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Abstract

Power spectra of human electroencephalographic (EEG) data exhibit large moment-to-

moment fluctuations across a broad frequency range. Here, we report first results of log-

linear decomposition of these fluctuations into independent modulator (IM) processes 

acting on one or more parts of the power spectra of one or more maximally independent 

component (IC) processes separated from the data by independent component analysis 

(ICA). From data of 34 subjects performing an emotion imagination task, we 

decomposed second-to-second changes in log spectrograms of ICs with dipolar scalp 

maps by infomax ICA, producing 15 IMs per subject each accounting for distinct spectral 

fluctuations in one or more IC processes. Three types of IMs were well represented 

across subjects, each scaling IC power either in predominantly bilateral spindle activity at 

an (8-12 Hz) alpha-band frequency and its harmonics, in some portion of the (13-35 Hz) 

beta band, or smoothly across a broad frequency range, most strongly at high frequencies 

(often extending to at least 125 Hz). Such broadband IMs either, (a) modulated the 

balance of low- versus high-frequency activity across the cortex, with a mean fulcrum 

near 25 Hz, resembling EEG changes associated with arousal, (b) spatially redistributed 

power above 10 Hz among several ICs, or else (c) modulated power above 5 Hz of a 

single IC. In analyses including ICs accounting for scalp muscle activity, cortical 

broadband ICs were distinct from electromyographic (EMG) modulations. We speculate 

that the characteristic modes of spectral modulation identified here may index separable 

actions of known cortical neuromodulatory systems.
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Introduction   

A dominant feature of the human EEG is its strong second-to-second variability, 

periods of clear oscillatory activity alternating irregularly with other, less clearly ordered 

activity. Oscillations produce peaks in the mean EEG power spectrum, which otherwise 

decreases smoothly as frequency increases. EEG spectral dynamics are complex: peak 

alpha frequencies of the summed sources may differ across subjects, times, and scalp 

locations (Andrew and Pfurtscheller, 1997). Bi-harmonic alpha and beta band (13-30 Hz) 

spectral peaks often occur together, most clearly in the ‘mu-rhythm’ spindles that appear 

over sensorimotor cortex between infrequent intended movements (Leocani et al., 1997), 

while solo beta-band activity increases directly following movement offset (Jurkiewicz et 

al., 2006). High-frequency gamma band (30-80 Hz) activity is typically not periodic but 

broadband (Freeman, 2004), and still higher gamma (80-200 Hz) is observed in

electrocorticographic (ECOG) field activity during information processing in relevant 

cortical areas (Crone et al., 1998). 

Mean EEG spectral changes often accompany changes in state, task, and 

performance. For example, changes in alpha band power may index changes in attention 

(Worden et al., 2000) and changes in alpha frequency may relate to task differences 

(Klimesch et al., 1997; Klimesch et al., 1998). Beta-band activities are associated with 

focused attention (Wrobel, 2000), and mean gamma band power is stronger during alert 

performance (Makeig and Jung, 1996), suggesting an association with attention, and 

conscious awareness (Fries et al., 2001; Cantero et al., 2004), as well as ‘binding’ of 

stimulus attributes (Singer and Gray, 1995; Herculano-Houzel et al., 1999). However, 

trial-to-trial spectral fluctuations may dominate such mean changes (Onton et al., 2005). 

Scalp EEG analysis is further complicated by the fact that oscillatory activity 

recorded at a single scalp channel, for example in the (8-12 Hz) alpha band,  typically 

sums activities from several cortical source areas separated as widely as occipital and 

sensorimotor cortex (Makeig et al., 2002). To accurately model the relation of EEG 

dynamics to behavior and experience, activities of single cortical EEG source areas must 

first be isolated. Independent component analysis (ICA) decomposes scalp-recorded EEG 

data into the weighted sum of maximally temporally independent component (IC) 
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processes (Makeig, 1996). Under favorable circumstances, the scalp projections of many 

ICs are compatible with generation by partially-synchronous local field activity within a 

single cortical patch.  However, spectral shifts often concurrently affect multiple ICs, 

suggesting they might reflect actions of more widely distributed control processes, 

including the brainstem-based neuromodulatory systems using dopamine, acetylcholine, 

norepinephrine, etc. (Robbins, 1997; Bardo, 1998).

