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Abstract. Current brain-computer interface (BCI) research attempts to estimate 

intended operator body or cursor movements from his/her 

electroencephalographic (EEG) activity alone. More general methods of 

monitoring operator cognitive state, intentions, motivations, and reactions to 

events might be based on continuous monitoring of the operator’s (EEG) as well 

as his of her body and eye movements and, to the extent possible, her or his 

multisensory input. Joint modeling of this data should attempt to identify 

individualized modes of brain/body activity and/or reactivity that appear in the 

operator’s brain and/or behavior in distinct cognitive contexts, if successful 

producing, in effect, a new mobile brain/body imaging (MoBI) modality. Robust 

MoBI could allow development of new brain/body-system interface (BBI) 

designs performing multidimensional monitoring of an operator’s changing 

cognitive state including their movement intentions and motivations and (‘top-

down’) apprehension of sensory events.  
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1 Introduction 

Over the last decade there has been an explosion of interest in using EEG to monitor 

selected movement intentions of an operator trained to produce changes in the 

amplitude of one or more EEG measures that are mechanically associated by a brain-

computer interface (BCI) system with two or more intended external actions (in 

simplest form, moving a screen cursor up or down). BCI research was first funded to 

construct systems allowing communication by a relatively few cognitively intact but 

totally paralyzed or ‘locked-in’ subjects though, naturally, first exploratory phases of 

BCI research use normal test subjects. To insure the possibility that the methods 

developed in these phases might be usable by the target locked-in subjects, it was 

important to establish that the EEG changes used to detect movement intentions were 

not based on non-brain contributions to EEG signals recorded on the scalp, e.g., 

activity arising from subject eye movements or scalp muscle activities. Thus, for 

many researchers the BCI concept became identified with the goal of using ‘pure’ 

EEG, apart from non-brain ‘artifacts,’ to convey and decipher a subject’s stereotyped 

cursor (or body) movement intentions.  
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    The goal of providing a useful, non-invasive communication system for ‘locked-

in’ subjects is surely laudable, and actual demonstrations that both a few ‘locked-in’ 

and many normal subjects can communicate (albeit quite slowly) via learned control 

of their macroscopic brain activity patterns, without involvement of direct motor 

control, are novel and intriguing. However, unnecessary adherence to this limited BCI 

goal could slow development of more general classes of human-system interfaces 

involving continuous monitoring of non-invasively recorded brain activity.  

1.1 Unexplored problems in BCI research 

As a new subject, at least four fundamental questions about the operation, 

limitations, and effects of EEG-based BCI operation remain unexplored: 

 

1. Key obstacles to widespread acceptance and application of non-invasive EEG-

based BCI systems are the need for a long training regimen, and the failure of a 

significant fraction of subjects to achieve stable, non-invasive BCI control even 

after intensive training. Finding specific reasons for these difficulties, and methods 

around them, are fundamental if BCI or more general ‘neurotechnology’ or 

‘neuroergonomic’ HCI research is to have broad applications. 

2.  When a subject in a BCI experiment learns to move a computer screen cursor by 

increasing or reducing the amplitude of a selected brain rhythm – whether a mu 

rhythm, near-DC potential, or other phenomenon – what ‘body part’ (or brain 

system) do they use to willfully effect the modulation? While this is a fundamental 

issue for BCI research, it is one that has so far been nearly ignored.  

3. Although achieving volitional control of a BCI system through EEG modulation 

alone is an intriguing goal, more general questions for HCI systems involving EEG 

monitoring are how to combine EEG analysis with concurrent recording and 

analysis of subject behavior, eye and muscle activities, and multisensory input to 

monitor and adapt to changing human cognitive state, intent, and reactivity. 

4.  Another relatively unexplored question is whether there are psychobiological 

effects of training and performing volitional control of natural brain rhythms. 

These effects might either be phasic (affecting the operator only during BCI 

operation) or tonic (also affecting their behavior and/or brain activity at other 

times); they might be positive (for example producing a useful strengthening of 

attentional control), or negative (some unforeseen consequence of disrupting 

natural, non-conscious modes of dynamic brain regulation).  

