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Abstract 
 
In Phase 1 of the DARPA “Neurotechnology for Intelligence Analysts” (NIA) project, our team 
composed of faculty, students, postdoctoral fellows, and technical staff from UCSD, USC, UCI, 
and Caltech, developed a prototype of a novel networked EEG response classification (NERC) 
system The system delivers bursts of overhead imagery clips at high presentation rates (rapid 
serial visual presentation, RSVP) while recording up to 256 channels of electroencephalographic 
(EEG) information from the human scalp, plus subject button presses following each image 
burst. The goal of the system is to detect, in near real time, ‘flickers of recognition’ in the 
subject’s brain wave patterns whenever the subject detects a target object (such as a plane, 
helipad, or similar) in one of the briefly displayed images. Further, the system paints the areas 
that have been searched on another monitor screen colored according to the estimated target 
presence probability based on the EEG response. An image analyst can use screen controls on 
this viewer screen to pan and/or zoom into the map, change the color mapping, etc., to evaluate 
the results of the RSVP image triage. The NERC system is implemented as a set of interlocking 
processes that can operate on any number of CPUs or computers linked by a TCPIP and UDP 
network. Unique features of the system include: (1) A novel method for constructing, selecting, 
and sequencing small image clips, given a broad-area image to be searched. (2) A novel method 
of response classification based on separation by independent component analysis (ICA) of the 
scalp data into independent brain sources, followed by separation of the time courses of activity 
of the independent source processes, both in time-domain and time/frequency-domain, again by 
ICA, followed by linear discriminant analysis for each component. Finally, the estimated 
probabilities for the independent sources are multiplied to give a single target probability 
estimate for each presented image. In its current version, the system requires less than 50 ms per 
image to compute the probability estimates (or less than 6 ms per image omitting frequency-
domain measures). This report describes results of a first metric experiment on three volunteer 
government image analysts and discusses fruitful directions for follow-on research. These 
directions include filtering of image clips and clip order to minimize visual distraction and 
attentional blink phenomena, further improvements in classification algorithms, online ICA 
training, incorporation of subject alertness and attention monitoring, incorporating subject eye 
movement information in the classifier, and delivering sensory feedback to the analyst subject to 
better maintain and improve image classification accuracy.
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Executive Summary 
 
Overview of the Team Effort. In Phase 1 of the DARPA “Neurotechnology for Intelligence 
Analysts” (NIA) project, our team composed of faculty, students, postdoctoral fellows, and 
technical staff from UCSD, UCSD, UCI, and Caltech, developed a prototype of a novel 
networked EEG response classification (NERC) system that delivers bursts of overhead imagery 
clips at high presentation rates (rapid serial visual presentation, RSVP) while recording up to 256 
channels of electroencephalographic (EEG) information from the human scalp, plus subject 
button presses, with a goal of detecting in near real time ‘flickers of recognition’ in the subject’s 
brain wave patterns whenever the subject detected a given target feature (such as a plane, 
helipad, or similar feature) in one of the briefly flashed images.  
 
Further, the system paints the areas that have been searched on another monitor screen colored 
by the probability estimated from the EEG responses that each area searched contains a target 
feature. The subject, an image analyst, can use screen controls on this results viewer screen to 
pan and/or zoom into the map, change the color mapping, etc., to evaluate the results of the 
RSVP screening. The NERC system is implemented as a set of interlocking processes that can 
operate on any number of CPUs or computers linked by a TCPIP and UDP network.  
 
Team collaborations during the Phase I research included work by team members Nuno 
Vasconcelos and Hamed Masnadi at UCSD to develop a method for classifying EEG responses 
to image clip presentations using a fast cascade architecture, work by Pierre Baldi and students at 
UCI to test applicability of conventional neural network classifiers of EEG-based classification, 
work by Einhauser-Treyer and Christof Koch of Caltech to better understand the nature of the 
attentional blink in RSVP paradigms, and work by Laurent Itti and students at USC to 
understand the relation of RSVP target detection to low-level visual surprise. This report 
describes results of a first metric experiment on three volunteer government image analysts and 
discusses fruitful directions for follow-on research.  
 
Overall Significance of Findings. Results of EEG experiments on 15 pilot subjects, including 
commercial GIS analysts, and on three volunteer government image analysts demonstrate 
conclusively that multi-dimensional information is available in the EEG allowing accurate 
discrimination of subject response to single presentations of images containing or not containing 
specified target features. This is true even at relatively high rates of image presentation (e.g., 
12/s). Novel methods are introduced for maximizing the efficiency of performing broad-area 
search while minimizing subject discomforts associated with RSVP viewing, and for distributing 
the real-time computing load among computers linked in a standard local area network. 

Adequacy / Maturity of Measurements. EEG data collection technology is fairly mature. Our 
approach incorporates active chip sensors (Biosemi, Inc). Further advances in EEG recording 
methods will come in the form of high-density dry electrode caps that do not involve the need to 
prepare the scalp or apply water-based gel. A good deal of the effort in the project went toward 
identifying informative features in the EEG signals and maturing the classifier algorithms used in 
the system. We believe that further improvement is possible. 
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Adequacy of Development Approach Used (What Would You Do Differently?) The approach 
we pursued, combining high-density EEG data collection, spatial and temporal filtering by 
independent component analysis (ICA), and multiple linear discriminant analysis applied to 
features of the independent component processes, proved to be effective for near real-time 
classification of brain responses. Our software approach, involving a modular network of 
cooperating processes, also proved to be successful, and may be flexibly extended in several 
directions. Give more time, funding, and trained personnel, we would prefer to collect and 
analyze data on a larger number of subjects in a fixed paradigm; the highly compressed time 
frame of the project did not allow for this, since each experiment needed to test some aspects of 
our development system. 

Operational Relevance and Impact. From our contacts with government overhead imagery 
analysts, both in our metric experiments and at the NIA project meetings in the Washington DC 
area, we learned that there is a need for software that aids analysts in performing careful broad-
area search for specific but varying classes of targets. We believe the heptunx path search 
technology we developed during this project could be a basis for improved operational software 
for this purpose. While our EEG results represent a leap in accuracy of classification of 
responses based on single events, we expect that the eventual best uses of EEG neurotechnology 
in the analyst workplace may be some yet untested combination of monitoring, classification and 
feedback, for analyst training, performance maintenance, and performance efficiency. 

Lessons Learned. We learned many things during the course of the project. The major lesson 
was in the value of research teamwork – without cooperative efforts from highly skilled 
participants, we would not have made the amount of progress we did make. Our work to 
optimize EEG-based target response classification taught us to respect the large amount of 
information about subject state, response, and intentions that is available in near real-time in 
scalp EEG data. This bodes well for the future of neurotechnology research and the useful 
systems that will eventually emerge from the research. 

Existing Questions Requiring Further Basic or Applied Research. Clearly, one most fruitful 
direction for further research is to better understand the information about subject responses to 
new visual information acquired not only through RSVP, but through normal 3-4/s saccades 
during visual search. Combining single-trial EEG classifiers with active eye gaze monitoring 
appears to us to be a neurotechnology research frontier. One area of applied research in this 
direction could be to assist analysts in reviewing overhead or other video intelligence. Another 
application would be toward a system that substitutes assisted visual (saccadic) search for RSVP 
search. Another important area of basic research is on the effect of ‘closing the loop’ for EEG 
classification by feeding back to the analyst subject the probability of a target response estimated 
by the EEG-based system following known targets introduced into a target search task. The 
question here is whether the analyst subject can use this feedback to learn to produce more 
distinct EEG responses that further improve the performance of the classifier in detecting target 
responses to previously unknown targets, e.g., those acquired by the analyst during broad-area 
search. The ability of subjects to make use of other forms of EEG-based feedback concerning 
their current levels of alertness and attention to the presented images also needs careful 
investigation. Might a similar feedback approach, applied to EEG responses to search saccades 
in normal visual search, teach analysts to perform more efficient visual search? The answer to 
that question may have practical importance, since training of imagery analysts is currently a 
lengthy and difficult process.
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DARPA Neurotechnology for Intelligence Analysts Program 
Phase I Analysis Report for UCSD/SoCal NIA Team 

Introduction 
The ever-increasing amount of imagery produced by today’s intelligence satellites, and the 
practical problems for intelligence agencies in training enough experienced image analysts to 
analyze the images they produce, have led to an interest in more efficient ways of reviewing 
satellite and other intelligence imagery. RSVP (Rapid Serial Visual Presentation) is a potentially 
promising approach to speeding the image review process. In particular, it may be useful for the 
broad area search task in which a low number of targets or target features are sought among large 
collections of images, or over a very wide image area that does not contain the target features of 
interest. Research has shown that human observers can recognize the "gist" of a scene very 
rapidly [2], achieving above-chance recognition of fairly abstract target categories (e.g., animal 
versus  non-animal subjects) at presentation durations as short as 20 ms [3], or when multiple 
images are presented in rapid sequence, at presentation rates up to 40 Hz [1]. Similarly, in our 
experiments, subjects were able to detect with more than 80 percent accuracy whether or not an 
image containing a target airplane was present in a 4-s burst of satellite image views presented at 
a rate of 12/s. 
 

Any system that uses RSVP to expedite image review requires a way to obtain subject 
responses to detected targets quickly and unobtrusively enough that it can accurately identify 
images containing targets in rapid RSVP sequences without distracting the operator viewing the 
image sequences. At high presentation rates, simple button presses produced by the image 
analyst (IA) upon target detections may not allow accurate enough time resolution to identify 
which images were perceived by the analyst as containing a target feature. Button pressing might 
also interfere with analyst appraisal of later images, or would interrupt the presentation of the 
image sequence. The goal of our NIA Phase I project was to build, test, and demonstrate a real-
time system detecting the brain’s ’flicker of recognition’ of target features in scalp 
electroencephalographic (EEG) signals recorded from the IA. Our goal was to build a Network 
EEG Response Classification (NERC) system to more accurately and less obtrusively classify 
presented RSVP clips as containing targets or not, without active intervention of the analyst. 
Such a system should moreover provide useful visual results to the IA in near real time. Here, we 
report on our program of Phase I research culminating in demonstration of such a system, and 
suggest the most important directions for further research and development. 

Research Methods 

Problem Statement 
Given the paradigm of a very large satellite image to be inspected in detail by an IA subject 
conducting a broad area search for a given target feature, and adequate EEG signal recording to 
determine the nature of their brain response to each image, the would-be builder of a real-time 
classification system is faced with these design questions: 

1. How to extract small image ‘clips’ from the large image?  
2. What image preprocessing steps are useful?  
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3. What image clip size, shape, and presentation rate to use to maximize system 
performance and user acceptability? 

4. What sub-image ordering and grouping strategy will feel most convenient and natural to 
the user while maintaining image classification performance?  

5. What is the nature of the neural signature(s) (the ‘flicker[s] of recognition’) associated 
with target detection in the recorded EEG signals? Which brain areas, response latencies, 
and dynamic properties are involved?  

6. How best to detect this neural signature? 
7. How best to use the EEG signature to accurately classify EEG signals in near real time? 
8. How best to present the classification results for use by the analyst subject? 
 
Our previous research on individualized models for EEG-based alertness monitoring (Makeig 
& Inlow, 1993; Makeig & Jung, 1996; Jung, Makeig, et al., 1997) strongly suggest that best 
target classification performance is possible only using individualized EEG models, 
additional questions may be answered once a classification system has been developed: 
 
9. What detection/classification factors are in common, and which differ across individuals?  
10. What neural signature differences are there between trained and untrained subjects? 
11. Can the analyst subject learn to produce more easily classifiable brain responses, and can 

the classification system adapt at the same time to changes in the analyst’ brain signals? 

1.1 Objectives Statement 
Our goal in Phase I has been to build and test a real-time image classification system that goes 
beyond simple ‘proof of concept’ toward an integrated end product. To achieve this, we had to 
tackle several engineering challenges concerning real-time image presentation, processing of the 
EEG data, image response classification, and interactive viewing of results of the classification. 