Studies of EEG spectral dynamics typically consider separate narrow frequency 

bins or pre-defined frequency bands. To better understand the roles of field dynamics in 

brain function, models of spectral dynamics derived from the data themselves are 

desirable. Recently, we showed that spectral activity of ICs projecting to the frontal 

midline exhibit discrete modes of event-related power modulation during a working 

memory task (Onton et al., 2005). Here, we demonstrate a related method for 

decomposing spectral fluctuations of multiple ICs into the product of distinct spectral 

modulator and co-modulator processes.

Methods

Subjects and Task. Thirty- four young adult volunteers participated in the experiment (14 

male, 20 female; age range, 18-38 years, age mean and standard deviation, 25.5 ± 5 

years). Subjects were seated comfortably with eyes closed in a dimly lit room with air-

tube fed ear-bud earphones. Imagination of emotional states was encouraged and guided 

by a set of pre-recorded verbal narratives. Each session began and ended with two 

minutes of eyes closed silent rest. The task then began with a recorded explanation of the 

task, followed by approximately five minutes of guided imagery relaxation instructions to 

promote a relaxed, inwardly-focused state. Guided imagery narratives for fifteen 

successive emotions, separated by relaxation interludes, were then presented. To 

minimize subject stress, the emotion sequence was chosen to alternate pseudo-randomly 

positive emotions (love, joy, happiness, relief, compassion, contentedness, excitement, 

awe) with negative emotions (anger, jealousy, disgust, frustration, fear, sadness, grief). 

Each (15-30 s) pre-recorded emotional imagery induction began with a short 

description of the emotion and suggestions of one or more circumstances in which the 

target emotion might be vividly experienced, accompanied by suggestions to pay 
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attention to somatic sensations commonly associated with the emotion. The subject was 

encouraged to employ whatever imagery seemed suitable for stimulating a vivid and 

embodied experience of the suggested emotion.

Subjects were asked to take as much time as they needed to recall or imagine a 

scenario that would induce an experience of the suggested emotion. Eight of the subjects 

indicated the onset of the suggested emotion by pressing a right-hand button. Twelve

other subjects made pulsating button presses on a pressure sensitive key, attempting to 

communicate the quality of the feeling they were experiencing. Fourteen other subjects 

were asked to press the button sporadically only at moments when they experienced a 

surge in the target emotion. Results for the three button-press subgroups of the analysis 

reported here proved similar, so for the purposes of this report the data of all 34 subjects 

were considered together. 

Subjects were asked to attempt to experience each suggested emotion for three to 

five minutes. All subjects pressed a second, left-hand button when the experience of the 

emotion subsided, initiating a new relaxation instruction followed, after a 15 sec 

relaxation period, by the next emotion induction. 

After the session, subjects completed a written debriefing questionnaire, first 

commenting on their overall experience in the experiment, then on their specific 

experiences during each of the suggested emotions, also estimating numerically the 

intensity and vividness of each emotion. Most of the 34 subjects whose data were 

analyzed here indicated they had enjoyed participating in the experiment, some 

expressing surprise at the relative ease with which they could vividly experience a fairly 

wide range of emotions in a single session, guided only by brief verbal suggestions.

Many of the subjects reported that one or two of the 15 emotions were more 

difficult for them to experience than others. The natures of these emotions varied across 

subjects. Only one subject indicated that, despite his efforts to self-induce an experience 

of each emotion, he experienced none of them vividly. All subjects were nevertheless 

included in the present analysis since our intention here was to study EEG spectral 

changes during eyes-closed imagery, which all subjects reporting performing

successfully. 
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Data acquisition. EEG data were collected synchronously from 250 scalp, four infra-

ocular, and two electrocardiographic (ECG) electrodes with an active reference (Biosemi 

ActiveTwo, Amsterdam) at a sampling rate of 256 Hz and 24-bit A/D resolution. Onsets

and offsets of each guided imagery narrative, as well subject button presses were 

recorded in a simultaneously acquired event channel. Caps with a custom whole-head 

montage were used to position the electrodes, which were pressed into plastic wells in an 

electrode cap filled with water-based conductive gel. The recording montage covered 

most of the skull, forehead, and lateral face surface, omitting chin and fleshy cheek areas. 

