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Abstract. Electroencephalographic (EEG) correlates of driving performance 
were studied using an event-related lane-departure paradigm. High-density 
EEG data were analyzed using independent component analysis (ICA) and 
Fourier analysis. Across subjects and sessions, when reaction time to lane-
departure events increased several clusters of independent component activities 
in the occipital, posterior parietal, and middle temporal cortex showed tonic 
power increases in the delta, theta, and alpha bands. The strongest of these tonic 
power increases occurred in the alpha band in occipital and parietal regions. 
Other independent component clusters in the somatomotor and frontal regions 
showed less or no significant increase in all frequency bands as RT increased. 
This study demonstrates additional evidence of the close and specific links 
between cortical brain activities (via changes in EEG spectral power) and 
performance (reaction time) during sustained-attention tasks. These results may 
also provide insights into the development of human-computer interfaces for 
countermeasures for drowsy driving. 
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1 Introduction 

Drowsiness while driving is one of the major factors leading to crashes that result in 
severe injuries and fatalities [1-2]. Two of the basic rules of safe highway driving are 
to remain in the cruising lane and to keep an appropriate distance from other vehicles. 
Small changes in road curvature, uneven or slippery pavement, wind changes, or poor 
wheel alignment could make the vehicle drift out of the cruising lane. Lapses in 
attention and response to such lane drifts could result in collisions with other vehicles 
or run-off-road crashes. As drivers become fatigued and then drowsy, they exhibit 
slowed reaction time (RT) to traffic events, and increased deviation of vehicle lateral 
position (swerving) from lane center. Development of effective countermeasures to 
drowsy driving could prevent large numbers of serious accidents. Electro-
encephalography (EEG) is one of the most direct and effective physiological 
measures for assessing state of arousal. Several studies have demonstrated EEG 
correlates of fluctuations in performance during sustained attention tasks with 
characteristic time scales on the order of one second to several minutes [3-15]. These 
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studies have suggested that low-frequency EEG power, particularly in the alpha (8–12 
Hz) and theta (4–7 Hz) bands, increase during periods of poor task performance (e.g., 
periods of high-error rate, lengthened RT, or failures to respond to driving 
challenges). In most studies, EEG power spectra were estimated from single-channel 
recordings at a few scalp sites, not allowing localization of the cortical sources of the 
observed EEG changes. 

Our previous studies using independent component analysis (ICA) applied to 
high-density EEG data have demonstrated that an independent component (IC) with 
equivalent dipole sources located in the bilateral occipital cortex exhibits tonic 
changes in power spectral baseline highly correlated with performance fluctuation 
during sustained attention tasks, including simulated driving [12-15]. It is not known, 
however, whether the power spectra of other EEG processes are also strongly 
modulated by task performance. This study systematically explores tonic power 
spectral changes in the delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (13–
20 Hz) bands in 13 independent component clusters of brain processes obtained 
across subjects and sessions during periods of increased reaction time to lane-
departure events during simulated driving. 

2 Materials and Methods 

2.1 Experimental Paradigm and Participants 

A virtual-reality scene was created to simulate cruising in the fast lane of a straight 
highway at night. The driving simulator was implemented in C/C++ programming 
languages using the Open GL libraries on a desktop computer running the Linux 
operating system. During hour-long continuous driving sessions, computer-simulated 
lane-departure (deviation onset) events occurred every few seconds, during which the 
car drifted towards the curb or into the opposite lane with equal probability (Fig. 1). 
The vehicle did not ‘crash’ if the subject failed to respond but instead hit the virtual 
limit of the curb (after about 3 s of drift), and continued to move along the virtual 
curb until the subject resumed response by holding down an arrow key (response 
onset), and then releasing the key (response offset) when the car returned to the center 
of the cruising lane. 

This paradigm was designed to assess subjects’ responses to perturbing events 
embedded in continuous monotonous driving sessions, and to monitor continuous 
transitions from alertness to drowsiness [12-14]. Subjects’ driving performance was 
measured by their reaction time (RT), defined as the duration between deviation onset 
and their response onset during each lane-departure event (trial). Slowed subject 
reaction times generally accompanied decreases in attention and alertness (Fig. 2). 