1.2 Technical Approach Statement 
Early EEG signs of visual target recognition. Human intelligence is highly adapted to visual 
search for objects or aspects of a scene whose identity or statistics match those of a sought object 
or category. The visual system is adept at fast visual association and pattern recognition through 
successive analysis in a series of visual cortical regions. Thorpe et al. (1996) have suggested that 
divergence of posterior brain evoked responses to target and non-target category images, 
beginning 130 ms after image presentation, reflects activity within feed-forward visual pathways. 
Note, though, that this result was only obtained for the average of hundreds of trials, not from the 
single-trials themselves. However, recently it has become clear that the visual system is more 
‘temporally compact’ than previously realized, with feedback from upper to lower visual areas 
(Hupe et al, 2001), as well as between primary auditory and visual areas beginning as little as 30 
ms after abrupt presentation of an image (Schroeder and Foxe., 2002). By 130 ms after visual 
stimulus onset, extensive phase reorganization of local field activity is already occurring in many 
brain areas, as shown in a face image task recorded during invasive human presurgical 
monitoring by Klopp et al. (2002). These spatially complex field potential effects may, however, 
be highly variable from trial to trial, further complicating the signal processing necessary to 
automatically recognize them. 
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Dependence on image statistics. A further difficulty of using EEG to determine whether the 
intelligence analyst has detected a target arises from the fact that the images in which this target 
is embedded may have drastic variability of appearance. For example, if the analyst were shown 
an intermixed sequence of images with two different types of texture (city and forest, desert and 
farmland, etc.), each containing an occasional target feature, it is highly likely that significant 
variations of the EEG visual response to target features will be masked by lower-level visual 
detection areas of the brain that will respond differently to the different textures. These variations 
are likely to make it more difficult to detect the signatures associated with the detection of target 
relevance by the analyst. A similar problem has recently been investigated by Johnson and 
Olshausen (2003) in a study which clearly showed that, in the context of generic object 
recognition, EEG signatures associated with the detection of targets can be easily confused with 
EEG signatures arising from low level feature variability that has no information relevant for 
recognition. 
 
Early frontolimbic responses. Another cause of image response variability is subtle changes in 
internal state of attention of the subject. The classical visual information pathway branches into 
brain arousal, evaluation, and motor systems very early. For example, changes in the firing rate 
of brainstem dopamine neurons in monkeys may begin as early at 50 ms after presentation of a 
stimulus with unexpected positive or negative reward value (Schultz, 2000). Dopaminergic 
innervation of amygdala and frontal inferior and medial cortex is believed to play an essential 
role in learning from experience, as well as in quick decision-making and ‘top-down’ responding 
to the anticipated consequences of events. This (and other neurotransmitter-labeled sensory 
arousal systems) may act prior to ‘conscious’ perception of the exact identity or category of the 
perceived object or scene. Both of the earliest aspects of the human brain response (posterior and 
frontal) to target category images appear in the EEG before the fastest manual responses. For 
example, fast finger press responses to an unexpected simple visual target stimulus in a spatial 
selective attention experiment (Makeig et al., 1999, 2004) are initiated at the mean peak latency 
of the earlier (P3f) aspect of the late positive complex, which originates in inferior frontal cortex. 
This early far-frontal response also appears in experiments not involving motor responses, in 
which it also appears to index subject detection of task relevance of visual stimuli (Potts et al., 
2004), suggesting that rather than participating directly in the production of motor responses, it 
may index limbic system activity that can override the inhibitory effect of inferior frontal cortex 
on impulsive motor responding.  
 

Our research has shown that this far-frontal P3f response preceding fast manual responses 
to visual targets is largely composed of a 1.5-cycle theta-band oscillation (Delorme and Makeig, 
in preparation). This oscillatory event in inferior frontal cortex partially precedes an ensuing, 
partially phase-coherent oscillation in or near dorsal anterior cingulate cortex, motor cingulate or 
adjacent supplementary motor cortex, and hand somatomotor cortex (Makeig et al., 2004). Such 
distributed theta synchronization events (TSEs) may organize early limbic system ‘top-down’ 
responding to the perceived affective implications of sensory events, including adjusting the 
distribution of sensory and mnemonic attention across cortical regions and reshaping motor 
planning.  

Like other EEG phenomena, event-related theta activities may also vary widely from trial 
to trial, even when the single trials share superficial attributes. For example, in a working  
memory experiment, the small mean increase in frontomedial theta activity with increased 
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memory load, replicating previously reported results, was tiny relative to the nearly 30-dB range 
of trial-to-trial variations in theta activity (Onton, Delorme and Makeig, 2005). Efficient single-
trial signal processing of both posterior and anterior EEG activity for real-time response 
classification must therefore concentrate on separating out this variability into meaningful 
processes or components, and intelligently combining the information they contribute to form an 
overall target probability estimate for each successive image in the RSVP sequence. 
 
Independent Component Analysis. Electrodes recording electrical potentials from the scalp are 
electrically far from the brain itself. This has advantages and disadvantages. The disadvantages 
are that the signals reaching the scalp electrodes are very weak (uV) after passage through the 
skull, and each represent a complex mixture of underlying brain sources, since each such source 
(one or two compact regions of cortex), by basic biophysics, projects by volume conduction to 
nearly all the scalp electrodes. The advantages of EEG recording are that together, the electrodes 
‘see’ the whole cortex, and that the mixtures of source activities are linear, allowing linear 
decomposition of the channel mixtures into underlying brain (and non-brain artifact) sources. 
The brute-force approach to solving this inverse problem (finding source activities given sensor 
activities) is technically difficult, since it requires a detailed electrical model of the head and 
skull. A more elegant and possibly more accurate approach, given the technical difficulty of 
making such models, is to separate the recorded signals into their distinct information sources. 
Since coupling between cortical areas is estimated to be, on average, a million time weaker than 
within cortical activities, islands of locally synchronous field activity can emerge and operate 
nearly independently, controlled for the most part by various neuromodulatory systems that do 
not routinely enforce phase synchrony between the activities of the various locally-synchronous 
EEG source domains.  
 

Independent Component Analysis (ICA), developed in the 1990’s by the applied 
mathematics / signal processing community, is an effective method for separating recorded 
mixtures into maximally independent source activities, as first shown by us for the case of EEG 
data (Makeig et al., 1996). ICA learns spatial filters for independent sources of information – 
temporally distinct or independent waveforms – in the recorded data. Many of these have the 
signature of activity arising in a single (or sometimes dual-symmetric) cortical patch, i.e. a near-
dipolar scalp map (Makeig et al., 2004). 

An important finding of our Phase 1 project (illustrated in a later section) is that the 
independent components of high-density EEG signals that contribute the most information about 
image response classification are the same ICA components (ICs) with dipolar scalp maps, plus 
some ICs accounting for subject eye movement artifacts – apparently, subjects’ response to 
target appearance could also be estimated, to some extent, from their pattern of eye movements 
as well as from their cortical brain activity. 

 
Our results (reported in a later section) confirm our initial hypothesis that extracting 

information about the nature of the subject response to RSVP images from independent signal 
components, instead of from the single scalp channels themselves, can give higher response 
classification performance. Therefore, the real-time response classifier uses ICA sources rather 
than raw EEG scalp channels to achieve higher performance. 
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A Networked EEG Response Classifier System 

 The Networked EEG Response Classifier (NERC) system we have developed during the 
Phase I project uses both time-domain and frequency-domain data collected from a dense array 
of EEG electrodes during analyst-initiated presentations of 4-s RSVP image bursts. The system 
software, written in Borland C++ under Windows XP, operates through a local network 
(intranet) that may include any number of computers connected by Ethernet TCPIP. The system 
classifies EEG signals for each presented image, estimating the probability that subject has 
responded to the image as including a search target feature. A movie of its operation is available 
by ftp at http://sccn.ucsd.edu/pub/nia/nis__team6_ucsd_demo.mov 
 

 
Figure 1. A snapshot from the Networked EEG Response Classifier program. 

 

Figure 1 shows a screen shot of the NERC image classification screen. On the top right, 
independent components of the recorded EEG data are scrolled, while in the lower right panel 
the normalized spectrogram or event-related spectral perturbation (ERSP; Makeig, 1994) of the 
most informative component appears. Note the large eye blink potentials captured by one of the 
independent components (upper right), and the alpha burst confined to another single component 
before the burst onset. For demonstration purposes, the red vertical lines on these panels show 
the actual locations of a target image in the 51-image RSVP test sequence (thin black vertical 
lines).  

The lower left panel reports the probability that each of the first 49 images in the burst 
contains a target. (The last two images in each burst are dummy images added to mitigate 
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confounds produced by the burst offset responses, allowing successful classification of the final 
actual burst images). In the successful burst classification shown here, only the actual target 
(lower left, vertical red line) is identified as being a probable target based on the EEG dynamic 
signature built for this subject based on earlier pilot data and used by the classifier to estimate 
target probability for each image in the burst. The upper left windows give information to the 
operator about program operation, including the number and indices of any channels whose 
signals have been lost during the session. 

The Response Classifier program (Figure 1) passes the computed target probability 
estimates (lower left) to a real-time Results Viewer (Figure 2). The Viewer visualizes the 
locations of the presented RSVP image ‘clips,’ producing a target-like brain response in near-real 
time by translucently coloring-in their locations on the large area map from which they are 
drawn. 

Software Modules. Since the implemented NERC system uses TCP/IP and UDP standards for 
data transfer over intranet, each module may run on a separate computer, or on a different CPU 
node of a multi-core processor. This leads to greater scalability and minimizes performance 
bottle-necks. The version of the NERC system demonstrated during Phase I consists of four 
modules running on three networked PC workstations: 

■ Image Presentation: One machine presents the image clips (4-second bursts of 50 
images) to the subject and handles subject interactions. To present the visual stimuli, we 
used a Stim2006 program developed in our laboratory, based on the previously developed 
Variete© scripting language1. Each presented image is assigned a unique ID number that 
travels through the system along with EEG data to assure correct assignment of 
calculated probabilities to each image. This makes the system immune to disruptions of 
image order based on fluctuating network and operating system task load. 

■ Data Acquisition: EEG data are collected via a 256-channel BIOSEMI Active2 system 
using custom data acquisition software. The EEG data are digitized at 256 Hz and 
streamed along with the image event synchronization codes from the stimulus 
presentation system to an inter-process communication buffer, part of an ADAPT© real-
time network2. The buffered data is then broadcast to the real-time Classification 
program. Simultaneously, it is recorded to a file for off-line analysis and archiving, to a 
real-time Results Viewer program, via broadcast across the local TCPIP network. 

■ Response Classification: A listening thread in the Classification program reads data 
from the data broadcast buffer as soon as it becomes available and passes it to the 
classifier routine. (Error! Reference source not found. shows a snapshot from this 
program). After calculating the probability of being a target for each image, the 
information is passed to the Viewer program, which may be running on one or more 
remote computers. 

■ Results Viewer: After receiving unique image ID numbers along with calculated 
probabilities from the Classification program through the NERC TCP/IP daemon, the 
Results Viewer program matches these ID numbers to a previously read image database 
and finds corresponding locations on the wide-area image from which the image clips 

                                                 
1 Variete© , originally developed by EEG Solutions, LLC, Andrey Vankov, principal. 
2 ADAPT© , originally developed EEG Solutions, LLC 
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have been extracted. The Results Viewer then generates a probability map using image 
clip probabilities and locations. This map is translated into a colored image and 
superimposed on the large area map using user-selected color-map and transparency 
options. The operator can move around it and its superimposed target probability map 
and has the option of zooming in or out of this image. The Results Viewer program can 
handle large images (its comfortable interactivity has been tested for images up to 4K 
pixels in each dimension), and produces high-quality anti-aliased pictures even at high 
zoom levels. Because of the overall speed of the system, subject is able to view likely 
target positions in the large area image a few seconds after the end of each presented 
RSVP burst. (Figure 2 shows a screen snapshot of the Viewer program). 

Figure 2. A snapshot of the Results Viewer program in operation. 

A video demonstrating our NERC system at work in a NIA demo experiment involving an IA 
subject is located at: ftp://sccn.ucsd.edu/pub/nia/nia__team6_ucsd_demo.mov
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1.3 Goals of the Research 
The research goals were to build, refine, and test a networked EEG response classifier (NERC) 
system that allows efficient ‘triage’ of a large portion of a broad-area satellite image as unlikely 
to contain targets, allowing the IA to concentrate their time for performing broad-area search 
only in searching the portions of the broad-area image most likely to contain a target, based on a 
rapid initial RSVP search. 

1.4 Participants 

1.4.1 Participant characteristics  

1.4.1.1 Primary focus: IA subjects (Metric experiments) 

1.4.1.1.1 demographics, years of experience in the field, subject-matter expertise 

Subject Age Gender Years of 
experience 

subject-matter 
expertise 

1 30 male NA NA 
2 33 male NA NA 

3 44 male 2 years homeland 
security 

Table 1. The three IA subjects. 

