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Abstract—Ongoing brain activity can be recorded as 

electroencephalograph (EEG) to discover the links between 
emotional states and brain activity. This study applied 
machine-learning algorithms to categorize EEG dynamics 
according to subject self-reported emotional states during music 
listening. A framework was proposed to optimize EEG-based 
emotion recognition by systematically 1) seeking emotion-specific 
EEG features and 2) exploring the efficacy of the classifiers. 
Support vector machine (SVM) was employed to classify four 
emotional states (joy, angry, sadness and pleasure) and obtained 
an averaged classification accuracy of 82.29±3.06% across 26 
subjects. Further, this study identified thirty subject-independent 
features that were most relevant to emotional processing across 
subjects and explored the feasibility of using fewer electrodes to 
characterize the EEG dynamics during music listening. The 
identified features were primarily derived from electrodes placed 
near the frontal and the parietal lobes, consistent with many of the 
findings in the literature. This study might lead to a practical 
system for noninvasive assessment of the emotional states in 
practical or clinical applications. 
 

Index Terms—EEG, Emotion, Machine-learning 
 

I. INTRODUCTION 
HE ultimate objective of bio-inspired multimedia research 
is to access multimedia content from users’ bio-signals 

through interpreting the inherent responses during multimedia 
appreciation. For example, a recent work in brainwave-music 

 
Manuscript received December 17, 2009. This work was supported in part 

by the Taiwan National Science Council under Grant NSC97-2917-I-002-119.  
Yuan-Pin Lin is with the Department of Electrical Engineering, National 

Taiwan University, Taiwan. He now has a visiting with the Swartz Center for 
Computational Neuroscience, University of California, San Diego (e-mail: 
yplin@sccn.ucsd.edu). 

Chi-Hong Wang is with the Department of Neurology, Cardinal Tien 
Hospital, Yung-Ho Branch, Taipei, Taiwan (e-mail: 
isami.chwang@gmail.com). 

Tzyy-Ping Jung is with the Swartz Center for Computational Neuroscience, 
University of California, San Diego (corresponding author, phone: 
+1-858-822-7555; e-mail: jung@sccn.ucsd.edu). 

Tien-Lin Wu and Shyh-Kang Jeng are with Department of Electrical 
Engineering, National Taiwan University, Taiwan (e-mail: 
terrywu0311@hotmail.com and skjeng@ew.ee.ntu.edu.tw). 

Jeng-Ren Duann is with the Biomedical Engineering Research and 
Development Center, China Medical University Hospital, Taichung, Taiwan 
(e-mail: jengren00@gmail.com). 

Jyh-Horng Chen is with the Department of Electrical Engineering, National 
Taiwan University, Taiwan (corresponding author, phone: +886-2-23699465; 
e-mail: jhchen@ntu.edu.tw) 

interface [1] built up sonification rules to map 
electroencephalographic (EEG) characteristics to musical 
structures (note, intensity and pitch). Unlike brainwave-music 
interface, the ultimate goal of this study is to build a more 
immersive multimedia environment based on listener’ 
appreciation/emotion as measured by EEG. In both 
applications the ability to interpret user’s multimedia-induced 
perception and emotional experience is very crucial.  

Many methods for estimating human emotion have been 
proposed in the past. The conventional methods basically 
utilize audio and visual attributes to model human emotional 
responses, such as speech, facial expressions, and body 
gestures. More recently, accessing physiological responses has 
gained increasing attention in characterizing the emotional 
states [2-5]. Bio-signals used in these studies were recorded 
from autonomic nervous system (ANS) in the periphery such as 
electrocardiogram (ECG), skin conductance (SC), 
electromyography (EMG), respiration, pulse and so on. As 
compared with audio- and/or visual-based methods, the 
responses of bio-signals tend to provide more detailed and 
complex information as an indicator for estimating emotional 
states [3]. 