 

All these questions should and must eventually be addressed by the advancing 

fields of human neuroscience and neurotechnology. This paper discusses a general 

plan of approach to the first three questions above – How can learning of EEG-based 

volitional control be made quicker and more universal? What EEG modulatory 

systems do successful BCI subjects use to learn and to effect volitional control of 

their EEG activity? And, how can EEG be combined with other information about 

operator behavior and sensation to allow human-system interactions to estimate and 

use information about operator mental state and cognitive reactions to events? 
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1.2 EEG Modulation 

EEG dynamics have long been characterized by their diverse spectral profiles. For 

example, slow semi-rhythmic activity is characteristic of EEG in deep sleep, while 

awake/alert EEG contains more high-frequency activity. Narrow-band brain rhythms 

appear most predominantly in the (8-12 Hz) alpha band, but also at somewhat higher 

and lower frequencies. Spectral modulations of EEG activity at lower and higher 

frequencies affect broader frequency bands. A considerable (if insufficient) amount is 

known about several brain systems that modulate the spectrum of local field activity 

in the brain’s cortex, the brain source of most scalp-recorded EEG. A number of these 

systems are the brainstem-centered ‘evaluation’ systems labeled by the specific 

neurotransmitter they project quite widely (acetylcholine, dopamine, norepinephrine, 

serotonin, or etc.). However, evidence for the involvement of these or other systems 

in successful BCI control has not been presented. 

1.3 Mobile brain/body imaging (MoBI) 

The fundamental purpose of the brain is to control behavior or more exactly, to 

optimize the outcome of behavior – maximizing its ensuing rewards and/or 

minimizing ensuing penalties as per subject purposes, needs, and desires. It is now 

possible to record brain activity at relatively high bandwidth – a Mbit/sec or more of 

EEG, MEG, BOLD, single-cell spike/field data, etc. Surprisingly, however, there has 

been little serious effort to concurrently record the behavior the brain is controlling 

with anything near the same bandwidth. In human brain experiments, behavior is 

most often recorded only in the form of a sparse series of minimal finger button 

presses – giving an effective rate of behavioral data collection near 1 bit/sec. Simply 

from this ~1,000,000:1 mismatch, it is no wonder that recent progress in human 

psychophysiology has been relatively slow. 

 

The obvious remedy for this oversight is to simultaneously record as much 

behavioral information as possible in paradigms including some range of natural 

behavior. It should be desirable to record as wide and natural a range of behavior as 

possible, in as physically free and natural a behavioral environment as possible. 

Currently, this goal can only be approached only using EEG brain imaging, since its 

sensors, alone among current high-bandwidth brain imaging modalities, are light 

enough that its recording does not require major restriction on subject head or body 

movements.  

 

Recently, I have proposed the combination of wearable, high-density EEG and 

body motion capture (combined, ideally, with eye gaze and audiovisual scene 

recording) may constitute a new brain imaging modality, ‘Mobile Brain/Body 

Imaging’ or MoBI [1]. Once successfully developed and demonstrated, MoBI could 

allow, for the first time, the study of macroscopic brain dynamic patterns supporting 

natural and naturally motivated actions (and interactions) in normal 3-D 

environments. 
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A key first problem to be overcome in realizing the promise of mobile brain 

imaging is the problem of separating the activities of brain EEG sources from non-

brain artifacts, particularly head and neck muscle activities and artifacts induced in 

the EEG by eye movements. A workable solution to this problem, at least, is the 

introduction of independent component analysis (ICA) of EEG data [2-6]. Under 

favorable circumstances, ICA cleanly separates brain and non-brain data source 

activities that are mixed by volume conduction in scalp EEG recordings, a process for 

which much open-source software is now available [7]. A second problem is to model 

the muscular forces producing the observed motor behavior; for this, open-source 

biomechanical modeling software is also becoming available [8]. Finally, adequate 

statistical signal processing or machine learning methods are required to discover 

dynamic links between concurrent brain source activities, muscle activations, and 

other classes of MoBI data. 

 

Supposing the near-future availability of viable MoBI recording and analysis 

methods, we can ask how the concept of BCI can be expanded to consider brain/body 

interface (BBI) designs that acquire and continuously update information about the 

cognitive state, reactions, intentions, and motivations of the system operator from 

joint MoBI recording. 