The whole-head coverage and multiple chin straps, as well as the active recording 

technique that eliminated the need to scrape the skin surface, made the process of fitting 

and wearing the electrodes generally comfortable for the subjects. Locations of the 

electrodes relative to skull landmarks were recorded (Polhemus, Inc.).

Data analysis. Here, we present first results of a new method for decomposing 

fluctuations in EEG independent component (IC) power spectra into independent modes 

of co-modulation. The method was applied to normalized IC activity spectra during the 

15 active emotion imagery periods from each subject. 

Data preprocessing. Separating independent modes of spectral modulation involved 

several steps, detailed below. Data were analyzed by custom Matlab (The Mathworks, 

Inc.) analysis scripts built on the open source EEGLAB toolbox (Delorme, 2004). After 

re-referencing to digitally linked mastoids, the data were digitally filtered to emphasize 

frequencies above 1 Hz and below 50 Hz. Data periods containing broadly distributed, 

high-amplitude muscle noise and other irregular artifacts were identified by tests for high 

kurtosis or low probability activity and removed from analysis (Delorme, In press).

Occurrence of eye blink, other eye movement, or isolated muscle noise artifact was not a 

criterion for rejection. Electrodes with poor skin contact, judged by their abnormal 

activity patterns, were also removed from the data, leaving 180-254 channels per subject 

(243 ± 16, mean ± std. dev.)
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ICA decomposition. Remaining data time windows were then concatenated and submitted 

to decomposition by extended infomax ICA using the binica function (Makeig et al., 

1997) available with the EEGLAB toolbox (http://sccn.ucsd.edu/eeglab). Infomax ICA 

finds a matrix, W, that linearly unmixes the original EEG channel data, x, into a sum of 

maximally temporally independent, and spatially fixed components, u, such that u = Wx. 

The rows of the resulting ‘activation’ matrix, u, are the independent component activities 

or activations, and its columns, the time points of the input data. Columns of the inverse 

matrix, W-1, give the relative projection weights from each independent component to 

each scalp electrode. For the derivation of the infomax algorithm, see (Jung, 2001); for 

practical details of its application to EEG data see (Makeig et al., 2004; Onton and 

Makeig, 2006).

Decompositions used default extended-mode binica training parameters with a 

stopping weight change of 1e-7.  Extended infomax ICA (Lee et al., 1999) was used to 

allow recovery of any components with sub-gaussian activity distributions, including 60-

Hz line noise contamination. The amount of data decomposed for each subject amounted 

to between 25 and 57 min (mean ± std. dev. points: 667k ± 115k). The scalp data were 

first reduced to between 90 and 160 principal dimensions, depending on data length and 

quality, using principal component analysis (PCA). The scalp data decomposed by ICA 

then comprised, on average, 64 time points (range, 26-87) for each weight in the square 

ICA unmixing matrix learned from the PCA-reduced data.

Independent component selection. IC activations from each subject were first assessed 

and categorized as brain activity or non-brain artifact (e.g., muscle or line noise, or eye 

movement activity) by visual inspection of their scalp topographies, time courses and 

activity spectra. Next, an equivalent current dipole model for each brain IC map was 

computed using a best fitting four-shell spherical head model in the EEGLAB dipfit plug-

in (using Fieldtrip toolbox functions written by Robert Oostenveld). Components with 

bilaterally symmetric scalp maps were fit with two symmetrically placed but freely 

oriented equivalent dipoles. If the spherical forward-model scalp projection of the best-

fitting single or dual-symmetric equivalent dipole model had more than 15% residual 

variance from the IC scalp map over all scalp electrodes, the component was omitted 
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from further analysis. ICs with an equivalent dipole located well outside the model brain 

volume were also excluded. The mean number of remaining ICs with near-dipolar scalp 

maps entered into the subsequent analysis was 16 per subject (± 5, std. dev.; range, 7 to 

25). 