1.4.1.2 Secondary Focus:  Pilot/novice subjects 

Our pilot experiment subjects were mostly graduate students at UCSD. Later experiment mostly 
used professional GIS image analysts recruited from the community, plus one female graduate 
student who studied microscopic images in her research and exhibited very high levels of 
behavioral and EEG-based image classification in our RSVP testing. 

1.4.2 Facilities 
Our experiments were conducted in our Swartz Center EEG research laboratory located in a 
medical building La Jolla CA adjacent to the UCSD campus (http://sccn.ucsd.edu). Subjects sat 
in a standard office chair and viewed a CRT computer screen, giving a behavioral response at the 
end of each burst presentation and then prompting the program to continue to the next burst 
using a hand-held finger button. The experiments used low-level illumination in the experiment 
room, though this is unlikely to be crucial to system performance 

1.5 Experimental Design 
All our experiments consisted of two or more sessions collected on different days, the first a 
model Training session, and the second a real-time system Testing session. Our metric 
experiments on the three IA volunteers also included a Baseline task, conducted just before the 
Training session. In the Baseline task, the IA subjects were asked to go through a broad-area 
image similar to but not the same as the broad-area imagery covered in the Training and Test 
sessions. They were asked simply to report the number of target helipads located in the Baseline 
task image. The subjects seemed to perform rather quickly and inaccurately in this task, likely 
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the function of our explicit or implicit task instructions (we had misunderstood that we did not 
need to run a Baseline condition until just before the IAs arrived). Thus, our Baseline task speed 
results are likely unrepresentative. Details of the Training and Testing session protocols are 
given in the descriptions below. 

1.5.1 Task and experimental design for Training, Triage Mode, Baseline Search 

1.5.1.1 Workstation / Interface 

All components of our NERC system run on the Windows XP operating system and are written 
in C++ (Borland builder environment) to maximize execution speed. During Testing sessions, 
classifier data (ICA matrix, feature vectors, LDA classifier weights, channel locations…) are 
read from files created from EEG and behavioral data collected in a previous Training session by 
an automated Matlab script that reads the pilot session data, applies ICA, selects informative 
components, and stores all the model information used in subsequent testing sessions by the 
NERC system, with no need for manual optimization. 

1.5.1.2 Imagery  

We used a portion of one of the large images provides by NGA in Triage mode in experiment on 
IAs (file: /data/nia2/NIA_Experiments_nobmp/Helipad/06JAN05024037-P1BS-
005540078010_01_P002/ 06JAN05024037-P1BS-005540078010_01_P002_nup.tif). For non-
IAs, we mostly used (/Large Unchipped Tiff/000000059158_01_P001/02MAY02012703-
M2AS_R1C1-000000059158_01_P001.tif). We used airplane targets added to non-target image 
clips in Training sessions for IA Subjects 2 and 3. During the Training session of IA Subject 1, 
we presented actual helipad target images.  
 
Image Preprocessing: The most important consideration for RSVP image preprocessing is 
‘chipping’ or extracting from the broad-area search image the smaller image clips to be shown in 
each burst at a high presentation rate. There are three desirable criteria for selecting and ordering 
these image clips: 
 
1. Context: One of the main differences between novice and expert analysts is in their use of 

broader image context. Experts tend to better incorporate contextual information into their 
search strategies. For example, a nuclear power plant might not look very different from any 
other structure in a satellite image, but by following power lines and searching for places 
close to water an expert analyst can easily pinpoint its location. RSVP sequences that present 
image clips at random do not allow the operator to maintain their trusted sense of relative 
image location – giving the IA a rapid tour of random trees, but without allowing the analyst 
to understand which parts of the forest they come from. 
 

2. Sequence locality: Target classifiers may not be perfect. In particular, there can be an error 
in matching EEG signature of target detection to the exact position in the presented RSVP 
sequence (especially at rates as high as 12 Hz in which the interval between presenting two 
adjacent images is only 83 ms). Usually, this leads to misclassifying an image that is 
presented shortly before or after the actual target as a perceived target. If subsequent image 
clips come from uncorrelated and random locations in the larger image, a small error in 
calculating the latency of target detection event produces a large error in estimating the 
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position of the target. But if successive clips are sampled from nearby locations in the large 
image, a small error in calculated latency leads to a relatively small error in estimating the 
location of the target. For this reason, retaining locality is a desirable aspect of the image 
‘chipping’ process. 

 
3. Subject acceptability: A simple way to provide locality in the RSVP sequence is by 

scanning through the image using stripes in some fixed direction (‘mowing the lawn,’ in IA 
parlance). Although this approach is simple and efficiently preserves sequence locality, it has 
the unpleasant and unacceptable side effect of inducing motion sickness when used for high-
rate RSVP. If an RSVP-based image triage system is going to be used on a daily basis, this 
would raise insurmountable user acceptability issues and would reduce analyst behavioral 
performance as well! 

 
We have addressed these design concerns by adopting the following design principles: 
 
Principle I: Retain image context through scene warping. To include contextual information 
in our RSVP-based classification system, we developed a scene warping scheme for image 
chipping that allows continuous display of different spatial scales of a high-resolution image 
around a small ‘foveal’ search area in each image clip. 

Focus Area

Context 

 

Figure 3. An image clip from an RSVP burst showing scene warping. 
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In our system, each RSVP image clip consists of two functionally different regions (Figure 3): 
 

a.  Fovea: This area presents, in high definition, the relatively small portion of the broad-
area image to be examined for potential targets by subject.  
 
b. Contextual Surround: The area surrounding the foveal area (even encompassing the 
entire broad-area search image) is presented in ‘warped’ fashion at very low definition and 
contrast (in practice, even lower-contrast than shown in Figure 3). The subject does not and 
cannot examine this area for high-definition target features. Instead, it provides peripheral 
information about the position of the foveal image clip relative to major features of the 
broad-area image (rivers, cities, etc.).  
 

In an eventual working classification system (not yet implemented in our NERC system, 
but straightforward to implement in future), each RSVP burst would begin with the same 
broad-area image, dynamically zooming in (like current Mac and future Microsoft OS 
graphics) to the scene-warped view like that shown in Figure 3, and then zooming out to the 
broad-area image again at the end of the RSVP burst.  

 
By this means, the IA will retain knowledge of and visual contact with the wider image 

context, even during the RSVP bursts. In an advanced system, he or she might also partially 
direct the locale of each RSVP burst sequence using hand or eye movement control. This 
would have several benefits. First, the analyst might use their higher-order knowledge and 
experience to avoid searching unpromising areas. Second, the IA would retain a feeling of 
control over the search process – a feeling vital to ready acceptance of neurotechnology in 
the workplace. 

 
A further refinement would place the foveal area not at the center of the warped image 

clip, but at a location corresponding to the location of the foveal region in the broad-area 
image. This would allow the analyst to focus on the area of upcoming RSVP search while 
still viewing the native broad-scale image, without needing to make a saccade to the screen 
center. The locale of the search could even be selected to be the point-of-gaze of the analyst 
at the moment he or she presses a ‘RSVP start’ key.  

 
To avoid unintentional search area overlap or gaps in the areas searched, the actual search 

path produced by such point-of-gaze selection could be based on the underlying, and 
perfectly tiling heptunx grid. 
 
The scene-warped RSVP image clips in our system are created in three steps: 
 
1. Warp the broad-area image around a smaller image focus (for example, an area of 

600x600 pixels) centered on, or at least warped around the foveal area of interest as 
shown in Figure 4. 
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Expanded Focus 

 

Figure 4. Warping the broad-area image around a selected focus. 

2. Reduce peripheral detail by blurring and reducing contrast of the warped image 
sufficient to retain large-scale features such as roads, water, forest, etc., while reducing 
peripheral RSVP flicker and apparent peripheral movement to a minimum (see Figure 5). 

 

Figure 5. Blurring and contrast-reducing the image clip surround. 

Principle II: Adopt the natural geometry of human vision.  
The human visual field, retinal receptor distribution and oculomotor range are anisotropic, 
extending further in the horizontal than in the vertical direction. While saccades under natural 
viewing conditions preferentially follow cardinal directions, there is also a strong preference 
for horizontal eye-movements as compared to vertical ones. As a consequence, fixated 
locations are elliptically distributed, with a constant aspect ratio of about 1.6 
(horizontal/vertical) for a variety of naturalistic tasks and display sizes (Osterberg, 1935; 
Guitton, 1984; Einhauser-Treyer et al., unpublished). Hence, we hypothesize, an elliptical 

Warped Context 

Focus

Blurred and contrast-
reduced broad area 
context
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field of view may feel more natural and may be more effective for RSVP target feature 
search by human observers.  

 

Elliptic focus and grid 

 

Figure 6. Elliptic focus area. 

Based on this assumption, we use an elliptical foveal area with eccentricity of 1.6 (see Error! 
Reference source not found.). The grid of points on which the image clips are centred is also 
horizontally stretched and/or vertically squeezed to equalize overlap between adjacent elliptical 
focus areas. 
Principle III: Use a randomized, self-similar search path on a hexagonal grid. To maximize 
both image sequence locality and subject acceptability, we devised an innovative method for 
creating an RSVP image clip sequence from a broad-area image. Heptunx path search is a path-
generation algorithm implemented on a 2-D hexagonal (rather than rectangular) grid. It consists 
of hierarchical self-similar patterns that tile the grid in a non-overlapping manner. The basic idea 
behind the heptunx-based search strategy is to exhaustively search each general location while 
preventing motion sickness by minimizing movements in any one direction for more than one 
image transition.  
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Image clips 
for triage 

 

Figure 7. Level-1 heptunx pattern 

 
The basic heptunx shape (level-1 heptunx) is a hexagon with an additional node in the center (see 
Figure 7) – thus the (new) term ‘heptunx’ (after ‘quincunx’, the 5-dot pattern used on dice, from 
the Latin word for 5/12).  Image clips are created by focusing on small portions of the broad-area 
image centered on the heptunx nodes. In the heptunx RSVP search path, the 7 clips from each 
level-1 heptunx are presented consecutively in random order. Historical note: A self-similar path 
order on the multi-level heptunx grid, noted a generation ago by H. William Gosper, been called 
‘Gosper’s flowsnake’ and the multi-scale heptunx pattern it traces,  ‘Gosper’s snowflake.’ 
Gosper’s concept was to start at the largest image scale and burrow down into smaller scales 
with a self-similar path, as in Peano’s earlier space-filling path built on a Cartesian grid. To 
minimize the chance of RSVP subject vertigo, we propose, instead, a random RSVP search path 
at each heptunx scale (see below). 
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Figure 8. Level-2 heptunx pattern incorporating seven level-1 heptunx patterns 

After displaying image clips obtained for a level-1 heptunx, the search path algorithm moves to 
the super ordinate level-2 heptunx.  This scale consists of 7 level-1 heptunx patterns arranged in 
a similar hexagonal pattern with, again, a seventh level-1 node in the center (see Figure 8).  
Following the same strategy as at level-1, the algorithm chooses the order of search through its 
level-1 heptunxes at random, randomly selecting a new search path through each level-1 heptunx 
image cluster. (Optionally, these orders can be constrained to avoid continued circular motions, 
though these will be rare under true pseudo-random ordering). 

  
Figure 9. Level-3 heptunx pattern incorporating seven level-2 heptunx. 
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Figure 10. Level-4 heptunx incorporating seven level-3 heptunx. Note: The appearance of gaps 
between the level-3 heptunx patterns here is artifactual; the level-3 heptunx again evenly tile the 

hexagonal grid. 

Higher-level heptunx patterns are constructed in a similar manner (see  and Figure 10Figure 9 ). 
The multi-scale heptunx patterning can grow to any desired size to tile an arbitrarily large broad-
area image. Since the algorithm exhausts each scale before moving to the next-higher one, 
consecutive images presented during RSVP tend to come from the same neighborhood in the 
large image.  
 

The resulting heptunx search path resembles fractal trajectories observed in animal food 
foraging and mimics qualities of gaze paths used by subjects in 2-D visual search tasks, while 
maximizing the stability of REVSP image context without inducing motion sickness. The 
hierarchical heptunx structure also minimizes the number of large jumps in the search path that 
may introduce radical changes in texture (for example jumping from desert to urban areas). 
These sudden alterations can induce EEG signature of surprise. Since this signature shares 
similar features with signature of target detection, it may confuse the EEG classifier and reduce 
response classification performance. 
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Figure 11. Level-5 heptunx (incorporating seven level-4 heptunx patterns) used to create image 
clips from the background broad-area image in the IA metric experiments. 