Eleven right-handed healthy subjects with normal or corrected-to-normal vision 
participated in one or more hour-long sessions (20 sessions in all). All subjects gave 
informed consent before participating in an experimental protocol approved by the 
UCSD Human Research Protections Program. None of the subjects reported sleep 
deprivation the night before the experiment. Each subject had lunch about two hours 
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before arriving at the lab around 2:00 PM; the driving experiment itself began near 
3:00 PM after EEG cap and electrode set-up. During the experiment, the subject sat 
on a comfortable office chair with armrests 50 cm from a 19-inch monitor sitting in an 
EEG booth in which the background lighting was dim (~ 2–3 lux). 
 

 

Fig. 1. Simulated driving experiment. A. Schematic diagram of the event-related lane departure 
paradigm (modified from a slide presented by R.-S.H. in [12]). B. A screen snapshot during 
cruising. C. A screen snapshot during a lane-departure event. 

2.2 Data Acquisition and Analysis 

256-channel EEG/EKG/EOG signals were recorded at 256 Hz using a BioSemi 
Active II acquisition system. Driving parameters (including lane positions, timing of 
event onsets and offsets) and subject behavioral responses were recorded at 256 Hz at 
the stimulus computer. A sequence of synchronized pulses was sent out from the PC 
parallel port to the BioSemi system for time stamping. The 3-D locations of all 
electrodes were digitized using a Polhemus system. 

EEG data were digitally filtered using a linear FIR band pass filter (1-45 Hz) 
before further analysis. Continuous EEG time courses of all channels were segmented 
into 6-s epochs, from 1 s preceding to 5 s following deviation onsets. Subjects 
typically yawned or nodded a few times during hour-long sessions. These activities 
caused severe artifacts across all the channels in some epochs. Channels and epochs 
that contained severe artifacts, including extreme values of amplitudes, large linear 
trends, and abnormally distributed data (high kurtosis), were rejected semi-
automatically before further analysis using functions of the open source EEGLAB 
toolbox [16] available at http://sccn.ucsd.edu/eeglab. Channels and epochs 
contaminated with other sources of artifacts (blinks, eye movements, cardiac 
activities, and persistent head-muscle noises) were not rejected, as these artifact 
sources could be separated from other EEG processes using ICA described below [17-
20]. 
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The 6-s EEG epochs were concatenated into a two-dimensional matrix of size 
[channels, frames × epochs] after artifact rejection, and the matrix was reduced to 100 
dimensions using Principle Component Analysis (PCA). Infomax ICA was applied to 
the dimension-reduced matrix, x, using the binica function with the ‘extended’ ICA 
option in EEGLAB. ICA finds an ‘unmixing’ matrix, W, which decomposes or 
linearly unmixes the matrix, x, into a sum of maximally temporally independent and 
spatially fixed components u, where u = Wx. The rows of the output data matrix, u, 
are time courses of activations of the independent component (IC). The ICA unmixing 
matrix was trained separately for each session and subject. The initial learning rate 
was 10-4, and the training was stopped when the learning rate fell below 10-7. 

To test cross-subject consistency of brain processes of interest, we grouped 
independent components obtained from multiple sessions and subjects semi-
automatically into 13 IC clusters (Figs. 3 and 4) based on their scalp maps, dipole 
source locations, and mean power spectral baselines [15, 21-23]. The dipole sources 
locations were estimated according to the digitized 3-D electrode locations and ICA 
weight matrix for each session using the DIPFIT2 function in EEGLAB. 

For each independent component, a logarithmic power spectral baseline was 
computed from a 1-s window before deviation onset in each 6-s epoch extracted from 
its activation time course using Fast Fourier Transform (FFT). For each component 
cluster, the logarithmic power spectral baselines of epochs from all subjects and 
sessions were grouped and sorted in ascending order by trial reaction time, resulting 
in a matrix of size [frequency bins × epochs]. The mean logarithmic power spectra of 
the first 10% of epochs below 3-s RT (periods of optimal performance) were 
subtracted from the matrix of RT-sorted power spectral baselines at each frequency 
bin. The normalized matrix was further subjected to moving average across RT-sorted 
epochs (trials) at each frequency bin using the same window size of the first 10% 
epochs below 3-s RT, with a step of 10 epochs. Mean tonic power changes in delta 
(1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (13–20 Hz) bands were obtained 
from the normalized and moving-averaged power spectral matrix (Figs. 3 and 4). A 
two-tailed t-test was used to assess if the mean power in each moving window was 
statistically different from that of the first 10% epochs below 3-s RT in each 
frequency band using a threshold of p<0.001 corrected with a Bonferroni multiple 
comparison test. 