Spectral analysis. For each subject, selected IC activations from emotion imagery periods 

were separated into 50%-overlapping 1-s time windows and then transformed into 

individual frequency power spectra by fast Fourier transform (FFT) with Hanning 

window tapering. The tapered 256-point time windows were zero-padded to 512 points to 

give frequency bins with 0.5-Hz spacing.  Ninety-nine frequency bins between 1 and 50 

Hz were selected for use and converted to log power. Mean log power at each frequency 

(across the roughly 2k to 10k data windows per subject) was subtracted from each single-

window power spectral estimate. The resulting time series of log spectral deviations, 

scaled to dB units, were then concatenated, giving a matrix of size (t, f × c), where t is the 

number of time windows, c the number of subject ICs used in the analysis, and f the 

number of frequency bins (99). The size of this matrix varied across subjects according to 

the lengths of their imagery periods and the number of their quasi-dipolar ICs used in the 

analysis. For each subject, this (tall) matrix was reduced to its first 15 principal 

dimensions by PCA, the resulting principal subspace accounting for about 10% of the 

original log spectral variance. 

Log spectral decomposition. The dimension-reduced log spectral data were then 

decomposed by extended infomax ICA to find independent modulation modes of log 

spectral power across subsets of frequencies within all ICs. Below, we refer to the 

resulting modulatory factors, modes, or processes as independent modulators (IMs) that 

multiplicatively affect the activity spectra of one or more of the dipolar ICs separated 

from the recorded EEG scalp signals. The EEG model underlying this analysis is 

illustrated schematically in Figure 1.

[Figure 1 about here]
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In Fig. 1, two IM processes are shown schematically as discs placed in the 

brainstem region of a cartoon head. Several neurotransmitter-labeled arousal or event 

valuation systems centered in the brainstem are known to modulate cortical field spectra 

(see Discussion). While the log spectral decomposition introduced here might possibly 

separate the influences of such systems on the scalp EEG, there is no guarantee that the 

IM processes derived statistically from the data need reflect the actions of individual

physiological systems, and any such suggested linkages must be tested experimentally.

The log spectral ICA decomposition of the dimension-reduced IC spectral 

variability over time returns a spectral unmixing matrix. The inverse of this matrix (the 

spectral mixing matrix) gives the relative projection weights for each IM to each PCA 

dimension. These can be expanded into window time series by multiplying the ICA 

mixing matrix by the pseudo-inverse of the dimension-reduced PCA eigenvector matrix. 

The decomposition also returns a matrix of ‘templates’ containing the relative 

modulatory effects of each IM on each IC spectrum.  Multiplying the inverse ICA and 

pseudo-inverse PCA weight matrices with a single IM template produces a back-

projected data matrix whose columns estimate the strength of IC log-power fluctuations 

across time windows of one IM process. Thus, IM decomposition models principal IC log 

power spectral fluctuations as weighted sums of IM process influences.

Exact formulation. The decomposition of spectral modulations using ICA assumes that 

the matrix of spectral activities, S, of each IC (c) in each time window is multiplicatively 

affected (scaled or gated) by the exponentially-weighted product of some number, N, of 

IM processes whose (template) patterns of log linear effects on each IC spectrum are 

given by templates comprising the rows of matrix T. Each of the IM templates scales 

power in some portions of the IC baseline spectra, B, the strength of these modulations 

given by a matrix of the scalar exponents, W, associated with each IM, IC, and time 

window. The magnitudes and polarities of these weights determine the extent to which 

the N IM templates, T, produce fluctuations in the IC power spectra, S.

c

N

m

W
mtc BTS tm ×=∏

=
)(

1
,

. (1)
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where Sc,t is the power spectrum of IC c in time window t, Tm is the template of IM m in 

window t, Wm,t is the frequency vector of weights for IM m in time window t, and Bc is 

the mean power spectrum of IC c across time windows. Taking the log of both sides 

gives the IC log power spectrum, S, of IC c in time window t.

∑
=

+=
N

m
cmtmtc BTWS

1
,, log)log(log (2)

The log spectral deviation (D) from the mean power spectrum of c in time window t is

∑
=

=−=
N

m
mtmctctc TWBSD

1
,,, )log(loglog (3)

This equation can be written to include all factors, ICs, and time windows as matrix 

equation

D = WT (4)

Here, D is the matrix of log spectral deviations from log spectral baseline with 

dimensions (windows by ICs × frequencies), the columns of matrix W, of dimensions 

(windows by IMs), give the time window weights, and the rows of matrix T, of 

dimensions (IMs by ICs × frequencies), give the templates of spectral modulation of 

spectral power across ICs and frequencies. For computational tractability, the height of 

matrix D may be reduced by PCA before ICA decomposition. The index t in equations 

(1)-(3) above then ranges over the retained principal temporal dimensions (here, 15).