In our metric experiment on IA subjects, we used a level-5 heptunx pattern to construct the 
image clip path through a large portion of the broad-area image (see Figure 11). This consisted 
of 75 = 16,807 foveal image clips. Each RSVP burst in these experiments represented a search 
through one 49-clip level-2 heptunx.  Thus, 73 = 343 RSVP bursts were required to search 
through the level-5 search area.  
 
More complex heptunx search paths can also be generated. For example, one can define a 
similarity measure between different image clips (for example, based of likeness between their 
brightness or texture) and solve the ‘traveling salesman’ problem to find a hierarchic heptunx 
search path that maximizes the sum of this measure at a desired heptunx level. In certain 
circumstances, this could produce search paths that are ‘easier on the eye’ (i.e., having fewer 
sudden brightness or texture changes). 
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Water

Heptunx path 
 

Figure 12. Combining heptunx path and image segmentation. 

Another improvement we have experimented with is to combine building of the heptunx-based 
search path with image segmentation. There may be areas within the broad-area image that are 
unlikely to contain the specified target. For example, an active military tank should not appear in 
a lake. These areas can be segmented out using relatively simple image processing operations. 
Figure 12 shows such an example. We did not apply image segmentation to images used in our 
metric experiments because of the short amount of time available for image preprocessing. 
However, we recommend that this option be more fully explored in future research, as detailed 
below. 
 
Image surprise. Identifying un-surprising (i.e. ‘boringly similar’) regions of a large image can 
be used to prune the number of locations to be searched. To this end, we (Itti and colleagues, 
USC) developed a tool that allows one to identify the more interesting or surprising regions in a 
large image, and to generate a path through these regions that optimizes the traveling salesman 
problem (i.e., to minimize the total distance along the path while visiting each surprising location 
once). The rationale for attempting to find the shortest route is to minimize any feeling of spatial 
disorientation or vertigo the analyst may experience while viewing the resulting RSVP sequence. 
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In practice, however, the image clips useful for high-rate RSVP proved to be small and disjoint 
enough that this technique did not exhibit a definitive advantage in preliminary testing.  

In addition to looking for visually surprising scene elements, therefore, we have also 
developed a technique by which the system can be “biased top-down” to more predominantly 
attend to locations that resemble visual features of interest (Figure 13)  
 

 

Figure 13. Computing a surprise map (grayscale images in middle column) from a satellite image 
(green, left) and using it to automatically extract ‘interesting’ image clips (right). The system can 
either operate in a default mode (Extract all clips containing anything visually surprising, top) or 
in a biased mode (Find surprising clips emphasizing round buildings, bottom). 

Mitigating misses by regulating surprise detection. We hypothesized that surprising events 
occurring during the presentation of an RSVP sequence, such as for example abrupt changes in 
overall luminance across successive clips, or the appearance of a rare color, may parasitically 
capture the attention of the viewer, thereby effectively reducing the attentional resources 
available to process this and subsequent frames. In effect, hence, low-level visually surprising 
events may mask subsequent targets, an effect similar to that known in the psychophysics 
literature as the “attentional blink”. RSVP sequences of overhead imagery clips, however, are 
very different from computer-generated laboratory stimuli typically used for psychophysical 
testing. Hence, it was unclear whether an attentional blink effect would be observed with our 
more realistic and specific stimuli. 
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We therefore designed an experiment to address the question of which stages in the visual 

processing hierarchy limit performance in an RSVP target detection task – early attentional 
selection, later object recognition, the decision process itself, random fluctuations in alertness, or 
other factors. To investigate the relative contributions of attention, recognition, and other 
processes, eight human observers performed an animal detection task in sequences of natural 
images presented at 20 Hz (see Figure 14). Observers were highly consistent, with the number of 
the target images that were detected by all the observers being 15 times higher than expected if 
observer errors had been independent. This is compatible with operator performance in any trial 
depending primarily on visual processing, including attentional selection and recognition, rather 
than on other, more idiosyncratic, factors. Two statistical properties were found to significantly 
predict performance on individual sequences: contrast-variation within the target image and an 
information-theoretic measure of “surprise” in the adjacent images in the sequence.  

 
In a second experiment, we re-ordered the sequences of images that all subjects had 

correctly recognized so as to elicit increased “surprise” before and/or after the target. Whereas a 
new set of observers still readily detected the targets in the original sequences, surprise 
enhancement causally impaired target detection significantly across all observers (see Figure 15). 
Hence, visually “surprising” events efficiently mask adjacent items in the RSVP sequence, 
even when the target images themselves remain unchanged. Consequently, and contrary to 
several previously published findings, our results demonstrate that attentional limitations, rather 
than target recognition alone, affect the detection of targets in rapidly presented visual streams, a 
result we believe is fundamental to the use and design of RSVP sequences for target response 
recognition. 
 

 

Figure 14. Example sequence. Observer starts a trial by a key press. In target-present 
sequences, the target (animal) can occur between the 6th and 15th frame, i.e., between 250 
ms and 850 ms after trial onset. 
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Figure 15. “Easy” sequences (in which all 8 observers correctly detected the target) differ 
from “hard” sequences (in which none of the observers detected the target): (A) in the 
contrast-variation in the target-frame, (B) in the degree of visual surprise in the frame 
preceding or (C) succeeding the target frame, but not (D) in the degree of visual surprise of 
the target frame itself. All panels depict mean ± s.e.m. across sequences for the 29 hard 
(left, black bar) and the 122 easy (right, gray bar) sequences. Significance markers refer to 
results of t-tests (*p<0.05, **p<0.01, ***p<0.001). 

 
This is a very important finding for projects using RSVP detection, as it shows that observers 

are essentially “blind” for a brief period of time following a visually surprising event. There are 
several things that can be done to mitigate this problem: (1) re-order the RSVP sequences so as 
to minimize visual surprise events arising from abrupt changes in luminance, color, contrast, etc.; 
(2) recycle images that appear just after a visual surprise, showing them again in another RSVP 
sequence; (3) attempt to alter the images so as to preserve their semantic content as much as 
possible and still allow target recognition, while controlling their visual surprise. Prospects for 
controlling the amount of visual surprise produced by a dynamic visual display is further 
discussed below. 
 
Principle IV: Filter the appearance of image clips using surprise modulation. Modifying 
image sequences to reduce the number and strength of parasitic visual surprise events is a 
complicated endeavor, but we have made significant progress in approaching it. We have 
developed a system that can detect, in a given RSVP or movie sequence, when a low-level 
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surprise event will occur, find the main reason for this surprise (e.g., an abrupt color change or a 
sudden upwards movement), and apply various filtering to attempt to reduce the degree of visual 
surprise (see  
 
 

 

 

 

 

 

 

 

 

Figure 16 and Figure 17) This work is ongoing. It is not possible to invert our surprise model in 
closed form, so one has to use a number of heuristics and numerical techniques. Yet, it shows 
great promise, at least in visual inspection that this stage, where movie sequences which may 
previously have felt flashy, choppy, and overall annoying or tiring to watch tend to flow more 
smoothly once controlled for degree of visual surprise. A paper is currently under preparation. 
Further research is necessary in this part of the effort, though.  
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Figure 16. Architecture of the surprise control system. Surprising events are detected in an RSVP 
or video sequence (here demonstrated by a movie clip rather than an RSVP stream), and the 
surprise model is “inverted” to yield image filters that reduce visual surprise while preserving 
overall intelligibility. 

 

 

Figure 17. Comparison between an original image clip from an RSVP sequence (left) and its 
surprise-controlled version (right). Note how some contrasts and long contours or bright buildings 
have been significantly attenuated so as to provide a better “blending in” of this image with the 
previous and subsequent ones in the RSVP sequence. Yet, intelligibility (i.e., ability to recognize 
objects in the scene) is little affected. 

The Attentional Blink. Several attentional limitations can limit RSVP detection performance –
Repetition blindness (Kanwisher, 1987), the inability to detect a second of two identical items in 
direct succession, and the Attentional Blink (AB; Raymond, Shapiro, & Arnell, 1992), the 
impaired ability to recognize a second target image following closely, but not instantly, another 
target image. Unlike repetition blindness, the AB targets do not need to be identical; they merely 
need to be defined as targets distinct from the distractors (for details on dissociating repetition 
blindness from the AB, see Chun, 1997). For NIA RSVP application, repetition blindness does 
not present a major issue, as long as the presentation strategy preserves some topology of the 
search array, as it is the case in the heptunx path scheme: targets potentially missed in RSVP will 
be those that appear closely following a detected target in the RSVP sequence.  
 
Experimental study. As most studies on the AB had either used artificial stimuli or had focused 
on superficial detection rather than detailed (exemplar) recognition (Evans & Treisman, 2005), 
we performed a pilot experiment using complex target items (watches, faces) embedded in 
visually similarly complex distractors. In this setting, we found a consistent AB, whose length 
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and duration depended on stimulus category (Einhuser, Koch & Makeig, 2007, see attached). 
Significant impairment of target recognition can last over half a second after a first target.  
 

If target density is high (or targets are clustered in few regions) and the RSVP 
presentation scheme does not take the potential effect of the AB into account, a substantial 
number of targets could be missed. As the AB is category dependent, there is only limited 
possibility to predict which frames could be subject to the blink. Only by using an integrated 
system of hierarchically organized search patterns (as in heptunx search), combined with 
manipulation of visual surprise (such as described above) can the effects of the AB on real-time 
target classification and interactive viewing be minimized. 

1.5.1.2.1 Presentation parameters 

After trying different RSVP rates in a behavioral paradigm (Einhauser-Treyer et al., 2007), we 
decided to use 12 Hz as the RSVP presentation rate for the metric experiments. Each 4-s burst of 
51 images contained 49 images forming a level-2 heptunx pattern, plus 2 ‘dummy’ images and 
the end of the burst, ignored by the classification system, to prevent trailing burst edge effects.  
 
Since the first 49 images from every burst formed a level-2 heptunx (located in a compact 
section of the broad-area image), all large jumps between distant areas of the broad-area image 
occur between bursts. This greatly reduces sudden changes in presented RSVP image sequences, 
increasing subject convenience and preventing the potential negative effects of such scene 
alterations. 
 
Principle V: Minimize appearance of successive targets. In our pilot experiments each burst 
could contain up to only one target. Targets were also restricted from being in the first or last 500 
ms of each burst. This was to prevent burst edge EEG signature to influence the classifier. As our 
classifier improved, we relaxed these restrictions and allowed for multiple targets to appear in 
each burst at any latency. 

1.5.1.3 Sensor Setup  

Our demonstration NERC system uses a BIOSEMI ActiView-2 system with 256 channels, 
mounted in a whole-head elastic electrode cap (E-Cap, Inc) with a near-uniform custom montage 
across the scalp, neck, and bony parts of the upper face. As explained below, our real-time 
classifier system does not use data from more than 128 of the electrodes. The remainder of the 
data are stored for later review and numerical experiment. The Biosemi recording system has the 
advantage of high density, high resolution (synchronous 24-bit A/Ds), and active-electrode chip 
technology that reduces artifacts from moving electrode cables. Computer data acquisition is 
performed via USB using a customized acquisition driver. 

1.5.1.4 Recording Parameters 

Data is collected and recorded to file from all 256 electrodes at 256 Hz sampling rate. Currently 
we use approximately half of these electrode sites (about 128 channels) for real-time analysis and 
classification. This is, in part, because classification is performed on ICA component activations 
and the length of recorded Training session data (~1 hour) places a limit on the number of these 
components that can be learned accurately from the data using present algorithms.  
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Are so many channels necessary for good NERC system performance? We would 
‘guestimate’ that an ICA-based NERC system using as few as 32 channels could be effective, as 
well as possibly being cheaper to build, wear, and maintain – at the cost of spatiotemporal 
resolution and, hence, some degree of classification accuracy. Such trade-offs could be studied in 
future using offline re-analysis of existing high-density data sets. 

1.5.1.5 Data Handling Procedures 

In our NERC system, EEG preprocessing consists of the following steps: 
Channel re-referencing. We re-reference the active-reference Biosemi EEG data to one 
electrode for noise reduction (a claimed SNR increase of 40 dB for the Biosemi system). 
 