In addition to periphery bio-signals, signals captured from 
the brain in central nervous system (CNS) have been proved 
providing informative characteristics in responses to the 
emotional states. The ongoing brain activity recorded using 
electroencephalography (EEG) provides noninvasive 
measurement with temporal resolution in milliseconds. EEG 
has been used in cognitive neuroscience to investigate the 
regulation and processing of emotion for the past decades. 
Power spectra of the EEG were often assessed in several 
distinct frequency bands, such as delta (1-3 Hz), theta (4-7 Hz), 
alpha (8-13 Hz), beta (14-30 Hz) and gamma (31-50 Hz) [6], to 
examine their relationship with the emotional states. One of the 
common indicators of emotional states is the alpha-power 
asymmetry derived from the spectral differences between a 
symmetric electrode pair at the anterior areas of the brain [7-9]. 
Other spectral changes and brain regions were also reported 
associated to emotional responses, such as the alpha-power 
changes at right parietal lobe [9, 10], the theta-power changes 
at right parietal lobe [11], the frontal midline (Fm) theta power 
[12], the beta-power asymmetry at the parietal region [13] and 
the gamma spectral changes at the right parietal regions [14]. 
Although emotion is one of complex and less-understood 
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cognitive functions generated in the brain and associated with 
several brain oscillations in combinations [15], the above 
evidences proved the feasibility of using EEG to characterize 
emotional states. Therefore, compared to periphery bio-signals, 
the EEG might provide more insights into emotional processes 
and responses. 

Using EEG to assess emotional states is still in its infancy, 
compared to the works using audio-visual based methods. In 
2004, Ishino et al. [16] proposed a system that estimated 
subjective feeling using neural networks to categorize 
emotional states based on EEG features. They reported an 
average accuracy range from 54.5% to 67.7% for each of four 
emotional states. Takahashi [17] proposed an emotion 
recognition system using multi-modal signals (EEG, pulse and 
SC). The experimental results showed that the recognition rate 
using a support vector machine (SVM) reached an accuracy of 
41.7% for five emotions. In 2006, Chanel et al. [18] showed 
that arousal assessment of emotion could be obtained with a 
maximum accuracy of 58% for three emotion classes. The 
classification was performed using the Naïve Bayes classifier 
applied to six EEG features derived from specific frequency 
bands at particular electrode locations. In 2007, Heraz et al. 
[19] established an agent to predict emotional states during 
learning. The best classification in the study was an accuracy of 
82.27% for distinguishing eight emotional states, using 
k-nearest neighbors as a classifier and the amplitudes of four 
EEG components as features. In 2009, Chanel et al. [20] 
reported an average accuracy of 63% by using EEG 
time-frequency information as features and SVM as a classifier 
to characterize EEG signals into three emotional states. Ko et 
al. [21] demonstrated the feasibility of using EEG relative 
power changes and Bayesian network to predict the possibility 
of user’s emotional states. Also in 2009 Zhang et al. [22] 
proposed an emotion understanding system that classified 
users’ status into two emotional states with the accuracy of 73.0
± 0.33% during image viewing. The system employed 
asymmetrical characteristics at the frontal lobe as features and 
SVM as a classifier. However, most of works focused only on 
EEG spectral power changes in few specific frequency bands or 
at specific scalp locations. No study has yet been conducted to 
systematically explore the correspondence between emotional 
states and EEG spectral changes across the whole brain and 
relate the findings to those previously reported in emotion 
literature. 

The objective of this study is to systematically uncover the 
association between the EEG dynamics and emotions by 1) 
searching emotion-specific features of the EEG and 2) testing 
the efficacy of different classifiers. To this end, this study will 
explore a wide range of features across multiple subjects and 
establish an EEG-based emotion recognition scheme in the next 
sections. 

 

II. DATA COLLECTION AND EXPERIMENT PROCEDURE 
EEG data in this study were collected from twenty-six (26) 

healthy subjects (16 males, 10 females; age 24.40±2.53) during 
music listening. Most of subjects were undergraduate or 
graduate students from College of Electrical Engineering and 
Computer Science or College of Engineering at National 
Taiwan University. They had minimal formal musical 
education and could thus be considered as non-musicians. A 
thirty-two (32) channel EEG module (Neuroscan, Inc) arranged 
according to international 10-20 system was used. All leads 
were referenced to linked mastoids (average of A1 and A2), 
and a ground electrode was located in the forehead. The 
sampling rate and filter bandwidth were set to 500 Hz and 
1~100Hz, respectively. An additional 60 Hz notch filter was 
employed to avoid the power-line contamination. All electrode 
impedances were kept below 10 KOhm for the EEG. 
Electrooculogram (EOG) activity was also recorded to 
facilitate subsequent EEG artifact rejection. 

