true nonzero rows by several
orders-in-magnitude, we can easily remove most of these
residual rows. For example, we can sort the γi(∀i) and plot
the γ spectrum, as in Fig.6. Then look for the corner point in
the γ spectrum. All the nonzero rows whose associated γi are
smaller than the corner point are set to zeros.

Remark 3: The optimal value of θ associated with the
best recovery performance (in terms of both MSE and failure
rates) is around the noise variance (0.01); fortunately, values
in a relatively wide range (θ = 10−2 ∼ 10−4) also result in
near-optimal performance (Fig.3(a)-(b) and Fig.4(a)-(b)). So,
in practice one just needs to roughly know the range of noise
variance to choose a good value for the threshold. Generally,
θ = 10−3 is a good value for most practical applications when
noise is presented.
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Fig. 5. Compare the 2-norms of rows of X (top) to those of X̂ when
θ = 10−2 (middle) and θ = 10−5 (bottom).

V. CONCLUSION

Sparse Bayesian learning is a group of algorithms with super
ability to handle challenging sparse signal recovery problems
and compressed sensing problems. However, due to some
misunderstandings on its parameters and inaccurate settings
of these parameters, its advantages are greatly discounted. In
this work we discussed three issues of SBL algorithms, i.e.
the λ value, the λ learning rule, and the γ-pruning threshold.
Some understandings on these parameters are clarified.
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