As the baseline mean EEG spectrum resembles a power-law function, B ∝ f a, 

note that the spectrum, S, produced by an IM whose log template T rises slowly with 

frequency, T ∝ bf is S = TwB ∝ (bf)w f a ∝ bw f (w+a) ∝ f(w+a), a power-law function of 

frequency in which the current IM weight, w, adjusts the power-law exponent. Power law 

spectra appear in nonlinear systems, in particular at critical points at which they are most 

sensitive to external influence (Linkenkaer-Hansen et al., 2001).

Note as well the difference in the current ‘WT’ (‘weights × templates’) 

decomposition (suggested by Jason Palmer, personal communication) from the alternate 

‘TW’ form of spectral ICA decomposition reported previously (Onton et al., 2005). In 

that (‘TW ‘) decomposition of spectral variability in a single IC, temporal independence 

of the modulator time courses maximized was across time windows (as, here, in the 

initial ICA decomposition of the time-domain scalp data). In the present ‘WT’ 
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decomposition, however, the independence maximized by ICA is of the IM templates 

across ICs and frequencies. That is, ICA here finds the most distinctive patterns of 

frequency modulation across spatial locations (IC combinations) and spectral frequencies 

whose weighted sums produce the decomposed data. In ‘WT’ spectral decomposition, 

therefore, the estimated IM time courses themselves may be correlated and/or otherwise 

mutually informative. 

The choice of a multiplicative model for the IM processes is mathematically 

convenient but also seems biologically plausible, at least within some limited range of 

exponential weights. In this model, biological field activity modulator processes are not 

assumed to add to or subtract activity from the ongoing local field spectra, but instead are 

modeled as scaling up or down the amplitudes of particular modes of spectral activity –

whose frequency profiles and time window weights may be then estimated by ICA 

decomposition.

IM template clustering. To find common patterns of spectral modulations across subjects 

and IMs, all spectral IC template patterns whose root mean-square (RMS) amplitudes 

were at least 50% of the largest RMS IC template for each IM were collected for 

clustering. By this criterion, each IM affected between 1 and 24 ICs (mean and std. dev., 

4.2 ± 3.5). Each subject contributed, on average, 63 IM templates (15 IMs × ~4.2 ICs), 

giving 2209 total IC frequency templates (~63 templates × 34 subjects) for clustering. 

IM clustering was performed by first linearly warping IM template frequencies to 

equalize the mean alpha peak of the whole activity spectrum of the corresponding IC. No 

adjustment was performed on IM templates whose mean power spectrum did not contain 

a detectable alpha peak. Clustering was accomplished by first calculating the Euclidean 

distance between all IM template vectors and then using the Matlab ‘ward’ linkage 

method to cluster nearby ICs (Matlab pdist() followed by linkage()). A dendrogram was 

constructed (Matlab dendrogram()) with branching set to yield 150 small but 

homogeneous clusters of IM templates.  In these initial clusters, three categories of IM 

clusters were identified, primarily affecting spectral power in the alpha band (8-12 Hz), 

beta band (13-30 Hz), and higher frequencies respectively. IM templates in each category 
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were then further clustered using the same distance/linkage method, producing eight 

template clusters.

Results

The durations of the 510 recorded emotion periods (15 emotions × 34 subjects) were 

between 43 sec and 12 min (on average, 218 ± 94 sec) during experimental sessions of 

about 80 minutes. 

[Figure 2 about here]

Representative Results. Figure 2 shows effects of seven IMs on 11 (of 20) ICs used in 

the analysis of one subject's data. Each figure row represents one IM and each column 

one IC. Note that IM12 clearly modulates only IC9, while other IMs clearly co-modulate 

the spectra of 3-7 ICs. Like the IMs of other subjects, most of the non-negligible spectral 

templates for each IM are highly correlated, though the ICA decomposition was in no 

way constrained to produce this result. (Note, however, that the activation template of 

IM9 on IC22 also includes a weak negative effect around 10 Hz not apparent in its larger 

effects on, for example, IC19; the significance of such anomalies is not investigated 

here). The left column of Fig. 2 shows the distributions of time window weights for each 

IM; all are unimodal and bivalent, with varying skew and kurtosis.