3 Results 

3.1 Driving Performance as Measured by Reaction Time 

Across all sessions, subjects exhibited several fluctuations in their reaction times to 
lane-departure events. Some subjects became drowsy and hit the curb or drove into 
the opposite lane several times during hour-long sessions. Fig. 2A shows the 
fluctuation of subject reaction times in a representative session, where 666 lane-
departure events (trials) were recorded. Fig. 2B shows the same trials sorted by 
reaction time (RT), which exhibit a ‘bilinear’ pattern (the majority of trial reaction 
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times were short and increased exponentially in a small percentage of trials). The 
bilinear pattern was consistently observed across subjects and sessions, and on 
average 5% of trial reaction times were higher than 3 s (the approximate time lapsed  
before the vehicle hit the curb if the subject made no response). 
 

 

Fig. 2. Fluctuation of subject reaction times (RT) in a representative 1-hour session. A. Trial 
RTs in chronological order during the session. B. Trial RTs sorted in ascending order. 

3.2 Tonic Changes in Power Spectra in Relation to Reaction Time 

As reaction time increased, baseline power spectra of several independent component 
clusters in the occipital, parietal, and temporal regions showed significant increases 
relative to the mean power spectra of the first 10% epochs (trials) below 3-s RT (Fig. 
3). Other independent component clusters showed less significant or no tonic changes 
in their power spectra (Fig. 4). The observed tonic power changes in each frequency 
band are discussed below. 

Delta Band Power (1–3 Hz). Mean baseline power in the delta band showed 
insignificant variations in short-RT (< 0.8 s) epochs across all IC clusters. Mean delta 
band power started to increase as RT increased above ~0.8 s; these tonic changes 
were only significant in the bilateral occipital cluster (Fig. 2A) during protracted RTs 
(> 2 s). 

Theta Band Power (4–7 Hz). Mean baseline power in the theta band showed 
similar changes as in the delta band power across all IC clusters. Mean theta band 
power remained unchanged or even decreased slightly as RT increased moderately (< 
0.8 s), and started to increase at RTs above ~0.8 s. The tonic changes were only 
significant during protracted RTs (near or above 3 s) in the bilateral occipital, medial 
posterior parietal, middle temporal, and somatomotor clusters (Figs. 3 and 4). 

Alpha Band Power (8–12 Hz). Mean baseline power in the alpha band increased 
monotonically as RT increased in the bilateral occipital, medial posterior occipital, 
medial posterior parietal, and middle temporal clusters (Fig. 3). The tonic changes 
were significant at RTs above ~0.8 s in the occipital and parietal clusters, and were 
stronger than the increases in the other frequency bands. In other IC clusters, as RT 
increased mean alpha band power showed both insignificant increases and decreases 
(Fig. 4). 

Beta Band Power (13–20 Hz). As RT increased, mean baseline power in the beta 
band showed moderate increases in the bilateral occipital, medial posterior occipital, 
medial posterior parietal, and middle temporal clusters (Fig. 3). The tonic changes 
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were significant at RTs above ~0.8-s in the bilateral occipital (Fig. 3A) and medial 
posterior parietal (Fig. 3D) clusters. As RT increased, mean beta band power showed 
insignificant changes in other IC clusters (Fig. 4). 

 

 

Fig. 3. Mean tonic power changes at four frequency bands for six independent component 
clusters. A. Bilaterally symmetric occipital cluster. B. Tangential occipital cluster. C. Medial 
posterior occipital cluster. D. Medial posterior parietal cluster. E. Right middle temporal 
cluster. F. Left middle temporal cluster. The scales of the vertical axes are the same in all 
subplots. The horizontal axis ticks include slow/drowsy (3-s) and 1st-3rd RT quartiles. 
Differences across clusters reflect differences in RT distribution in the 8–20 sessions of 
contributing components to each cluster. Color segments enclosed in thick black traces indicate 
significant (p< 0.001; corrected) tonic changes from the mean logarithmic power in the fastest 
10% of epochs with RTs below 3-s. Note the significant changes in alpha band power in the 
occipital and parietal clusters. 
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Fig. 4. Mean power in four frequency bands for seven independent component clusters showing 
no or weaker tonic power changes as RT increased. A. Left somatomotor cluster. B. Right 
somatomotor cluster. C. Left secondary somatosensory cluster. D. Right secondary 
somatosensory cluster. E. Central medial cluster. F. Frontal medial cluster. G. Left lateral 
frontal cluster. Other details as in Fig. 3. 
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4 Discussion 

In this study, we applied independent component analysis to dissociate multiple brain 
processes whose power spectra were modulated or unaffected by performance 
fluctuations during simulated driving. As subject reaction time to lane-departure 
events increased, several clusters of independent component activities in the occipital, 
posterior parietal, and middle temporal cortex showed tonic power increases in the 
delta, theta, and alpha bands across subjects and sessions. The power spectra of other 
independent component clusters in the somatomotor and frontal regions were less 
affected or were not affected by changes in reaction time. These results provide a 
more comprehensive insight into brain processes involved in sustained-attention 
tasks.  