Frequency-band filtering. We perform three types of frequency-domain filtering on the EEG 
data: (1) IIR High-pass filtering (using a Butterworth filter of order 2) at 2 Hz to remove low 
frequency trends. (2) IIR Low-pass (Butterworth of order 3) at 50 Hz to remove high frequency 
noise. (3) IIR Band-reject (Butterworth of order 3) between 40 Hz and 80 Hz to minimize 60-Hz 
line noise. Infinite impulse-response (IIR) filters with some desired frequency response are 
usually much shorter than finite impulse-response (FIR) filters with the same frequency 
response. In addition to reducing computation time, this eliminates the need to place incoming 
data in a long buffer (0.5 to 1 seconds) before it can be filtered by FIR filter, minimizing the 
delay in classification caused by filtering alone. However, the use of IIR filters has two potential 
drawbacks: nonlinearity in phase response and possible stability issues. Using low IIR filter 
orders (2 or 3) we can avoid the stability problem, even in the presence of occasional high-
amplitude muscle or movement artifacts. To avoid performance loss in the classifier from phase 
distortions, the same IIR filters are implemented in our offline Matlab routines for individual 
subject classifier training from Training session data. 
 
Channel selection. Next, the system selects and retains only those channels selected for ICA 
decomposition in the signal model learned from the Training data for this subject. These 
typically amount to about half of the recorded 256 channels. 

Bad-channel detection and compensation.  
An operational real-time system must offer some degree of error tolerance to guarantee its 
sustained operation. For an EEG-based classification system, the chief cause of problems may be 
inconsistency of the EEG acquisition. The 256-channel BIOSEMI system we are using is, in our 
experience, quite reliable compared to standard EEG recording systems. However, there are 
regularly some electrodes, among this large number, that lose connectivity during the course of 
the experiment, possibly from subject movements or insecure contact with the scalp. An 
important practical problem for an EEG-based classifier is that a target-response signature 
learned from an earlier training session cannot be directly applied in the testing session that 
records data from a somewhat different subset of ‘good’ electrode channels. 
 To deal with this problem, the NERC system detects electrodes whose signals become 
‘bad’ (i.e., unreliable), and replaces their activities with interpolated signals based on the 
previously-learned ICA sources for the subject. Thorough offline testing has indicated that the 
system can maintain accurate response classification even when the ten most informative 
electrode signals become completely disconnected during the testing session.   
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When a channel becomes disconnected, its activity shows little correlation with signals 
from nearby electrodes. The real-time bad-channel detection routine therefore calculates the 
correlation between each channel and nearby channels every 0.5 seconds. If the maximum of 
absolute correlation between each channel signal and the signals of the other channels within a 5-
cm radius drops below a threshold, it is flagged as a ‘bad’ channel. Once a channel is flagged as 
’bad’, the interpolation mechanism replaces its activity with interpolated activity based on the 
continuously computed ICA component activations. (Absolute correlation is used here as a 
computationally practicable estimate of mutual information between channels).  

Some channel signals may continuously alternate between ‘good’ and ‘bad’ states. As the 
bad-channel detection routine checks channels only every 0.5 seconds (to conserve CPU usage), 
this alternating behavior could result in inclusion of noisy channel activity between bad-channel 
checks. To solve this problem we introduced 7-s hysteresis delay in clearing ‘bad channel’ flags. 
This means that a ‘bad channel’ state is only revoked for a data channel when the detection 
routine finds that the electrode activity has remained acceptable for at least 7 seconds. Once a 
channel signal is flagged as ‘bad’, the interpolation mechanism replaces its activity with 
interpolated activity based on the stored ICA decomposition for this subject. The algorithm is 
summarized in the following steps: 

1. Eliminate the rows of the mixing matrix associated with noisy channels. This mixing matrix 
is computed from a previous recording (the training session). The new mixing matrix is 
referred to as the truncated mixing matrix. 

  M trunc = M train; M trunc (noisy,:) = []

2. Compute the noise regularized pseudo-inverse of the truncated mixing matrix to obtain a 
truncated unmixing matrix. 

 U trunc = M trunc
+

3. Obtain a new set of activation functions using the truncated unmixing matrix and the new data 
(testing session). 

 Atrunc = U truncDtest

4. Compute a virtual data matrix by multiplying the original mixing matrix and the new set of 
component activation functions. 

 Dvirtual = M trainAtrunc

5. Replace the noisy channels with the corresponding rows of the virtual data matrix. 
 Ddenoised (noisy,:) = Dvirtual (noisy,:)

In our testing, we found this algorithm to give better classification performance than channel 
replacement using interpolation based on nearest-neighbors channels or spherical splines.  
Importantly, our method can be successfully applied in cases even when a local group of 
channels covering a large area become noisy, since the projections of independent components to 
the scalp surface via volume conduction are typically quite broad. 

 
Independent component decomposition. Next, our NERC system performs extended infomax 
ICA unmixing of the selected channel subset using the stored ICA unmixing matrix learned from 
the Training session data for this subject by an automated subject model training Matlab script. 
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The results are time series of activity for each of the retained independent component sources to 
be used in the classification algorithm. Essentially, multiplication of the data with the ICA 
unmixing matrix performs spatial filtering on the data, filtering for the activities of cortical or 
other EEG sources that are mixed together in the scalp channel data. 

Analysis Methods 

1.6 Signal properties 

1.6.1 Time, Frequency, Space 

 
The neurophysiological relevance of our ICA approach. When building an EEG-based 
classifier, one can adopt a ‘black box’ approach, directly using the electric potential signals 
measured on the scalp, e.g., to try to predict whether an analyst has seen a target or not. Indeed, 
as demonstrated by many groups, the EEG features obtained at the scalp level have 
discriminative information usable for classification. However, this black box approach ignores 
the fact that the signals measured by the EEG electrode array are mixtures of many underlying 
source signals located in many different brain regions. Thus, although measurements have 
information from many brain regions, the local dynamics cannot be used separately for 
classification since the signals are linearly mixed.  By contrast, we first use blind source 
separation in the form of ICA to extract the underlying source signals, and treat these separately 
to extract their source-specific informative features. Each independent source signal reflects the 
coherent activity of a local area of neuropile oscillating collectively.  Thus, our ICA source 
activity approach (first discussed in Delorme and Makeig, 2000; see also Delorme and Makeig, 
2003) represents a clear departure from most approaches used for brain computer interfaces and 
other neurotechnologies that ignore the underlying neurophysiology and work directly with the 
sensor-level signals.   

 
To extract information from the independent component (IC) time courses, after 

decomposing the data with infomax ICA, we cut each IC activity time-course into overlapping 
800 ms time windows time-locked to each image and perform a ’second-level’ ICA on the event-
related epochs for each IC to learn a basis of features for its dynamics both in the time domain, 
or applied to the normalized spectrograms of the event-related epochs, in the time-frequency 
domain. A key finding here is that the sensor maps of the independent components with the 
most informative features are highly dipolar.   

 
There is no a priori reason why ICA should learn such dipolar maps, which are clearly 

compatible with their neurophysiologically plausible generation by neural activity within a focal 
brain region, or within bilaterally symmetric focal regions.  Moreover, there is no a priori reason 
why the components with the most informative features for target response classification should 
be dipolar. Thus, the fact that this happens strongly suggests that our classifier is using signals 
that directly reflect the dynamics of functionally distinct cortical networks. In Figure 18 (below) 
the scalp maps of the most informative components of a recording of one of our 3 image analysts 
are shown.  Notice how they have dipolar (e.g., simple, smoothly projecting) scalp maps. Many 
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of them are consistent with the forward fields that would be expected from focal sources in 
frontal, parietal, occipital and temporal regions.   
 

 

 

Figure 18. Scalp map of most 
informative ICA components for 
IA Subject 3. 

In Figure 19 (below), we 
localize these components using 
a single dipole source model 
and a standardized BEM 
forward model. Although, more 
accurate and specific 
localization results could be 
obtained using more 
sophisticated inverse and 
forward head models, these 
preliminary results clearly 
suggest that the informative 
independent components are 

associated with sources located in brain regions that have been implicated in target detection. 
 

Figure 19. Locations of equivalent 
dipoles for the most informative ICs for 
Subject 3 (Figure 18) indicating the 
regional origins of the component 
generators. 

 
The scalp maps of the most 
informative ICs for IA Subject 2 share 
the same ‘dipolarity’ property (Figure 
19 and Figure 20). 
 
Figure 20. Posterior bilaterally-
symmetric equivalent dipole models for 
IC9 and IC9, also among the most 

informative ICs for IA Subject 3 (see Figure 18). 
Information concerning image classification appears at a 
wide range of latencies in the component activities. Figure 
21 (below) shows the time course of mutual information 
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(MI) between the activity value of the informative ICs for Subject 3 (Figure 18) and target 
classification. IC14 (magenta) shows a small peak in MI after 150 ms, while major increases in 
MI appear centered near 350 ms after target onset and then at 550 ms.  
 

The time courses of time-domain MI between the activities of the most informative ICs 
for IA Subject 2 and target identity (Figure 23) show the same trends. Note the uniformly low 
amount of MI in the first 100 ms following target presentation, the early peak (after 190 ms) in 

two lateral posterior components (IC47, 
IC107) and the two peaks near 250 and 550 
ms after target presentation.  
 
Figure 21. Time course of mutual information 
between the activity time courses of the most 
informative ICs for IA Subject 3 (see Figure 18) 
and target identity. 
 
Note also the apparent homologies in scalp 
map and most-informative MI time courses 
between, respectively, IC14, IC8, and IC9 for 
IA Subject S3, and IC107, IC39, and IC16 
for IA Subject 2. To statistically test the 
generality of this and other component 
homologies, it will be necessary to run 

training and testing sessions on a much larger group of subjects (20 or more). Such an 
experiment could determine the set of brain areas whose different EEG signatures reliably 
contribute to target response classification. 

 
Figure 22. Scalp maps of the most 
informative ICs for IA Subject 2. 
 
In addition to the ‘dipolarity’ of the 
most informative independent 
component scalp maps, the time and 
time-frequency dynamics of these 
components also suggest that the 
ICA-based classifier is using 
physiologically meaningful 
features. For example, the activities 
of the most informative components 
have time-courses and spectral 
characteristics consistent with brain 
rhythms in the theta, alpha, and beta 
frequency bands well known to be 
modulated by sensory inputs. The 
mean event-related time-courses (or 
component ERPs) of the most 

informative components show a clear residual oscillation at alpha for both target and non-target 
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responses, but show a superposed theta wave only in response to target stimuli (Figure 24). Mean 
theta band (4-8 Hz) power is also higher 
following targets, as shown by the difference 
of amplitude time-frequency image (not 
shown). Both of these results are consistent 
with the EEG and MEG literature implicating 
P300-like waveforms and transient theta 
responses as the neural correlate of target 
detection (Makeig et al., 2004a). Moreover, 
the learned time and time-frequency 
templates that are most informative also have 
P300-like waveforms and transient theta 
increases in power near 300 ms (see Figure 
24).  
 
Figure 23. Time course of mutual information 

between the activity time courses of the most informative ICs for IA Subject 3 (see Figure 18) and 
target identity. 
 
The P300 peak and theta-like waveforms of the ERP are usually obtained by averaging the single 
trials time-locked to an anticipated but infrequent stimulus (Sutton et. al., 1965; Soltani and 
Knight, 2001).  However, the P300 peak has variable latency. For example, for simple stimuli 
this peak may be around 300 ms post-stimulus, but for more complex stimuli the peak latency is 
longer. Although peaks in the ERP have been treated traditionally as reflecting the activity of a 
single “P300” source, there is a evidence that multiple source dynamics located in different brain 
regions throughout the frontal, parietal, occipital and temporal lobes contribute to these large 
amplitude theta waveforms, which in single trials may take the form of one- to two-cycle bursts 
(Makeig et. al., 2004b).  In the context of RSVP target-specific responses, these waveforms are 
expected since targets are infrequent events with direct relevance to the analyst’s task. However, 
theta waves have also been implicated in many other related processes, such as attention, 
working memory, and error recognition (e.g., underlying the well-known Error-Related 
Negativity), (Ramirez et. al., 2005; Onton et. al., 2005; Luu et. al., 2004). These processes all 
share the common property of top-down influences in relevant stimulus appraisal, which is 
usually associated with activity in the limbic system and associated cortical areas. 
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Figure 24. The time courses of activity of IC14 for IA Subject 3 following non-target images (left) 
and target images (right). The event-related averages (component ERPs) are shown below the 
color-coded single trials, smoothed vertically. Note the large difference in the vertical ERP scales, 
the absence of a non-target response in the time domain for this component process, and its clear 
target response (right) resembling (in the stimulus-locked average) a one-cycle 5-Hz theta 
oscillation. 
 