Subjects were instructed to keep their eyes closed and remain 
seated in the music-listening experiment. This study examined 
four basic emotional states following a 2D valence-arousal 
emotion model [23], including joy (positive valence and high 
arousal), angry (negative valence and high arousal), sadness 
(negative valence and low arousal), and pleasure (positive 
valence and low arousal). Sixteen excerpts from Oscar’s film 
soundtracks were selected as stimuli according to the consensus 
tagging reported from hundreds of subjects [24]. Each was 
edited into a 30-sec music excerpt. Four of sixteen music 
excerpts were randomly selected without replacement to form a 
four-run experiment. A 15-sec silent rest was inserted between 
music excerpts. After each run, the subjects were requested to 
report the emotional states (joy, anger, sadness and pleasure) to 
each music excerpt based on what they felt via a tool 
FEELTRACE [25] for labeling on a 2D emotion model. Each 
experiment thus consisted of sixteen (16) 30-s emotion-specific 
EEG segments for further analysis, whereas the given 
self-reported emotional states were used to verify EEG-based 
emotion classification. 

 

III. DATA CLASSIFICATION 

A. Feature Extraction 
The recorded EEG data were first preprocessed to remove 

serious and obvious motion artifacts through visual inspection, 
and the artifact-free data were then divided into sixteen 30-s 
segments for each individual. Since the features under study 
were based on the spectral power changes, a 512-point 
short-time Fourier transform (STFT) with a non-overlapped 
Hanning window of one second was applied to each of 30 
channels of the EEG data to compute the spectrogram. The 
resultant spectral time series was averaged into five frequency 
bands, including delta (δ: 1-3 Hz), theta (θ: 4-7 Hz), alpha (α: 
8-13 Hz), beta (β: 14-30 Hz), and gamma (γ: 31-50 Hz). The 
spectral time series for each subject thus consisted of around 
480 sample points. In order to find an optimal set of 
emotion-specific features from a wide range of feature 
candidates, two major factors were tested: 1) the types of 
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features and 2) the frequency bands of the EEG. Several feature 
categories were systematically tested in this study. First, 
individual spectral power from thirty (30) scalp electrodes were 
used as the features, including Fp1, Fp2, F7, F3, Fz, F4, F8, 
FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, 
CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz and O2. This feature type 
was named PSD30 (power spectrum density of all 30 channels) 
in the following sections. Next, the spectral power of the 
hemispheric asymmetry index was also adopted and extended 
from our previous study [26, 27]. Throughout the whole brain, 
there were 12 asymmetry indices derived from 12 symmetric 
electrode pairs, namely Fp1-Fp2, F7-F8, F3-F4, FT7-FT8, 
FC3-FC4, T7-T8, P7-P8, C3-C4, TP7-TP8, CP3-CP4, P3-P4, 
and O1-O2. The asymmetry indices were calculated either by 
power subtraction (e.g. power of C3 – power of C4) or division 
(e.g. power of C3 / power of C4) and labeled as DASM12 
(differential asymmetry of 12 electrode pairs) and RASM12 
(rational asymmetry of 12 electrode pairs), respectively. Lastly, 
the individual spectra of these 12 symmetric electrode pairs (24 
channels) were also used as the features for emotion 
classification, named PSD24 (power spectrum density of 24 
channels). The PSD24 was part of PSD30 without the 
electrodes along the midline (Fz, FCz, Cz, CPz, Pz and Oz). 
Table I summarizes the four feature types used in this study. 
Before feeding data to classifiers, the feature vectors were 
normalized to the range from 0 to 1. In addition, to test the 
feasibility of automatic classification of EEG segments, each 
EEG segment was tagged with the corresponding emotional 
label according to the subject’s self-report. 

 

B. Feature Classification 
This study employed and evaluated two classifiers, 

multilayer perceptron (MLP) and support vector machine 
(SVM), for EEG classification. These classifiers have been 
separately applied to some of the aforementioned features 
(DASM12 and PSD24) previously [26] [27]. This study 
systematically compared the effects of all four feature types on 
the classification performance.  

The MLP used in this study consisted of an input layer, a 
hidden layer with a sigmoid function representing neural 
excitation, and an output layer. The number of neurons in the 
input layer and hidden layers varied according to the feature 
type used, whereas the number of neurons in the output layer 
was four, each corresponded to one of the four emotional states. 

The number of neurons in the hidden layer was empirically 
assigned based on the half of summation of neurons in the input 
and output layers. For example, when the feature type 
DASM12 was used as the input to the MLP, the number of 
neurons of the input layer and hidden layer were 12 and 8 
respectively. The EEG feature vector and the corresponding 
emotional label were used to adjust the weight coefficients 
within the network layers using a back propagation algorithm. 
After the training procedure converged, the optimized MLP 
estimated an emotion label for each EEG segment. This study 
employed Weka [28], a collection of machine learning 
algorithms intended for data mining, to perform the MLP 
classification. 