Fig. 3 depicts the maximal effects of five IMs on nine ICs from Fig. 2. The back-

projections of the most positively-weighted time window for each IM (colored traces) are 

added to their respective baseline mean power spectra (black traces). The superposition 

of IMs in each panel emphasizes the frequency specificity and unique modulation 

patterns of each IM on the selected IC spectra. For example, IM1 and IM4 modulate the 

upper and lower edges of alpha-band power for IC1 and IC8 (lower central panels). Note 

that the IM3 beta-band (15-20 Hz) modulation of IC1 (center panel) does not affect 

power at the alpha-harmonic beat band peak near 20 Hz, which is controlled by IM1 and 

IM4. However, the IM3 beta modulation is near the harmonic of the mean IC15 alpha 

peak, illustrated by the beta peak of IM5 (right middle panel), which produces an alpha 
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band modulation at a slightly slower frequency than the alpha-band peak frequencies of 

IM1 and IM4.

[Figure 3 about here]

The upper limits of the grey shaded regions in Fig. 3 show, for each IC, the upper 

99th power percentiles at each frequency. The limits of the PCA-reduced data are shown 

in dark grey. For some ICs (IC1 and IC8), the maximal contributions of the illustrated 

IMs account for the extremes of the darker grey area, but for other ICs (IC18), the 

variability of the PCA-reduced data is accounted for by other IMs (not shown).

[Figure 4 about here]

Figure 4 illustrates the variability in time-domain and spectral activity of one IC 

accounting for left-central and frontal-midline scalp mu-rhythm activity. Two modulators 

(IM3 and IM4) modulate IC13 power in the alpha range, one maximally near 10 Hz and 

the other near 12 Hz. The mean IC alpha-band peak, across all time windows, falls 

between the alpha peaks of these modulators (i.e., near 11 Hz). In Fig. 4, several time 

windows are selected as highly weighted on IM3, IM4 or both (B, scatter plot), and the 

phase-aligned IC activity time courses centered on these highly weighted windows (D) 

are overplotted. In both sets of time windows, the IC activity has a non-sinusoidal, 

spindle-like pattern with sharp triangular peaks and broad, blunted troughs, hence the 

designation ‘µ rhythm’. This wave shape produces the harmonically coupled alpha and 

beta band peaks in the IC window spectra (C). Thus, the two IMs index regulation of 

periodic but non-sinusoidal mu-activity patterns at two different alpha band frequencies.

IM Clusters. Cluster analysis (see Methods) was used to derive eight IM clusters with 

different frequency characteristics and patterns of spatial effects. The eight identified 

clusters could be grouped into three classes of IMs most notably affecting alpha, beta, 

and higher frequency activities, respectively.
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[Figure 5 about here]

Alpha-band modulators. The class of IMs predominantly affecting alpha-band power 

comprised three IM clusters (Fig. 5).  The first cluster (Fig. 5A) predominantly 

modulated the IC mean peak alpha-band frequency (1×) and its harmonics (2× and 3×), 

while the other two alpha-band clusters had maximal effects on alpha-band activity 1-2 

Hz below (B) or above (C) the mean IC alpha-band peak and, again, at its harmonics. The 

sample IMs shown on the right of Fig. 5 demonstrate the typically similar pattern of 

frequency effects of these IMs on all the affected ICs. 

Balls in the central panels of Fig. 5 represent the positions of equivalent dipole 

models for affected ICs, their color varying according to the sign and root mean-square 

(RMS) strength of their IM template, relative to its most-strongly modulated IC. Black 

balls represent equivalent dipoles of ICs solely affected by an IM, without IC co-

modulates, while green lines connect ICs modulated by the same IM. Blue spheres 

indicate that the effect of the IM on the IC spectrum is opposite to its effect on the 

maximally-affected IC, while dipoles shown by red or warm-color balls represent ICs co-

modulated by the IM in the same direction as the maximally-affected IC.