1.7 Classification strategy 

1.7.1 Rationale 
As explained earlier, our classification approach is based on the well-founded assumption that 
there are numerous cortical areas that exhibit differential dynamics in response to perceived 
target versus non-target images, and that the information these areas contribute to the EEG scalp 
signals are largely independent of one another. Systematically applying this assumption has 
produced steady improvement in our EEG-based classification results across the course of our 
Phase 1 work. Thus, there is no single ‘flicker of recognition’ in the EEG indexing the 
recognition by the subject that an image contains a target feature. Rather, there are a large 
number of quasi-independent features of the activities of a number of cortical EEG sources that 
contribute to the response difference. As nothing contributing to the classification occurs on the 
scalp itself, we use an information-based spatial filtering approach (ICA) to separately monitor 
the major sources of the scalp EEG, combining time-domain and frequency-domain features of 
their activities into an optimal target probability estimate. 

1.7.2 Implementation 
To classify targets vs. non-target image clips, we used two Fisher linear classifiers: one acts on 
time domain features of ICA components and the other on their frequency domain features. 
Posterior probabilities from these two are combined using Bayesian fusion (multiplied together) 
to form the final calculated probability. 
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Figure 25. Diagram of the Networked EEG Response Classification (NERC) system. 

 
After each 4 s burst, subject is asked to report an estimate of number of detected targets in the 
burst by choosing by button press between three options: 

• No target 
• One target 
• More than one target 

To incorporate this information into final calculated probabilities, we normalize the probabilities 
of each burst obtained from Bayesian fusion to sum to the reported number of detected targets. In 
particular, targets tended to appear in larger clusters in the heptunx presentation order in the IA 
subject metric experiments. This additional normalizing step appears to increase classification 
performance by compensating for some source of error likely to include response changes linked 
to the attentional blink (discussed earlier).  If the subject reports detecting more than one target, 
in pilot experiments with randomized presentation order, we have normalized the summed 
probability as assuming two targets, while in experiments using the heptunx path search, we 
normalized to 4 targets per burst. An advantage of this approach is that it reduces the false 
positive rate.  

 
In bursts in which subject reported detecting no target, the system reports zeros for final 

probabilities – based on the assumption that we are not able to detect ‘unconscious’ target 
detection events. This would occur when a number of brain regions correctly respond to a target 
as such, but for some reason the subject fails to respond. Our pilot data explorations indicated we 
could not detect such events in single trials with high confidence, and estimating target 
probabilities for bursts with a subject ‘no-targets’ response lead to unacceptably large number of 
false positives. 
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Our classifier gives lower classification performance on the two images presented at the 

end of the RSVP burst. This is mainly due to the similarity of EEG target-response signature and 
the novelty-response introduced by the visual surprise of changing from the steady RSVP display 
sequence to a blank screen. To avoid this problem, we pad the image sequence by repeating two 
random images from the beginning and middle of the sequence at the end of each burst. For 
example in a sequence of 49 images, we may repeat images number 10 and 20 after image 49 
and display total of 51 images. These two dummy images are then ignored during classification 
to achieve a near-uniform performance across the 49 burst images. 
 
Response feature computation. Target detection is by definition a rare event. This results in 
small numbers of positive examples (compared to many non-target events) for training an EEG-
based classifier. To prevent over-training and improve cross-session performance, the 
dimensionality of feature space must be massively reduced. We have devised a new method for 
feature construction that prevents over-training by completely avoiding the use of labels in 
feature construction. Labels are only used in feature selection and training the fisher discriminant 
classifier. 

Our approach is based on performing two levels of ICA decomposition. At first, ICA 
separates EEG sensor data into several independent components (brain and artifact sources). 
Then the second level ICA is performed on the activity (time-domain or frequency domain) of 
each component, generating 50 templates for each brain source corresponding to different 
'modes' of its activity. These features form a natural spatiotemporal decomposition of the EEG 
signal with low interdependency. This makes them ideal candidates for features used in an EEG 
classifier. After observing that a number of these dimensions contained robust information about 
target responding, we decided to use these informative features as input to our Fisher 
discriminant linear classifier. For time-domain features we used columns of transpose of the 
mixing matrix associated with second level ICA as match filters (Figure 27). For frequency 
domain features, we used frequency-domain independent features (IFs) learned by second-level 
ICA in the classifier (Figure 28).  
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Figure 26. Constructing time-domain features from the activities (or ‘activations’) of independent 
component processes. 
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Figure 27. Time-domain dynamics of IC9 from IA Subject 3: (Top) 
Average component activation following targets and non-targets. 
(Bottom) Time-domain matched filter for this IC created by a learned 
linear combination of time-domain informative features.  
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Figure 28. Time-frequency dynamics of IC9 from IA Subject 3: (Top) 
amplitude difference between targets and non-targets. (Bottom) 
Frequency-domain matched filter created by a learned linear 
combination of informative frequency-domain features. Note the 
prominent increase at 5 Hz, 300 ms (compare Figure 27). 
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1.7.3 Robustness across sessions, subjects, and sensor numbers 

From the beginning of our classification efforts, we decided to separate subject behavioral 
performance and machine classification. To do so, the classifier was only trained on RSVP bursts 
in which subject had correctly identified the presence or number of targets. To test the trained 
classifier in ‘offline’ mode (post hoc in Matlab and not in the real-time system), we also used 
bursts containing detected targets. Only in ‘on-line’ or real-time mode did we use all bursts. Our 
results show that including bursts containing no targets does not meaningfully change the 
classifier performance. This is mainly because our experiments usually have presented a large 
number of images in target-bearing bursts (more than 10,000 of the image clips per experiment). 
Therefore, adding more non-targets would only lengthen the execution time for the training and 
testing procedures. Excluding bursts followed by an incorrect behavioral response kept 
behavioral errors arising from operator inattention, drowsiness, or distraction from adversely 
affecting classifier training. 

 
We started by testing a non-linear RVM (Relevance Vector Machine) classifier on 

frequency-domain features (2nd-level ICA activations). A cross-session area under the ROC 
(Receiver Operating Characteristic) curve of 0.77 (by two-fold validation) was achieved on data 
with presentation rate of 60 Hz (using behaviorally correct trials only). To improve behavioral 
performance and image classification, we reduced presentation rate to 20 Hz. Hundred-fold 
validation using an RVM classifier applied to frequency-domain features gave a 0.76 area under 
the ROC value, still not satisfactory. By lowering the RSVP rate to 5 Hz and modifying some 
classifier parameters, we achieved an AUROC (area under the ROC curve) of 0.93 by 100-fold 
validation. Table 2 shows result for a GIS-analyst subject classifier by RVM and by a linear 
classifier on data from a still later experiment using a 12-Hz RSVP rate. 
 
 Area under the ROC curve using a linear classifier Area under the ROC curve using RVM

Features EEG 
Channels 

ICA 
Components 

Features  EEG 
Channels 

ICA 
Components 

Time-window (10-
ms average)  

0.89  0.92 Time window 
(10-ms average) 

0.92±0.05 0.93±0.03 

Frequency domain 0.77 0.85 Frequency 
domain 

0.76±0.04 0.86±0.04 

Time-domain  + 
Frequency- domain 

0.90 0.94 

 

Time + Frequency 
domain 

0.92±0.04 0.95±0.02 

 Table 2 . Ten-fold validation results for a GIS analyst subject using a 12-Hz presentation rate. 

The second classification method we tried was a linear classifier on time-window mean 
features. To construct these features, the algorithm examined all 10-ms time windows from 0 ms 
to 800 ms (205 time points at the 256-Hz EEG sampling rate) following image presentations. 
The average ICA activation within each 10-ms window was then calculated and the window that 
was most informative (e.g., had the highest AUROC value) was chosen for each component. 
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Although a relatively good in-session classification could be achieved by this method (AUROC 
by 10-fold validation, ~0.92) the cross-session classification performance dropped considerably 
(to ~0.87). 
  
 To improve classifier performance using time domain features, we performed a 2nd-level 
ICA on the activations of each (1st-level) ICA component. In this method we concatenated the 
component activations from 0 ms to 800 ms following image presentation, then performed a 
PCA decomposition to reduce the dimensions of the activation matrix to its largest 50 principal 
components. Finally we performed an ICA decomposition (by extended infomax) on this 
principal subspace, returning 50 maximally independent components. The inner product between 
columns of the mixing matrix from this (2nd-level) ICA decomposition and component activation 
were used as our classifier features (see Figure 2). 

Informative features 
used in the classifier 

 

Figure 29. Most informative features are chosen for use in the linear classifier. 

This method creates 50 features per (1st-level) ICA component. To choose the most informative 
subset of these features, we calculated the AUROC for each of these features separately and 
selected the most informative (~100) features from all components as input to a Fisher 
discriminant classifier (see Figure 29). 
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Classification performance was further improved by combining these time-domain 
features with the learned frequency-domain features. Comparing RVM and linear classifiers in 
Table 3, we see that the linear classifier performed better that RVM in this case. Training the 
linear classifier is also much faster than training the non-linear RVM. From this point on, we 
therefore decided to use a linear model for classification instead of RVM. 
 

Subject 
Train Test 

experiment experiment Feature type Area under ROC (%) Notes 

10 19 23 time domain 94 - 

10 23 19 time domain 96 Using ICA and time-domain features of exp19 
After ignoring the last burst image and 
normalization with subject response  10 23 24 time domain 91 

After ignoring the last burst image and 
normalization with subject response  10 23 24 frequency domain 84 

time + freq. 
domain 

After ignoring the last burst image and 
normalization with subject response  10 23 24 94 

9 18 21 time domain 93 - 

9 21 18 time domain 92 Using ICA and time-domain features of exp18 

Table 3. Linear classifier results, excluding behavioral errors. 

 
As shown in Table 3, our linear classifier proved to give robust cross-session classification. 
 

Figure 30. Scatter plot of probabilities calculated from time domain and 
frequency domain features (Red = targets, Blue = non-targets). 

 
Time-domain features are sensitive to phase-locked EEG responses, while frequency-domain 
(spectral amplitude) features capture event-related modulations in amplitude of various portions 
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of the signal spectrum. As these are separate and even complimentary aspects of event-related 
signal dynamics, we decided to  use these two feature types in two separate linear classifiers. 
Posterior probabilities calculated from each of these classifiers were then combined by Bayesian 
fusion. The assumption that these features contribute independent evidence to the classification 
leads to a simple form of Bayesian fusion, ‘naive Bayes’, which is easily implemented by 
multiplying the posterior probability estimates from both classifiers. 
 

Figure 30 shows a scatter plot of probabilities calculated from time and frequency 
domain features of a training-session experiment. The star shape of non-target (blue dot) 
distribution around origin indicates high degree of independence among these values for non-
targets. In fact the correlation coefficient for non-targets is ~0.13 which is quite low and justifies 
our use of naïve Bayes fusion. 
 
Other classifier approaches. We also explored other classification methods, most notably 
asymmetric boosting. Although we chose not to implement this classifier in the real-time Phase I 
NERC system, we believe that significant further improvement in EEG-based classification may 
be achieved by combining classification results from different methods in real-time. We propose 
to explore the use of such classifier committees in Phase II of NIA project.  
 
Asymmetric boosting for real-Time EEG classification. A new boosting algorithm called 
asymmetric boosting (Vasconcelos et al.) can be used to automatically construct a real-time 
cascade classifier for EEG signals. Asymmetric boosting can be thought of as a feature selection 
algorithm in which the most discriminating features are chosen from a feature pool such that they 
can later be placed in a cascade architecture. The cascade architecture uses the features to reject 
the more numerous negative examples with the least number of feature evaluations, thus 
improving robust generalization across data sets as well as extremely fast real–time performance 
when implemented optimally. A variety of numerical experiments using asymmetric boosting 
were conducted on EEG signal data from the NIA pilot experiments. Depending on the type of 
EEG data used, these numerical experiments can be divided into three categories:  
 

• 1-D (time domain) EEG data: In these experiments one-dimensional EEG signals were 
used either taken directly from the single EEG scalp-channel signals (channel data) or 
from the ICA component activations (component data). 1-D Haar-like wavelet features 
were trained using asymmetric boosting and are shown below superimposed on the 
average event-related potential for one scalp channel (see Figure 31). 1-D EEG signals 
allowed for the classification of phase-locked signals and generally produced better 
classification results for these data. 