Next, this study employed SVM to classify the emotion label 
for each EEG segment. SVM is one of the most popular 
supervised learning algorithms for solving the classification 
problems. The basic idea is to project input data onto a higher 
dimensional feature space via a kernel transfer function, which 
is easier to be separated than that in the original feature space. 
Depending on input data, the iterative learning process of SVM 
would eventually converge into optimal hyperplanes with 
maximal margins between each class. These hyperplanes 
would be the decision boundaries for distinguishing different 
data clusters. This study used LIBSVM software [29] to build 
the SVM classifier and employed radial basis function (RBF) 
kernel to nonlinearly map data onto a higher dimension space. 

In the experiments, the number of sample points from each 
subject was around 480 points (16 30-s EEG segments x around 
30 points per segment) derived from artifact-free EEG signals. 
A 10 times of 10-fold cross-validation scheme with 
randomization was applied to dataset from each subject in order 
to increase the reliability of the recognition results. In a 10-fold 
cross-validation, whole EEG dataset was divided into 10 
subsets. The MLP and SVM were trained with nine subsets of 
feature vectors, whereas the remaining subset was used for 
testing. This procedure was repeated ten times with each subset 
having an equal chance of being the testing data. The entire 
10-fold cross validation was then repeated ten times with 
different subset splits. The accuracy was evaluated by the ratio 
of correctly classified number of samples and the total number 
of samples. After validation processing, the average 
subject-dependent performance using different feature types as 
inputs were evaluated. 

 

C. Feature Selection 
 Feature selection was a necessary process before performing 

any data classification and clustering. The objective of feature 
selection is to extract a subset of features by removing 
redundant features and maintaining the informative features. 
Further, since 32-channel EEG module was used to acquire the 
brain activity, the feature selection also tested the feasibility of 
using fewer electrodes for practical applications. Thus, the 
feature selection seems particularly important not only to 
improve the computational efficiency but also expand the 
applicability of EEG-based human-centered system in 

TABLE I 
NUMBER OF FEATURES USING DASM12, RASM12, PSD24 AND PSD30 IN 

DIFFERENT EEG FREQUENCY BANDS 

Feature Type  
EEG Frequency Band 

Delta  Theta  Alpha  Beta  Gamma ALL

DASM12  12 12 12 12 12 60 

RASM12  12 12 12 12 12 60 

PSD24  24 24 24 24 24 120

PSD30  30 30 30 30 30 150
The condition ALL represents the combination of five EEG frequency bands. 
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TABLE II 
AVERAGE MLP RESULTS (STANDARD DEVIATION) USING DASM12, RASM12, PSD24 AND PSD30 

Feature Type 
EEG Frequency Band 

Delta Theta Alpha Beta Gamma ALL 

DASM12    63.93 (5.91) *    63.67 (5.34) * 64.07 (6.42) 55.71 (7.53) 53.24 (7.02) 81.52 (3.71) 
RASM12 48.54 (5.70) 50.69 (5.39) 55.40 (6.95) 48.21 (7.03) 44.82 (6.38) 65.33 (5.52) 

PSD24 49.20 (6.07) 52.10 (6.46) 57.79 (7.70) 53.20 (7.25) 54.46 (6.55) 75.66 (4.41) 

PSD30 52.12 (5.72) 55.61 (6.49) 61.89 (7.84) 57.92 (7.09) 58.04 (6.50) 79.54 (4.21) 
The condition ALL refers to a combination of five EEG frequency bands, and numbers in bold represents the best performance using the frequency band. The 
significant difference was tested under each frequency band (*p < 0.05). 
 

TABLE III 
AVERAGE SVM RESULTS (STANDARD DEVIATION) USING DASM12, RASM12, PSD24 AND PSD30 

Feature Type 
EEG Frequency Band 

Delta Theta Alpha Beta Gamma ALL 

DASM12    69.91 (6.55) *    68.27 (5.29) *    66.94 (6.41) * 58.83 (8.02) 57.35 (7.37)    82.29 (3.06) *

RASM12 50.91 (5.62) 51.39 (5.94) 56.95 (6.79) 50.29 (6.99) 47.61 (7.23) 65.81 (5.09) 

PSD24 51.02 (6.17) 53.27 (6.95) 54.61 (7.44) 55.42 (6.57) 56.80 (6.58) 69.54 (5.10) 