2 Brain/body Interface (BBI) Methods 

For a BBI system to be maximally effective, it would seem wise to consider and 

test two design principles:  

 

a) To best understand the complex associations of ongoing multidimensional 

changes in EEG dynamics with cognitive state, perceptual events, and movement 

intentions and motivations, the analysis should both observe and take into 

account the subject’s movements (including limb, body, and eye movements), 

and any other available physiological signals. In other words, to optimally model 

brain activity it is important to take in to account, as much as possible, the 

behavior the brain is controlling. This suggests the potential importance of the 

development of concurrent brain/body imaging recording and analysis, as in the 

MoBI concept. 

b) The information about cognitive state and action motivations and intentions that 

may be most robustly decoded from joint EEG and behavioral information should 

concern distinctions between circumstances and events in which EEG dynamics 

exhibit spontaneous differences. In particular, it is likely that learned control of 

EEG signals will be most successful when the learned repertoire of EEG 

modulations used to decode subject control intentions are identical or close to the 

subject’s repertoire of spontaneous EEG modulations.  

 

The identified EEG dynamics used in BBI monitoring and control may either 

index brain dynamics that play supporting roles in these circumstances, or their 

cortical source activities may also play a direct role in shaping the joint timing of 
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distributed neural activities, a concept that is gradually being re-introduced into 

neuroscience by new evidence and by theoretical considerations of the utility of mass 

action in the central nervous system for controlling behavior and its outcomes. 

2.1 EEG Modulators 

Standard methods for analyzing EEG data are based on averaging measures of 

EEG dynamics across trials or time windows, thereby collapsing the continuously 

time-varying signals into a average representation of activity time-locked to one or 

more classes of events. Further, most EEG analyses focuses on the individual scalp 

channel signals, though they are each differently weighted mixtures of many brain 

and non-brain source signals. Independent component analysis attempts to locate 

discrete sources of information in multidimensional data in which several independent 

information streams are linearly mixed in sensor data. However, the spectrum of each 

identified brain source component signal, like every recorded scalp signal, varies 

irregularly over time. Standard methods for analyzing either independent component 

or scalp channel signals during a period of continued subject task performance 

typically model the exhibited variability as noisy deviations from a stable mean 

spectrum or stable event-related spectral perturbation (ERSP) time/frequency mean, 

variation noise in which spectral power at each frequency is implicitly assumed to 

vary independently.  

 

An alternate approach assumes that the observed power spectral variability sums 

variations in several to many modes of spectral variability (and co-variability) that are 

characteristic of the component source process. Earlier, we introduced the device of 

converting component spectrograms to log power while positing that the motive force 

behind these modal modulations are processes that modulate spectral activity 

multiplicatively, at characteristic frequencies, with independent or near-independent 

time courses or effect distributions across trials [9]. Recently, we have tested the use 

of ICA decomposition the ongoing log power spectrograms of a number of 

independent component processes from single subjects performing eyes-closed 

imagination exercises 1 . Log spectral decomposition separated second-to-second 

variations in the log spectrogram into a log sum of multiplicative modulator 

processes, each with a fixed spectral and spatial component effect template whose 

effect on the affected spatial component log spectra is determined by multiplication 

by a single log amplitude time series. This approach gave a number of interesting 

results including alpha band processes at different frequencies plus harmonics, 

broader beta and theta band processes, and very broadband shifts in power 

distribution.  

 

We have also experimented with adding information to the analysis about the 

time locking and other experimental events and the context in which they occur. The 

goal of this analysis approach is to avoid so far as possible the method of planned 

comparisons, the basis for most experimental data analysis, in which measures for 

                                                             
1 Onton, J. and Makeig, S., unpublished data 
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pairs of conditions are compared, each measure an identically weighted average of 

measurements characterized by one (or sometimes more) key variable value.  

 

For example, there have been thousands of EEG studies that compared the 

average responses (typically called ‘P300’) to ‘target’ and ‘non-target’ stimuli in a 

simple attention task. The underlying assumption here is that the brain emits identical 

responses to each ‘target’ or ‘non-target’ stimulus, respectively, regardless of the local 

event context. The hope is that the effect of the ‘target/non-target’ variable is 

separable from other variables, and essentially stable across time. Unfortunately, this 

is not the case. P300 ‘target’ responses vary widely in amplitude and scalp 

distribution from trial to trial, and this type of variability limits the performance of 

simple BCI systems, for example one that might attempt to set a fixed threshold to 

identify the appearance of a ‘target’ response, regardless of event context [10].  