 
• 2-D (frequency domain) EEG data: Two-dimensional EEG signals were produced from 

scalp channels or component activations by performing time-frequency analysis on the 
(1-D) EEG time series, producing moving spectrograms for each scalp channel or 
maximally independent signal component. A cascade of quickly applied 2-D Haar-like 
wavelet features were trained; they are shown superimposed on the ERSP images in 
Figure 32. 
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• 1-D and 2-D EEG data: Asymmetric boosting was also used to learn real-time cascades 
in which the best features were chosen from both time-domain and frequency-domain 
data. Not surprisingly such classifiers gave the least amount of classification error. About 
three quarters of the features were taken from the time-domain feature pool confirming 
that time-domain features were generally more useful in boosting. However, the variable 
resolution of frequency-domain transformations leave open the possibility that we may 
not have optimized the frequency-domain measures used in these experiments. 

 

1-D HAAR wavelet 

 

Figure 31. (Top) Average activation following non-target image 
presentation at time sample 0. (Bottom) Average channel-17 activity 
(in uV) following target presentation, with the most informative 1-D 
feature superimposed. 
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2-D HAAR wavelet 

 

Figure 32. EEG signals in the time-frequency domain, and outlines of 
learned 2-D Haar wavelets superimposed on the average non-target (upper 
right) and target (lower right) frequency-domain responses of an ICA 
component whose scalp map is shown on the lower left. 

 
Experimental results: Table 4 has a summary of some of our experimental results. It can be 
seen that 1-D channel data has the best classification with 95.6% area under ROC using only 200 
features.  1-D component data using a level one ICA has an area under ROC of 90.89% with 200 
features and using 2-D features alone with 100 features cannot do better that 85% area under 
ROC even on same-day same person data where test data is taken from the same person on the 
same experiment day.  
 

Method Setup # Features Area Under 
ROC 

time-domain channel 
data 

same-person 
different-day 

200 95.6 % 

time-domain 
component data 

same-person 
different-day 

200 90.89 % 

frequency-domain 
component data 

same-person 100 85 % 
same-day 

Table 4. Summary of asymmetrical Adaboost results. 
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1.7.4 Processing speed 

The demonstrated NERC system requires less than 0.3 seconds to classify the whole burst of 49 
images using 100 time-domain features. Total time for time-domain plus frequency-domain 
feature-based burst classification (100 features each) is less than 2.5 seconds on a common 
workstation with a Pentium 4 CPU (3.2 GHz), with the majority of the extra time used for the 
time-frequency analysis. This relatively high classification speed is achieved by exploiting the 
SSE2 and SSE3 instruction sets offered by modern CPUs (using low-level CPU-specific 
optimization). In absence of this, classification time for frequency-domain would extend to more 
than 15 seconds, impeding the capability of the system to classify the next burst and making it 
impossible to use these relatively complex features in real-time. The time required for 
classification could be further reduced using readily-available dedicated signal processing chips. 

Results 

1.8 Image Analyst Recordings 

1.8.1 Detection (True Positives), Failures (False Positives, False Negatives) 

For our IA metric experiments, we attempted to simulate a real-life broad-area search scenario in 
which the location of the targets is not known a priori. In real-life, it is very difficult for subjects 
to detect small target features far from the search fovea. We reverse-engineered the DARPA 
image chipping process to address these issues. First, we selected the provided broad area image 
that contained the most (helipad) targets (/NIA_Experiments_nobmp/Helipad/06JAN05024037-P1BS-

005540078010_01_P002/ 06JAN05024037-P1BS-005540078010_01_P002_nup.tif) and magnified it 2x to increase 
behavioral performance. Then we selected an area with a high concentration of targets (see 
Figure 34, below) and placed a large 5th-level heptunx there (Figure 11). We then generated 
16,807 (=75) scene-warped image clips centered on a hexagonal grid and ordered their 
presentation using a random heptunx search path (as explained above). Each clip contained an 
elliptical fovea and a scene-warped, blurred, and contrast-reduced broad-area surround as 
described in Section Error! Reference source not found..  
 

For IA Subject 1, we designed a training session by placing a second 5th-level heptunx in 
another section of the same broad-area image (such that there was no overlap between the 
Training, Testing, or Baseline session images). After creating an image clip sequence following a 
heptunx path and adding the warped surround, in the Training task we removed bursts that 
contained more than one target. Finally the length of train session was increased by repeating 
selected bursts in a random order. Each burst contained 49 image clips drawn from a compact 
2nd-level heptunx area.  
 

To show that the EEG signature our classifier used signals target detection independent 
of the specific target shape, we decided to train IA Subjects 2 and 3 on an airplane target task 
and then to test them on a helipad target task. This is an important issue because the NERC 
system should be able to classify any kind of target, even when it has been trained only on one 
target category, thus eliminating the need to train the classifier on each possible type of search 
target. 
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Subject Image ID 
Target 
type 

Total # 
of 

targets 

# of true 
positives 
detected 

# of true 
positives 
missed 

# of 
false 

positives 

Total Total 
image Search 
area Time 

(pixles) (min) 
Part of 06JAN05024034-P1BS-

005540078010_01_P001 1 Helipad 113 36 77 NA 2.30E+08 36 
Part of 06JAN05024034-P1BS-

005540078010_01_P001 2 Helipad 113 37 76 NA 4.60E+08 14 
Part of 06JAN05024034-P1BS-

005540078010_01_P001 3 Helipad 113 11 102 NA 4.60E+08 51 

Mean - - 113 28 85 NA 3.8E+08 34 

Table 5. Baseline session results for IA subjects 
 
Table 5 shows Baseline session results for the three IA subjects. Our subjects went through the 
Baseline task images rather quickly – possibly a function of the exact way in which we instructed 
them to perform the task – and they reported a correspondingly small number of the 113 targets 
that our later systematic (heptunx-based, but not RSVP) search revealed were in the search area –
a mean of only 28% of the actual targets. Since we did not ask them to record the locations of the 
identified targets, we could not measure their false alarms. 
 

IA Subject AUROC by 10-fold validation using time-
domain features on behaviorally correct bursts 

containing targets (%) 
1 80 
2 97 
3 93 

Mean 90 

Table 6. AUROC for Training sessions 

 Table  shows the off-line classifier results (AUROC, by 10-fold validation) using time-domain 
features for behaviorally-correct target-containing bursts from the Training session. The 
classifiers generated for IA Subjects 2 and 3 had high internal consistency, while EEG data from 
Subject 1, who had a low behavioral performance in the Training session because of a high 
number of false positives, did not allow consistent classification. 
 

Legend 

 

Subject 1 
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Subject 2 

 

Subject 3 

 

Figure 33. Behavioral performance of IA subjects in Test sessions 

Figure 33 shows the behavioral performance of IA subjects in the Test sessions.  Subject 1 again 
reported considerably more false-positive target detections than other two IA subjects, leading to 
a lower AUROC for this subject (cf. Table 6). The behavioral AUROC results for all bursts by 
the other two IA subjects were relatively high (0.93 and 0.90). 
 
 

Subject Base Image ID 
Target 
Type 

RSVP 
rate 

Total 

# of 
clips 

Triage Total # # of true # of true # of 
time 
(Min) 

of 
targets 

positives 
detected 

positives false 
missed positives 

Part of 06JAN05024034-P1BS-
005540078010_01_P001 1 Helipad 12 Hz 16,366 42 106 93 13 5,149 

Part of 06JAN05024034-P1BS-
005540078010_01_P001 2 Helipad 12 Hz 16,813 37 114 103 11 1,859 

Part of 06JAN05024034-P1BS-
005540078010_01_P001 3 Helipad 12 Hz 16,806 45 114 100 14 2,153 

Mean - - - 16,662 41 111 99 13 3,054 

Table 7. Image classification results for the IA subjects in Test sessions 

Subject 

AUROC for 
bursts with 

AUROC for all bursts (%) 
correct AUROC for bursts followed by a correct behavioral response and containing at least 

behavior (%) one target (%) 

1 81 97 65 

2 93 97 66 

3 90 97 71 

Mean 88 97 67.3 

Table 6.  Area under the ROC curve: Results for the IA subjects in Test sessions 
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However, as Table 8 shows, the classification of image clips in bursts containing targets left 
considerable room for improvement. Below, we speculate the reasons for this relative drop in 
RSVP target classification performance from the levels achieved in the pilot experiments. 

1.8.2 Individual Results Viewer screens and their average across subjects 

Bursts the subject reported to contain at least one target 

Legend Areas with high estimated target probability  

Ground truth 

 

Subject 1 
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Subject 2 

 
 

Subject 3 
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Average across 
all 3 IA subjects 

 

Figure 34. Individual and average Results Viewer screens for the three IA subjects 

1.9 Non-IA/pilot data 

1.9.1 Detection (True Positives), Failures (False Positives, False Negatives) 
We conducted 41 experiments on 15 non-IA subjects, most experiments using airplane targets. 
After trying different experimental conditions, we decided to use an RSVP rate of 12 Hz.  

 
Subject 

ID Gender Hand Date of birth Education level Occupation 
1 M R 1975 masters graduate student 
2 M R 1984 undergraduate student 
3 F R 1981 BS teacher 
4 M R 1984 undergraduate student 
5 M R 1974 BA teacher 
6 M L 1981 undergraduate student 
7 M R 1984 undergraduate student 
8 F R 1982 undergraduate student 

9 M L 1973 
GIS remote sensing 

B.A. analyst 
10 F R 1978 graduate school graduate student 
11 M R 1985 undergraduate student 
12 F R 1983 BA lab assistant 
13 M A 1974 BA GIS Analyst 
14 M R 1976 BS GIS Analyst 
15 M R 1976 PhD post doctorate 

Table 7. Non-IA subjects 
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Experiment 
Targets 
detected 

Targets 
missed 

 False 
positive 

Total 
number of 

clips 

Area 
False under 

positive ROC 
percentage curve (%) Time(sec) 

Exp23-> exp19 265 66 1105 21456 5 93 4462 

exp18->exp21 265 66 2007 21456 9 87 3827 

exp18->exp25 177 76 2309 23406 10 84 4208 

exp23->exp24 177 76 1108 23272 5 90 4691 

Average 221 71 1632 22398 7 89 4297 

Table 8. Non-IA RSVP triage results, 12-Hz presentation rate, airplane targets, including 
behavioral errors 

 

1.9.2 Individual subjects and average across subjects 
 

Exp. ID 
 

Exp. Type 
 

Rate (Hz) 
 

Targets 
per 

burst 
Target type(s) 

 

Target density (% of 
Burst bursts containing at least 

duration one target) 
(s)  

50 Planes with 
various difficulty 

levels, added 
manually 

continuous [0-3 targets per burst] 
  

1 RSVP 6 and 12 1   

2 RSVP 5 1 
highly salient 

planes 5 50 

3 RSVP 60 1 
highly salient 

planes 2 15 

4 RSVP 60 1 
highly salient 

planes 2 40 

5 RSVP 60 1 
highly salient 

planes 2 40 

6 RSVP 20 2 
salient planes 

and water-tanks 
%25 no targets, %25 

planes, %25 water-tanks 2.4 

7 RSVP 20 2 
salient planes 

and water-tanks 
%25 no targets, %25 

planes, %25 water-tanks 2.4 

8 free search 0 1 

planes with 
various 

saliencies N/A 0-4 targets per clip 

10 RSVP N/A N/A faces N/A N/A 

11 psychophysics 12 2 
planes and water 

tanks 3.92 s 1 

12 RSVP 12 1 planes 3.92 75 

13 RSVP 12 1 planes 3.92 1 

14 RSVP 12 1 planes 2 3 

Table 9. Experimental conditions for non-IA subjects 
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Since we tried different conditions during our experiments on non-IA subjects (see Table 9), the 
average AUROC can only be calculated on a subset of experiments. As shown in Table 8, the 
mean area under the ROC curve for non-IAs was 0.89. Since plane targets were placed on 
individual clips, they did not have fixed locations across different experiment bouts (= 7 bursts) 
(the subjects were asked to consider them to be planes flying across the broad-area image); 
therefore there is no broad-area scene to show to summarize the pilot non-IA experiment results. 