PSD30 53.38 (5.79) 55.61 (6.68) 56.64 (7.03) 58.71 (6.31) 59.54 (6.16) 71.15 (4.88) 
The condition ALL refers to a combination of five EEG frequency bands, and numbers in bold represents the best performance using the frequency band. The 
significant difference was tested under each frequency band (*p < 0.05). 

real-world applications. This study adopted F-score index, one 
of statistical methods to measure the ratio of between- and 
within-class variance, for sorting each feature in descending 
order accounting for discrimination between different EEG 
patterns, i.e. the larger the F-score, the greater the 
discrimination power. The F-score of the ith feature is defined 
as [30]: 

 
where ix and ilx ,  are the average of the ith feature of the entire 
data set and class l data set (l =1~g, g=4 for four emotion labels) 

respectively; , ,l k ix  is the ith feature of the kth of the class l 
instance, and ln is the number of instances of class l. The 
number of the features varied depending on the types of feature 
used. Further, in order to investigate the number of features 
retained, the leave-N-feature-out scheme was also employed 
for iteratively conducting the classification by removing a 
subset of features based on the F-score rank list. 
 

IV. CLASSIFICATION RESULT 
To better understand the association between EEG activities 

and the emotional responses, several factors have been 
intensively investigated: 1) the types of features, 2) the 
frequency bands of the EEG, 3) the types of classifiers, 4) the 
number of features, and 5) the number of electrodes.  

Table II shows the averaged classification performance of 
MLP using four feature types, DASM12, RASM12, PSD24 
and PSD30, across different EEG frequency bands. The 
classification performance of using DASM12 was evidently 

better than those based on other feature types under conditions 
(significant difference shown in the delta and theta bands, 
p<0.05), except in the cases using beta and gamma power. A 
maximum classification accuracy of 81.52±3.71% was 
obtained using ALL frequency bands (but no significant 
difference compared to PSD30, p>0.05). 

Table III shows the averaged classification performance of 
SVM using DASM12, RASM12, PSD24 and PSD30 across 
different EEG frequency bands. Again, DASM12 gave best 
classification performance (significant difference shown in 
delta, theta and alpha, p<0.05), except in the case using gamma 
power. A maximum classification accuracy of 82.29±3.06% 
was obtained from the condition ALL with significant 
difference (p<0.05). When comparing the classification results 
obtained by MLP and SVM, applied to DASM12, it was noted 
that SVM outperformed MLP by 2%~4% (significant 
improvement was shown in the delta, theta and gamma, 
p<0.05), whereas in condition ALL SVM improved the 
classification performance from 81.52±3.71% to 82.29±3.06% 
(but not statistically significant, p>0.05). 

Next, since the best performance was obtained using 
DASM12 across all frequencies (condition ALL), F-score 
index was further applied to this feature type to sort the feature 
across frequency bands. The leave-N-feature-out scheme was 
then used to iteratively remove a group of ranked features and 
examine its effects on the classification performance. Fig. 1 
shows the average results across subjects obtained by 
iteratively removing N F-score-ranked features out at a time, 
e.g. in the case of leaving-5-features-out, each point in the 
figure corresponds to retain 55 of 60 features in the 
classification process with the first point representing the 
removal of top-F-score-ranked features ranked from 1st to 5th 
and the second data point representing the removal of features 
ranked from 6th to 10th, etc. Fig. 1 (b) plots the average results 
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across subjects obtained by iteratively removing N 
F-score-ranked features out at a time, but the removed N 
features were randomly selected. Firstly, the classification 
performance obtained from SVM decreased as the number of 
features increased from 5 to 20. Secondly, the classification 
accuracy decreased appreciably as top F-score-ranked features 
were removed as the lower accuracy was seen on the left of Fig. 
1(a).  On the contrary, no appreciable differences in accuracy 
was shown in Fig. 1(b) when N of 60 features were randomly 
drawn and removed from the inputs. These results suggested 
the top F-score ranked features were more discriminative than 
the lower ranked ones. Fig. 2 shows the feature space along the 
(a) top and (b) last two F-score-ranked features. As can be seen, 
Fig. 2(a) is more structural and the data points corresponding to 
anger (blue triangles) were largely separable from the rest of 
the points, whereas the data points of different emotional states 
were highly overlapped in Fig. 2 (b). 