 

I propose that BBI research explore an alternative approach in which multiple 

characteristic relationships between EEG dynamics and single events in context are 

determined directly from the joint EEG, stimulus, and behavioral data. Some facts 

concerning the nature of individual events may be available to at BBI system in real 

time, for example the moment and screen on which a piece of information is 

presented, or the screen to which the subject is directing their gaze.  

 

An example of an unavailable context variable might be the interpretation of the 

subject of a visual event as representing a challenge or threat. In pilot data recorded to 

build an individualized (or collective) BBI model, the level of threat could be varied 

systematically and the level of perceived threat might be estimated from the subject’s 

brain and behavioral responses. In subsequent real-time operation, other variables 

defining the current event and event context may be available from the system event 

log and subject behavioral record.  

 

Combined with direct observation of the EEG and subject motor behavior, these 

available context variables, combined, may allow estimation of the unavailable 

variable – here, whether and to what extent the subject perceives a visual event to 

signal a threat to the operation of the system. This information might be used to 

immediately deploy available additional countermeasures whenever a genuine 

perceived system threat is estimated to occur, or possibly to monitor the state of 

responsiveness of the subject when false indications of (test) threats are delivered to 

the subject, probing their advancing level of expertise in recognizing a threatening 

event, or for estimating their current cognitive fitness for duty. 

 

If the system response to the operator’s appraisal of a threatening event helps the 

operator mount an adequate and timely response, then the system response will serve 

as a powerful reward, and naturally over time and use the operator’s EEG pattern 

should be expected to adapt to give a more distinct perceived-threat signal to the 

system. Thus, a natural cognitive response monitoring system could easily become an 

interactive learned BCI/BBI system. Further, it is natural to hypothesize that when the 

system is based on the operator’s natural brain response modes, it may also be natural 
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and relatively easy for the operator to learn to produce the EEG patterns that are most 

distinctly and reliably detected by the system. 

 

           
Fig. 1. Schematic model diagram for a non-invasive brain/behavior system interface (BBI) 

design. Concurrent scalp EEG, behavior, and event/context data are collected in a Mobile 

Brain/body Imaging (MoBI) paradigm (thick ovals). In most currently proposed BCI systems 

(dotted arrows), selected EEG data are processed in near-real time to estimate or predict some 

behavioral or event/context parameter (‘BCI’). In the proposed BBI, the EEG data are first 

separated into cortical EEG source processes (upper middle oval) (plus non-brain artifact 

processes, not shown). Then the time/frequency behaviors of the source processes are further 

separated into effects of a number of maximally distinct EEG source modulator processes 

(upper right oval). In the BBI model, both selected EEG time-domain source and frequency-

domain source modulator data may be integrated with the behavioral and other event/context 

data to estimate or predict selected behavioral and/or event/context parameters (broad light blue 

arrows). 

 

Fig. 1 gives the gist of the concept in graphic form. Three types of MoBI data 

may be recorded concurrently to run a brain/body interface (BBI): high-density EEG 

data, behavioral data, and context data (event information, event, EEG, and 

behavioral history, etc.). Standard BCI systems (dotted arrows) attempt to estimate 

some parameter of the behavioral and/or event/context data directly from the scalp 

EEG using a machine learning approach. In the proposed BBI model (wide light blue 

arrows), the EEG data are first separated into cortical (and non-brain) EEG source 

processes (thin blue arrows), the spectral modulator processes operating on these 

source processes are estimated from the EEG source data, and the linkage of the EEG 

source and source modulator processes to the behavioral and/or event/context data are 
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determined. When one or more parameters of the event/context data are unavailable 

(e.g., in real-time operation), any of the available MoBI data may be used in a BBI to 

estimate the unavailable parameter. The estimation process might be designed to 

perform well even when additional data variables are missing. The MoBI data used 

for this estimation might include available behavioral data (body motion capture, eye 

gaze tracking, etc.) and event/context information as well as EEG dynamics. 

3 DISCUSSION 

The model of an EEG-based BBI system shown in Fig. 1 has the advantage of 

involving volitional control of spatiotemporal EEG dynamic patterns most 

specifically associated with the operator’s spontaneous EEG responses in the targeted 

event categories [11]. While it is natural to hypothesize that strengthening and 

controlling spontaneously active EEG patterns may be more easily and quickly 

learned, this assumption may prove incorrect in some or many cases, and thus basic 

experiments (and adequate analyses) are needed to test it. Earlier, we showed that 

applying even highly overlearned BCI control of a single pre-defined EEG feature 

may involve complex and asymmetric EEG changes in and among many cortical 

regions [12]. Thus, gaining a basic understanding of the nature and learning of 

volitional EEG control may in many cases prove to be a complex and difficult 

process. 