1.9.3 Comparison with IA-Subject results 
As shown in Table 8, the mean area under the ROC curve for non-IAs was 0.89. This is roughly 
similar to average AUROC for the three IA subjects (0.88). It interesting to see that even though 
we trained the classifier for IA Subjects 2 and 3 on planes and used it to classify helipad targets, 
system performance was consistent with the earlier pilot experiments using only plane targets in 
both Training and Testing sessions.  

1.10 Statistical Power 
Clearly, repeated sessions on a larger number of RSVP-experienced subjects will be required in 
Phase 2 to statistically estimate the robustness of image clip classification that could be expected 
in operational use. 

Lessons Learned 

1.10.1 Unforeseen Challenges Encountered During the Conduct of the Experiments 
 

   

Airplane 
Target 

Partial 
Helipad 
Target

 

Figure 35. Sample salient airplane target clip (left) and a partially obscured helipad target image 
clip (right) 
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Target centering. For our non-IA subjects, we used salient airplane targets artificially placed 
near the center of the image clip to invoke a clear target detection and concomitant EEG 
response. For our metric experiments on the three IA subjects, we decided to design experiments 
coming as close as possible to the operational situation. This meant we could not use any 
information regarding target positions in the broad-area image while creating the image clips. 
We elected to use relatively small image clips to maximize behavioral detection, and the same 
relatively high (12-Hz) RSVP rate we used in our earlier plane experiments. An undesired side 
effect of small image clip size is that some targets may appear only partially in the foveal image 
area, as illustrated in Figure 35 (left).  
 

Salient 
Target 

Low 
contrast 
Target Partial 

Target 

 

Figure 36. Target image clips from the IA subject  
Test sessions 

 A simple solution to the partial-target problem, the one adopted by us in the Metric 
experiments, is to present image clips with overlapping fovea. An undesired side-effect of this 
strategy, however, is to increase the time required for exhaustive broad-area search, since some 
portion of the image much be shown twice, further reducing the number of new image territory 
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presented by each image clip. The opposite strategy, to increase the foveal area of each image 
clip would, however, have the undesirable side-effect of reducing detection probability, a 
surmise supported by preliminary psychophysical results presented by PI Makeig at the final 
Phase I PI meeting. 
 
Response latency variation. In response to image clips containing partially hidden targets, 
subjects may tend to be uncertain about the presence of a target in the image clip, and might also 
require significantly more time to make a target detection decision. A similar decision delay 
might also occur if the target image is not partial but instead unclear or difficult to detect. In 
these cases the strength and timing of the EEG signature could be expected to shift accordingly 
and become less similar to that following quick recognition of more salient targets. As our 
classifier relies on more or less precise time-locking of the EEG response signature to target 
detections (given the short 80-ms delay between consecutive images in 12-Hz RSVP), the 
appearance of partial targets or targets with varying degrees of saliency can only adversely affect 
classification performance. Figure 26 (above) shows a number of helipad target image clips from 
IA test experiment, clearly revealing a wide range of saliencies of the helipad target images. 

 

Target 
clusters 

 

Figure 37. Targets colored in green in IA broad area test image 

Target clustering. Another classification challenge is related to the number of targets presented 
in one burst. Although overall target frequency was low in the IA Subject Test session images 
(less than %1), they appeared in tight clusters in a few portions of the image (Figure 37). When 
targets appear in tight clusters, any image clip extraction strategy that preserves locality in the 
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RSVP search path will necessarily produce a number of bursts containing several to many 
targets. The EEG signature of detecting multiple targets in a short time (for example, 7 targets in 
a 4-second burst) might be quite different from our more idealized Training session experiment 
in which a maximum of only one target could appear in a burst. 

Number 
of bursts 

 
 Number of targets in the burst 

Figure 38. Histogram of number of targets in each Test session RSVP burst 

Since our heptunx search method preserves locality, 11 out of 45 target bearing bursts in the IA 
Subject experiments contained more than three targets (Figure 38). 
 
Tentative conclusions: More widely-varying target saliency, the larger number of partially-
obscured targets, and the larger number of bursts containing many targets are probably the main 
reasons that classification performance in our IA Test sessions was lower than in our pilot 
experiments using isolated, salient, and unobscured airplane targets. 

1.10.2 Findings Outside the Scope of the Program 
We are continuing our efforts to improve our response classification methods. Very recent results 
indicate that performance can be increased by building a separate linear RVM classifier for each 
1st-level ICA component, then combining the posterior probabilities of these classifiers using 
naïve Bayesian fusion. For a selected cross-session numerical experiment (exp18 exp21) using 
time domain features from bursts in which targets were correctly detected by the subject, this 
method improved area under the ROC curve from 0.92 (by standard LDA on top 100 2nd-level 
ICA features from all components) to 0.94 (a 25% improvement). The key to this result is the 
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high degree of independence among posterior probabilities calculated from the different 
independent components. It enables us to combine these probabilities simply by multiplication 
(naive Bayes). This is not possible when channel data are used instead of component activities; 
using channel data, the cross-session AUROC decreased to 0.85. The reason for this decrease is 
that nearby channels contain very similar information. This leads to highly dependent posterior 
probabilities for classifiers constructed from channel data that cannot be effectively combined by 
simple multiplication.  

Future Development Plans 

Networked EEG Response Classification system enhancements 

Further improvements in response classification.  
In Phase 2, we propose to continue to explore and implement more effective classification 
methods in the real-time classification system. This includes the committee of experts scheme 
discussed above. 
- Electrode re-positioning. Our system requires one model Training session per subject. This 
approach creates an accurate model and also saves time, as training does not to be repeated at the 
beginning of each Testing session. The downside of this approach is that in each Testing session 
the electrode positions on the scalp may be slightly different. A straightforward partial solution 
to this ever-present problem for neurotechnology is to increase the accuracy with which we place 
the EEG cap by introducing additional, yet convenient measurements. A more elegant solution is 
to adapt our ICA model to find the same independent component sources used in the classifier 
based on data gathered in the Testing session. Since the locations of the independent brain 
sources used in the classifier should be constant across sessions involving similar tasks, they 
provide a coordinate system for signal representation that is not dependent on the locations of the 
individual electrodes. In comparison, a classifier that uses individual channel data does not have 
access to this natural coordinate system.  
 
- Adaptive ICA training. A UCSD collaborator in a parallel DARPA dry-electrode project, Gert 
Cauwenberghs, is developing an On-line Recursive Independent Component Analysis (ORICA) 
method.  This algorithm offers incremental estimation of independent components during on-line 
data collection while retaining the convergence properties of batch-mode ICA. By further 
developing and testing this algorithm, we plan to apply the ICA model learned from the Training 
session to data gathered in the beginning of each Testing session. This may automatically 
compensate for small changes in electrode positions across sessions, and/or for differences in 
electrode impedance, by fine-tuning the previously learned ICA unmixing matrix. 
 
- Dynamic image sequencing. To reduce the error in evaluating the probability of a certain 
image being a target, we can present it again in a succeeding RSVP burst and average the 
probability estimates across presentations. To minimize the overhead caused by this repetition, 
we can select for repetition only images with marginal initial target probability estimates. Most 
software components needed to implement this dynamic sequencing method are already in place 
in our system. 
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- Visual surprise-based image sequencing. As explained in an earlier session, manipulating the 
degree of visual low-level surprise in an RSVP sequence can improve subject target detection 
performance. We propose to explore both sequence selection and surprise-based image filtering 
to minimize the documented effects of attentional blink-like effects of visual surprise on RSVP 
detection performance. 
 
- Incorporation of dry electrodes. We propose the use of the NERC system for testing the 
functionality and operational potential of the dry-electrode caps we are developing in a parallel 
DARPA project. 
 
- EEG-based feedback for analyst training. Our real-time system can be fairly easily adapted 
to operate in continuous instead of burst mode, and to provide immediate feedback about 
classifier output to the subject, a mode of operation recently referred to as ‘neurofeedback.’ By 
this method, the subject may be able to modify their EEG responses to maximize target 
classification by the system. For example, after training the classifier on initial Training session 
data, subsequent Testing sessions can also serve as feedback training sessions. In these sessions, 
some known target images may be introduced into the RSVP sequences. The system can then 
‘feed back’ to the subject that strength of their target recognition response (for example, the 
estimated target probability, as a number of in some other visual or auditory format). The subject 
will be asked to attempt to keep these feedback signals, indicating successful target response 
detection, as high or strong as possible. Online or offline updating of the subject neural signature 
model could further tighten the human-machine loop and further optimize classifier performance. 
Because of the modular structure of our NERC system code, only limited modifications will be 
necessary to implement feedback or neurofeedback capabilities.  
 
Further directions in neurotechnology research 
 

Neurobiology and brain source localization.  
Most studies of visual target detection have focused on the averaged EEG signals at the sensor 
level. This has made it difficult to determine which neuronal networks truly contribute to the 
measured differences since many brain regions could be activated in parallel and since the 
averaging process eliminates any non-phase-locked dynamics that could be relevant for target 
detection.  Our response classification approach bypasses both of these problems by using ICA 
to extract source-specific single trial dynamics. However, to fully characterize the physiology of 
the networks contributing to automatic target response classification, more sophisticated source 
localization techniques, such as our recent multi-scale geodesic sparse Bayesian learning (SBL) 
algorithm, would have to be used in conjunction with more realistic BEM or FEM forward 
models based on the subject’s MRI (Ramirez et. al., 2005, 2006). Importantly, nonlinear source 
localization techniques including SBL may improve the performance of the classifier if voxel-
wise source dynamical features are used to relax the ICA assumption of spatial stationarity. Also 
source imaging will clarify the neurophysiological relevance of theta responses in target 
detection and will help us discover new source signatures that may contain more precise 
information about the mental states of analysts and the images they perceive. These new 
methods, applied to NERC system data from 20 subjects with MRI head images, should allow 
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unprecedented understanding of the neural dynamics of categorical perception and decision-
making that underlie successful EEG-based response classification. 

Neural dynamics and training of visual search.  
Research is needed to better understand the brain dynamics accompanying normal visual search 
of a large static image or scene using 3-4/s saccadic eye movements. The research could suggest 
a neurotechnology system that uses efficient, assisted visual (saccadic) search in place of RSVP 
search. Might an EEG-based feedback approach, applied to EEG responses to search saccades in 
normal visual search, help train analysts to perform more efficient visual search? The answer to 
that question may have practical importance, since training of imagery analysts is currently a 
lengthy and difficult process. 
 

Neural dynamics of video search.  
A fruitful area of applied research in this direction could be to assist analysts in reviewing 
overhead or other intelligence video.  

Feedback to maintain alertness and attention.  

The ability of analysts to make use of other forms of EEG-based feedback concerning their 
current levels of alertness and attention to the presented images also merits careful investigation.  

Other possible intelligence applications.  

The NERC system might also be used to evaluate the familiarity of a set of images to a subject. 
These images might be the subject of intelligence interest. For example, by showing pictures of 
possible collaborators to a suspect and classifying his/her EEG responses, the probability of an 
association between the subject and the viewed suspects others whose pictures were viewed 
might be assessed. In a more common ‘lie detection’ mode, one might show pictures of objects 
from certain crime scene mixed with non-related objects in same categories to a suspect. 
Classifying suspect’s single-trial EEG responses might reveal the degree of familiarity of suspect 
to objects from the crime scene and provide important clues about his/her knowledge of the 
crime or of the crime scene. The real-time classification system could use dynamic sequencing 
(explained above) to efficiently arrange the sequence of presented images, re-presenting images 
with marginal estimates of probability of subject recognition on first presentation, thus 
increasing confidence in the results. 
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List of Acronyms 

RSVP = rapid serial visual presentation 
NERC system = our ‘networked EEG response classification’ system 
RVM = relevance vector machine 
LDA = linear discriminant analysis 
ROC = receiver operating characteristic 
AUROC = area under the ROC curve 
IA = intelligence analyst 
ICA = independent component analysis 
IC = independent component 
heptunx = a maximally compact grouping of 7 elements in a hexagonal grid 
image clip, clip = Part of large broad area image presented in one frame of RSVP sequence 
image chipping = Extracting small image clips from a large image 
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1. [Please right click and select Acrobat Document Object  Open to see the full article 
in press, above. This reports preliminary psychophysical data from our collaboration]. 
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