A natural question is if the optimal EEG features for emotion 
recognition were common across subjects (i.e. 
subject-independent). In this study the subject-independent 
feature set was evaluated by summarizing the accumulation of 
F-score value of each feature across subjects. Fig. 3 shows 
those classification results obtained by Top N F-score-ranked 

subject-dependent features, subject-independent features, and 
the number of electrodes required for deriving the Top N 
subject-independent features. As expected, the classification 
accuracy in general declined as the number of input attributes 
of DASM12 decreased. Interestingly, the classification 
performance using subject-independent features was 
comparable to that using subject-dependent features, except for 
the case where only 5 of 60 features were used. As an example, 
the averaged classification accuracy of 74.10±5.85% was 
obtained by applying SVM to the top 30 subject-independent 
features, compared to the accuracy of 75.75±5.24% obtained 
by using top 30 subject-dependent features. However, though 
the number of attributes was reduced from 60 to 30, the 
electrodes required to derive these top 30 features remained the 
same (24). Nevertheless, using only 30 of 60 attributes would 
considerably reduce the computational complexity. 

Finally, Fig. 4 accesses the importance of the inclusion of 
particular electrode pairs by plotting the degree of use of each 
electrode in the top 30 subject-independent DASM12 features. 
As can be seen, the features derived from the frontal and 
parietal lobes were used more frequently than other regions, 
indicating these electrodes provided more discriminative 
information than other sites. 

In short, the frontal and parietal electrode pairs were most 
informative about the emotional states. By combining EEG 
spectral estimation and SVM, it is feasible to identify four 

 
 

 
Fig. 1. The average performance obtained by iteratively removing N-feature 
out based on (a) F-score sorting and (b) random selection. Each iteration use
same number of features for classification, for example, 60-5=55 features were
used in each iteration in the case of Leave5, where the first point represents the 
removal of   the 1st to 5th ranked (or randomly selected) features and the second
data point represents the removal of  the  6th to 10th features, etc. 

 
 

 
Fig. 2. A Comparison of 2D feature scatter plot from a sample subject along 
the (a) top and (b) last two of F-score-ranked features. 
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Fig. 3. The comparison of average results using Top N subject-dependent, 
subject-independent features, and the number of electrodes for
subject-independent features, where Top N was defined as the range of the 
F-score from the 1st to the Nth attributes. 
 

 
Fig. 4. The degree of use of each electrode in the top 30 subject-independent
features. The degree of use is color-coded according to the color bar on the
right. (The symmetry pattern is due to the fact that the spectral differences were
derived from symmetrical pairs) 
 

TABLE IV 
AVERAGE SVM CONFUSION MATRIX ACROSS SUBJECTS USING DASM12 

Input 
Output 

Joy (%) Anger (%) Sadness (%) Pleasure (%)

Joy 86.15 1.29 5.10 7.46 

Anger 10.35 74.11 6.69 8.84 

Sadness 9.65 1.69 79.59 9.08 

Pleasure 8.94 1.34 6.13 83.59 
 

emotional states (joy, anger, sadness and pleasure) of 
participants during music listening. The maximum 
classification accuracy of 82.29±3.06% could be obtained by 
applying SVM to DASM12. 

 

V. DISCUSSION 
This study demonstrated the feasibility of using EEG 

dynamics to recognize emotional states in music listening. 
Several important issues were explored. 
 
EEG Feature Types  

The effects of emotional processing have been found with 
different temporal dynamics of the EEG during listening to 
different music excerpts [12], indicating EEG pattern would 
evolve over time during music listening. Thus, this study aimed 
to characterize the EEG dynamics accompanying emotion 
processing with second-by-second temporal resolution. Four 
different types of EEG features, DASM12, RASM12, PSD24 
and PSD30, were derived from EEG recordings at different 
frequency bands. The results of this study (cf. Table II and 
Table III) showed that the differential asymmetry of 
hemispheric EEG power spectra (DASM12) provided better 
classification accuracy than the rational asymmetry of 
hemispheric EEG power spectra (RASM12). Second, although 
DASM12 and PSD24 were recorded and derived from the same 
set of electrodes, the DASM12 features significantly improved 

the classification performance. This result is highly in line with 
that hemispheric power asymmetry is useful for the 
discrimination of mental tasks or similar work as shown 
previously [22, 31]. Lastly, the classification accuracy using 
DASM12 outperformed that using PSD30, despite the fact that 
the feature dimensions of DASM12 was considerably lower 
than that of PSD30 (60: 12 electrode-pairs x 5 frequency bands 
versus 150: 30 electrodes x 5 frequency bands). 