 

How may we determine which brain modulatory systems are involved in 

spontaneous and learned control of particular EEG or behavioral/EEG dynamics? A 

full answer to this question may require invasive experiments (potentially involving 

patient volunteers who have been implanted with cortical electrodes for clinical 

purposes), positron emission tomography (PET) experiments that can assess 

neurotransmitter distributions in the brain, various psychopharmacological 

manipulations, combined with carefully selected behavioral paradigms, for example 

those directly manipulating reward levels known to be linked to dopamine release 

[13]. However, a number of brain modulatory systems may be involved in most state 

changes and event responses of interest, so this investigation should be expected to be 

involved. 

 

A possible objection to the model shown in Fig. 1 is that if an adequate BCI 

function linking the recorded EEG signal to the target behavioral or event/context 

parameter(s) of interest proves to be linear, then constructing a more elaborate BBI 

function linking EEG data first to EEG sources, then to their natural modes of spectral 

modulation, and finally to the estimated event/context or behavioral measure may not 

give a better-performing estimator. The proposed EEG source modulator model, 

however, is nonlinear as it operates on source (log) power spectra. Linear or other 

functions of the estimated source and source modulator time courses, therefore, 

involve additional information and might well have advantages over direct (and 

particularly, linear) BCI estimation. However, use of power spectral estimates ignore 

source signal phase and with it, precise latency information available in the time-
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domain data. Thus, applying a joint linear (or other) estimator to combine time-

domain and time/frequency-domain data could improve performance over a time-

domain estimator alone. 

 

Recently Bigdely Shamlo and colleagues demonstrated a successful application of 

such an approach [14]. We reported a method for estimating the probability that a 

briefly presented visual image contained a rare target feature – an airplane feature in a 

stream of satellite ground images presented to the subject at a rate of 12 images per 

second. Near-real time performance in correctly detecting the presentation of single 

target-bearing images solely from high-density EEG (by combining source time-

domain and source spectral modulator information in a linear estimator) was high, 

giving an area under the ROC curve of over 90% for most subjects.  

 

Like most BCI projects, this project did not expressly capture subject behavioral 

information. However, it did allow use of maximally independent EEG sources 

capturing potentials induced by characteristic subject eye gaze behavior following 

target appraisal, unlike BCI systems built to serve completely paralyzed subjects. 

Although the very rapid serial visual presentation (RSVP) did not reward normal 

saccadic eye movements, independent components accounting for eye movements 

following target perception was found to carry some target classification information 

(though of less value compared to several brain EEG source responses). 

 

The BBI model shown schematically in Fig. 1 does not propose a method for 

combining EEG and behavioral data, in particular body motion capture data. This is a 

topic that both requires and deserves much attention and exploration. Of particular 

interest is to determine the extent to which it is desirable to solve the biomechanical 

inverse problem, estimating which muscle actions produce the observed sequence of 

body movements, before estimating links between EEG source activities, body 

movements, and operator mental state or reactions [8]. 

 

Finally, can the proposed MoBI-based BBI systems be practical for widespread 

application, or must they remain basic research tools? EEG spatial filtering requires 

the availability of a relatively high number of scalp EEG recording channels. 

Typically, BCI designers have attempted to maximize signal to noise ratio by 

restricting the number of channels used in the classifier, an approach that might also 

lower the cost of the system, if realized using currently available technology. To date, 

body motion capture (mocap) systems also remain quite expensive. Thus, can the 

proposed MoBI-based BBI systems become practical for routine application, even in 

(e.g.) high-value military or civilian environments? Here, the rapid progress of 

electronic fabrication methods, allow microminiaturized data acquisition and 

processing units based on flexible thin-film technologies should allow development 

and relatively low-cost deployment of wearable high-density EEG and behavioral 

monitoring systems within a few years [15]. Such systems should be readily 

applicable to some important problems, for example alertness monitoring of shift-

work operators of high-value, high-risk systems [16]. Full realization of the MoBI-

based BBI concepts discussed here will likely require a great deal more basic and 
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applied research in many laboratories combining expertise in several fields of 

neuroscience, mathematics, and engineering. 
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