ICs affected by the three alpha-band IM clusters were densely distributed across 

similar occipital, parietal and somatomotor areas, but were significantly absent from 

frontal cortex. Fig. S1 (second row) in Supplement A shows the spatial distribution of 

their combined density difference from similar-sized density distributions drawn at 

random from all the ICs used in the analysis (first row). In the ‘at-peak’ alpha-band 

cluster, 46% of IMs (53 of 116) affected power at a single IC, while 78% of the ‘off-

peak’ alpha-band cluster IMs (262 of 335) co-modulated the maximally independent 

activities of at least two ICs. More often than expected by chance (Fig. S2), the off-peak 

cluster ICs were located near bilaterally across the mid-sagittal sulcus, and more of the 

off-peak cluster ICs were best modeled by bilateral equivalent dipole pairs (p << 0.01 by 

permutation testing). The at-peak cluster had a similar but weaker trend (p = 0.055). 
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[Figure 6 about here]

Beta-band modulators. Two clusters of beta-band IMs primarily affecting low beta band 

(~13-25 Hz) and high beta band (or low gamma band) (~25-35 Hz) activity, respectively. 

High-beta band IMs were drawn from only 15 (44%) of the 34 subjects, while low-beta 

band modulators were recovered from 26 subjects (76%). The sample IMs shown in Fig. 

6 (right) demonstrate the typically similar pattern of frequency effects of these IMs on the 

affected ICs. Density of ICs affected by low-beta band IMs was high in portions of left 

central and in right frontal cortex, and was low in central medial brain areas (Fig. S1, 

third row). For this cluster also, bilateral left-right dipole pairs were co-modulated more 

often than by chance and co-modulated dipole pair distance featured nearby dipoles (Fig. 

S3).

High-beta band IMs were unexpectedly dense in central somatomotor regions 

bilaterally, and were absent from medial occipital cortex (Figs. 6A, S1). Of the beta-band 

cluster IMs, only 11% were ‘solo’ IMs (15/137 low-beta; 7/55 high-beta) without above-

threshold effects on other ICs.

[Figure 7 about here]

Broadband modulators. Three clusters of IMs modulated power across a broad 

frequency range, with strongest relative effects in the gamma band (above 30 Hz). The 

first such cluster (Fig. 7A) affected the global balance between high-frequency and low-

frequency power in many or all of the IC processes included in the analysis, with a mean 

fulcrum frequency near 25 Hz. 

A second broadband IM cluster (Fig 7B) selectively modulated power of some 

ICs at all frequencies above 20 Hz, with smoothly increasing effect at higher frequencies, 

and including effects of opposite sign, as in the example shown on the right. Essentially, 

IM templates including positive and negative template effects shifted the spatial balance 

of high-frequency EEG power across the affected IC subset. However, detailed 

inspection of the locations of IMs co-modulated with opposite signs revealed no simple 
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spatial pattern in these differences. Fully 95% of cluster IMs (164 of 172) affected more 

than one IC. The distribution of affected ICs was significantly dense in left somatomotor 

and right temporal cortex and near the frontal pole, and sparse in superior medial 

posterior cortex (Fig. S1). This cluster also included significantly more near-bilaterally 

situated co-modulated IC dipole pairs than random selection, and more closely situated 

co-modulated IC pairs (Fig. S3).

A third broadband IM cluster modulated broadband power smoothly across all 

analysis frequencies above 5-10 Hz, but only for a single IC (Fig. 7C). A significant 

density of cluster IM dipoles was situated in orbitofrontal cortex (Fig. S1), and a 

significant void in medial occipital and centromedial cortex. 

Broadband IM frequency range. Fig. 7 suggests that the peak frequency of the 

broadband IM effects was well above the 50-Hz limit of our analysis. High gamma 

activity between 70 Hz and 200 Hz has recently been shown to be positively correlated 

with increased local energy uptake by functional magnetic resonance imaging (fMRI) and 

with active local sensory processing by electrocorticography (Crone et al., 1998; Sinai et 

al., 2005; Canolty et al., 2006). To explore the upper frequency limits of the broadband 

IM templates we conducted trial decompositions for a few subjects including the full 

frequency range (1-125 Hz) allowed by our sampling rate (256 Hz). Results (Fig. S5)

included some broadband IM templates that peaked between 50 and 125 Hz, while many 

other broadband IM templates increased to a plateau beginning at 50-80 Hz, or still 

continued to increase at the 125 Hz cutoff, strongly suggesting they produced largest (dB) 

effects at still higher frequencies. 