 
Compare to Related Work 

The best emotion classification (82.29±3.06%) was obtained 
by SVM with a 10 times of 10-fold cross-validation scheme 
based on DASM12. The use of STFT with a non-overlap 1-sec 
window, as opposed to our previous study using an overlapped 
window [27], made the results of this study more convincing 
since the training and testing datasets were totally disjoint.  

Table IV summarizes the average confusion matrix obtained 
by SVM applied to DASM12 across subjects. The best average 
accuracy for four emotional states was obtained for joy 
(86.15%), followed by pleasure, sadness and anger with 
accuracy of 83.59%, 79.59% and 74.11% respectively. It is 
hard to compare the obtained accuracy of individual emotional 
states with previous literature since the number of targeted 
emotional states varied from study to study. Therefore, the 
overall classification accuracy of the emotional states is 
compared below. Ishino et al. [16] proposed an emotion 
estimation system for recognizing one of four defined 
emotional states with the average accuracy ranging from 54.5% 
to 67.7% on single subject’s dataset. Takahashi [17] reported 
an averaged recognition rate of 41.7% for distinguishing five 
emotional states in a film-induced emotional dataset from 12 
subjects. In 2006, Chanel et al. [18] obtained an average 
accuracy of 58% for distinguishing three emotional classes 
using image-arousal emotional dataset of 4 participants. In 
2007 Heraz proposed a system to classify learner’s status into 
one of eight emotional states with a best accuracy of 82.27% on 
image-induced emotional dataset from 17 subjects. Further, 
recently Chanel et al. [20] reported another study on 
subject-self elicited emotional dataset of 10 subjects and 
obtained a mean accuracy of 63% for three emotional classes. 
Zhang [22] presented a best result of 73.0±0.33% for predicting 
two emotional states on image-induced emotional dataset from 
10 subjects. Although, the classification performance of this 
study (82.29±3.06%) on 26 subjects was clearly better than 
those of previous works, it is however too premature to 
conclude the proposed method is superior to others as a variety 
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TABLE V 
TOP-30 FEATURE SELECTION RESULTS USING ACCUMULATED F-SCORE CRITERION 

Rank Electrode pair Component Brain lobe Rank Electrode pair Component Brain lobe 

1 TP7-TP8  Gamma Temporal 16 FT7-FT8  Beta Frontal 

2 FT7-FT8  Theta Frontal 17 F3-F4  Gamma Frontal 

3 T7-T8  Delta Temporal 18 F3-F4  Delta Frontal 

4 TP7-TP8 Delta Temporal 19 TP7-TP8  Alpha Temporal 

5 F7-F8  Beta Frontal 20 FP1-FP2  Delta Frontal 

6 O1-O2  Beta Occipital 21 FP1-FP2  Gamma Frontal 

7 F7-F8  Delta Frontal 22 P3-P4  Delta Parietal 

8 T7-T8  Theta Temporal 23 O1-O2  Theta Occipital 

9 P3-P4  Theta Parietal 24 CP3-CP4  Beta Central 

10 P7-P8  Theta Parietal 25 P3-P4  Gamma Parietal 

11 FT7-FT8  Delta Frontal 26 FC3-FC4  Delta Frontal 

12 C3-C4  Delta Central 27 O1-O2  Gamma Occipital 

13 FP1-FP2  Alpha Frontal 28 CP3-CP4  Gamma Central 

14 CP3-CP4  Theta Central 29 CP3-CP4  Delta Central 

15 F7-F8  Theta Frontal 30 CP3-CP4  Alpha Central 
 
of factors might affect the classification results, including but 
not limited to experimental paradigms and conditions, stimulus 
types, and the number of induced emotions.  