The event-related lane departure paradigm [12-14] used in this study may provide 
objective and quantitative measures of both instantaneous driving performance over 
shorter time spans (e.g., < 10 s) and measures of average performance over longer 
periods (e.g., on the order of a minute). This paradigm has been replicated in other 
simulated driving experiments performed on a motion platform [24, 25]. Tonic power 
spectral changes in those experiments were similar to the results reported here; details 
will be reported elsewhere. 

The strong tonic increases in alpha-band power in occipital and parietal regions 
likely index the gradual withdrawal of visuospatial attention as drowsiness increases 
[26]. These increases may also be used to predict reaction time in our task and very 
likely during simulated driving and real-life driving. Results of this study may also 
help guide development of EEG-based drowsiness detection and feedback systems, 
and may provide useful information for evaluating systems that directly detect and 
apply countermeasures to drowsy driving performance, such as lane departure 
warning systems (LDWS) and lane keeping assistance systems (LKAS) [27-30]. 
 
Acknowledgements. This research was supported by gifts from The Swartz 
Foundation (Old Field, NY). This work was also sponsored in part by the U.S. 
Defense Advanced Research Projects Agency (DARPA) under Grant NBCH1060010 
and U.S. Army Research Laboratory under Grant W911NF-08-2-0003. The views and 
conclusions contained in this document are those of the authors and should not be 
interpreted as representing the official policies, either expressed or implied, of the 
DARPA, Army, or the U.S. Government. The U.S. Government is authorized to 
reproduce and distribute reprints for Government purposes notwithstanding any 
copyright notation heron. The authors would like to thank Julie Onton, Jennifer S. 
Kim, and Marisa Evans for help with experimental setup, and Arnaud Delorme for 
assistance with data analysis. 

References 

1. National survey of distracted and drowsy driving attitudes and behavior: 2002, volume 1, 
DOT HS 809 566. http://www.nhtsa.dot.gov/people/injury/drowsy_driving1/survey-
distractive03/index.htm 



Tonic Changes in EEG Power Spectra during Simulated Driving      9 

2. Drowsy driving and automobile crashes, NCSDR/NHTSA Expert Panel on Driver Fatigue 
and Sleepiness. http://www.nhtsa.gov/people/injury/drowsy_driving1/Drowsy.html 

3. Makeig, S., Inlow, M.: Lapses in alertness: coherence of fluctuations in performance and 
the EEG spectrum. Electroencephalogr. Clin. Neurophysiol. 86, 23–35 (1993) 

4. Makeig, S., Jung, T.P.: Changes in alertness are a principal component of variance in the 
EEG spectrum. NeuroReport 7, 213–216 (1995) 

5. Makeig, S., Jung, T.P.: Tonic, phasic and transient EEG correlates of auditory awareness 
in drowsiness. Cogn. Brain Res. 4, 15–25 (1996) 

6. Jung, T.P., Makeig, S., Stensmo, M., Sejnowski, T.J.: Estimating alertness from the EEG 
power spectrum. IEEE Trans. Biomed. Eng. 44, 60–69 (1997) 

7. Makeig, S., Jung, T.P., Sejnowski, T.J.: Awareness during drowsiness: dynamics and 
electrophysiological correlates. Canadian J. Exp. Psy. 54, 266–273 (2000) 

8. Schier, M.A.: Changes in EEG alpha power during simulated driving: a demonstration. 
Int. J. Psychophysiol. 37, 155–162 (2000) 

9. Huang, R.S., Tsai, L.L., Kuo, C.J.: Selection of valid and reliable EEG features for 
predicting auditory and visual alertness levels. Proc. Natl. Sci. Counc. Repub. China B 
Life Sci. 25, 17–25 (2001) 

10. Lal, S.K., Craig, A.: Driver fatigue: electroencephalography and psychological 
assessment. Psychophysiol. 39, 313–321 (2002) 

11. Lal, S.K., Craig, A.: Reproducibility of the spectral components of the 
electroencephalogram during driver fatigue. Int. J. Psychophysiol. 55, 137–143 (2005) 

12. Huang, R.S., Jung, T.P., Duann, J.R., Makeig, S., Sereno, M.I.: Imaging brain dynamics 
during continuous driving using independent component analysis. In 35th Annual Meeting 
of the Society for Neuroscience, Washington D.C. (2005) 

13. Huang, R.S., Jung, T.P., Makeig, S.: Multi-scale EEG brain dynamics during sustained 
attention tasks. Proc. IEEE ICASSP’07, vol. IV, 1173–1176 (2007) 

14. Huang, R.S., Jung, T.P., Makeig, S.: Event-related brain dynamics in continuous 
sustained-attention tasks. In D.D. Schmorrow, L.M. Reeves (Eds.): Augmented Cognition, 
HCII 2007, LNAI 4565, 65–74 (2007) 

15. Huang, R.S., Jung, T.P., Delorme, A., Makeig, S.: Tonic and phasic electro-
encephalographic dynamics during continuous compensatory tracking. NeuroImage 39, 
1896–1909 (2008) 

16. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial 
EEG dynamics including independent component analysis. J. Neurosci. Meth. 134, 9–21 
(2004) 

17. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and 
blind deconvolution. Neural Comput. 7, 1129–1159 (1995) 

18. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an 
extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural 
Comput. 11, 417–441 (1999) 

19. Jung, T.P., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Makeig, S., Sejnowski, 
T.J.: Removing electroencephalographic artifacts by blind source separation. 
Psychophysiol. 37, 163–178 (2000) 

20. Jung, T.P., Makeig, S., McKeown, M.J., Bell, A.J., Lee, T.W., Sejnowski, T.J.: Imaging 
brain dynamics using independent component analysis. Proc. IEEE 89, 1107–1122 (2001) 

21. Makeig, S., Westerfield, M., Jung, T.P., Enghoff, S., Townsend, J., Courchesne, E., 
Sejnowski, T.J.: Dynamic brain sources of visual evoked responses. Science 295, 690–694 
(2002) 

22. Makeig, S., Delorme, A., Westerfield, M., Jung, T.P., Townsend, J., Courchesne, E., 
Sejnowski, T.J.: Electroencephalographic brain dynamics following manually responded 
visual targets. PLoS Biol. 2, 747–762 (2004) 



10 R.-S. Huang, T.-P. Jung, and S. Makeig 

23. Onton, J., Westerfield, M., Townsend, J., Makeig, S.: Imaging human EEG dynamics 
using independent component analysis. Neurosci. Biobehav. Rev. 30, 808–822 (2006) 

24. Lin, C.T., Wu, R.C., Jung, T.P., Liang, S.F., Huang, T.Y.: Estimating alertness level based 
on EEG spectrum analysis. EURASIP J. Appl. Signal Process. 19, 3165–3174 (2005) 

25. Lin, C.T., Wu, R.C., Liang, S.F., Huang, T.Y., Chao, W.H., Chen, Y.J. Jung, T.P.: EEG-
based drowsiness estimation for safety driving using independent component analysis. 
IEEE Trans. Circuit Sys. 52, 2726–2738 (2005) 

26. Worden, M.S., Foxe, J.J., Wang, N., Simpson, G.V.: Anticipatory biasing of visuospatial 
attention indexed by retinotopically specific alpha-band electroencephalography increases 
over occipital cortex. J. Neurosci. 20, RC63 (2000) 

27. Rimini-Doering, M., Altmueller, T., Ladstaetter, U., Rossmeier, M.: Effects of lane 
departure warning on drowsy drivers’ performance and state in a simulator. In Proceedings 
of the Third International Driving Symposium on Human Factors in Driver Assessment, 
Training, and Vehicle Design, 88–95 (2005) 

28. Kozak, K., Pohl, J., Birk, W., Greenberg, J., Artz, B., Bloomer, M., Cathey, L., Curry, R.: 
Evaluation of lane departure warnings for drowsy drivers. Proceedings of the Human 
Factors and Ergonomics Society 50th Annual Meeting, 2400–2404 (2006) 

29. Navarro, J., Mars, F., Hoc, J.M.: Lateral control assistance for car drivers: a comparison of 
motor priming and warning systems. Hum. Factors 49, 950–960 (2007) 

30. Kullack, A., Ehrenpfordt, I., Lemmer, K., Eggert, F., Reflekt, A.S.: lane departure 
prevention system based on behavioural control. IET Intell. Transp. Syst. 2, 285–293 
(2008) 