 
Subject-independent Features 

This study also explored the features most relevant to 
emotional process with F-score. Table V lists the top 30 F-score 
ranked features across 26 subjects. In general, many features 
derived from the EEG sensors placed near the frontal lobe (cf. 
Fig. 4), consist with previous studies that reported the frontal 
lobe played a key role in emotional processing [32]. Sutton and 
Davidson [33] also showed that the prefrontal cortex played an 
important role in maintaining affective representations, 
supporting the alpha power asymmetry at (Fp1-Fp2) in the 
current study. The beta asymmetry at CP3-CP4 was also 
comparable with the finding that the parietal beta asymmetry at 
P3-P4 pair play a role in motivation and emotion [13]. Further, 
the involvement of the theta asymmetry at the frontal (F7-F8) 
and parietal (P3-P4 and P7-P8) sites were consistent with their 
roles in analyzing the emotional arousal during 
affective-pictures stimuli [11]. Moreover, the gamma power 
asymmetry found in the parietal (P3-P4) region was consistent 
with [11, 14] which claimed the feature served as a powerful 
tool for studying cortical activation during different level of 
emotional arousal induced by image stimuli. However, 
commonly reported alpha asymmetry at the F3-F4 pair related 
to valence emotion [7, 8] was missing from the Top-30 list. 
This study also found additional features located at other brain 
regions and frequency bands related to emotional process. As 
noted in [34], there still was other EEG spectral power in 
different bands may provide additional information about 
emotion which was not reflected in the alpha activity  (based on 
the predicted inverse relation with metabolism). Our results 
suggested that these distributed spectral asymmetries might 
provide meaningful information about emotional responses. 

With respect to music stimulation in the human brain, many 

studies primarily focused on music structures such as timber, 
mode, tempo, rhythm, pitch and melody. Analysis of the EEG 
during music perception suggested simultaneous and 
homogeneous activity in the multiple cortical regions [35]. For 
example, an enhancement of the delta band activity has been 
shown widely distributed in the brain regions while listening to 
different music pieces [36]. Accordingly, there exists a 
considerable amount of dynamic changes of EEG patterns not 
only resulted from emotional responses but also associated with 
music perception. Emotion in music, however, will be 
conveyed through the structure and rendering of the music 
itself [37]. A recent fMRI study [38] showed that the 
manipulation of two major musical structures (mode and 
tempo) resulting in the variation of emotional perception 
eliciting the engagement of the brain structures (orbitofrontal 
and cingulate cortices) that were known to intervene in emotion 
processing. Consequently, we should note that EEG power 
changes resulted from the confounding factors, such as music 
perception and emotional processing, cannot be easily 
dissociated from each other in our study. Nevertheless, both 
could contribute to characterize EEG power changes associated 
with the arousal and valence emotion dimensions with high 
classification performance. 

In addition, Bhattacharya and Petsche in a music perception 
study [36] reported that only musicians retrieved extensive 
repertoire of musical patterns from their long-term musical 
memory which was accompanied by an enhanced gamma-band 
synchrony, whereas delta-band synchrony over distributed 
cortical areas was significantly increased in non-musicians. 
The results of this study however found several 
emotion-related EEG features in the gamma band from 
non-musicians. But, the current study did not record sufficient 
EEG data from musician and thus could not compare the EEG 
dynamics during music appreciation between musicians and 
non-musicians.   
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Electrode Reduction 
It is worth noting that the top 30 subject-independent 

features might not be generally optimal for all individuals, they 
however provided some information about the common areas 
that involved in emotional processing. Further, an acceptable 
accuracy could be achieved by removing 30 (50%) of 60 
features of DASM12, greatly reducing the computational cost. 
However, the number of involved electrodes did not decrease 
appreciably (remained to be twelve electrode pairs). A closer 
look at Table V and Fig. 3 found three lightly used features: 
FC3-FC4 (Delta), P7-P8 (Theta) and C3-C4 (Delta). Excluding 
these three features would reduce the number of required 
electrodes from 24 to 18 (9 electrode pairs) at the expense of a 
slight decrease in the classification accuracy (from 
74.10±5.85% to 72.75±5.69%). 
 

VI. CONCLUSION 
This study has conducted a systematic EEG feature 

extraction and classification in order to assess the association 
between EEG dynamics and music-induced emotional states. 
The results of this study showed that DASM12, a spectral 
power asymmetry across multiple frequency bands, was a 
sensitive metric for characterizing brain dynamics in response 
to emotional states (joy, angry, sadness and pleasure). A group 
of features extracted from the frontal and parietal lobes have 
been identified to provide discriminative information 
associated with emotion processing, which were relatively 
insensitive to subject-variability. The involvement of these 
features was largely consistent with previous literature. A 
machine learning approach to classify four music-induced 
emotional states was proposed and tested in this study, which 
might provide a different viewpoint and new insights into 
music listening and emotion responses.  

The future work includes a further evaluation of the specific 
link between EEG dynamics, emotional responses and music 
structures to dissociate the brain responses to the music 
perception, music appreciation, as well as music-induced 
emotions. We expect that further understanding the different 
stages of how the brain processes music information will make 
an impact on the realization of novel EEG-inspired multimedia 
applications where the contents of multimedia will be 
meaningfully inspired by users’ feedback. 
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