Independence of broadband cortical and electromyographic modulations. Because 

broadband power fluctuations at frequencies above about 20 Hz are also characteristic of 

electromyographic (EMG) activity of scalp muscles, it might be suggested that the 

observed broadband IMs affecting cortical ICs may have simply captured muscle activity 

leaking into the spatially filtered cortical IC signals. To test this possibility, we performed 

separate control decompositions on several subjects that included ICs predominantly 

accounting for cortical EEG, scalp electromyographic (EMG), and electro-ocular (EOG) 
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activities (not shown), respectively. As expected, some resulting IMs clearly modulated 

(~20 Hz -100+ Hz) EMG activity in ICs accounting predominantly for muscle artifact 

(Fig. S5, left side). However, these IMs had no effects on ICs accounting predominantly 

for cortical EEG activity. Conversely, broadband IMs that modulated activity of cortical 

ICs (Fig. S5, right side) did not co-modulate activity of muscle or eye movement ICs, 

with one exception: Inferior-frontal solo broadband cluster IMs (Fig. 7C) were sometimes 

found to also modulate power at high frequencies in ICs predominantly accounting for 

eye movement artifacts.

Discussion 

Here we model spectral fluctuations of independent components from high-density EEG 

data as the actions of independently regulated modulator processes with frequency-

selective multiplicative effects on independent component process activities, and report 

three main classes of spectral modulation patterns. Physiological processes that may

produce these patterns include several brain systems regulating brain and behavioral 

arousal and/or valuation judgments of stimulus and other events via the release by 

midbrain or brainstem neurons of modulatory neurotransmitters – dopamine (DA), 

acetylcholine (ACh), norepinephrine (NE), serotonin, etc. – through their extensive 

cortical and thalamic projections (Robbins, 1997; Bardo, 1998). For example, application 

of the muscarinic agonist carbachol to CA3 hippocampal slices has been shown to induce 

delta, theta, and/or gamma band oscillations, depending on its concentration (Fellous and 

Sejnowski, 2000). However, any physiological model of the recovered spectral 

modulations must be evaluated experimentally. 

Alpha-band modulators. Our results demonstrate clearly that specific alpha -band EEG 

activities are mainly generated by non-sinusoidal spindle-wave processes that contribute 

harmonically linked (1×, 2×, 3×) frequencies to EEG spectra, and that IC (and scalp 

EEG) alpha-band activities are the product of multiple spindle-generating processes, 

often with slightly different periods. The unforced appearance of maximal alpha-band IM 

effects at exact harmonics (Figs. 2-3), and the time-domain appearance of activities in 
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time windows highly-weighted on single alpha-peaked IMs (Fig. 4), strongly imply that 

both posterior and central scalp alpha activities recovered from these data reflect the 

waxing and waning of asymmetrical alpha-band spindles at periodicities near 100 ms. 

While coupling between alpha and beta power spectral peaks is prominent for 

centrolateral mu-rhythm processes (Gaarder and Speck, 1967; Jurgens et al., 1995; 

Pfurtscheller et al., 1997), its appearance here in posterior eyes-closed alpha activity is 

more novel. 

A recent related analysis of spectral modulations in frontal midline ICs during a 

working memory experiment also showed that the frontal midline theta rhythm near 6 Hz, 

associated with concentration, also has an asymmetric spindle waveform and a (2×) 

harmonic spectral peak (Onton et al., 2005). Thus, both posterior and centrolateral alpha-

band and frontal midline theta-band rhythms are non-sinusoidal spindle rhythms, despite 

marked differences in cortical locations, frequencies, and contexts in which they appear.

Note that nearly no equivalent dipole models of IC processes affected by the 

alpha-band IMs were located in frontal lobe (Figs. 5, S2), in contrast to interpretation of

differences in alpha-band power between left and right frontal scalp sites, linked to 

emotion differences, as reflecting frontal brain processes (Schaffer et al., 1983). Task 

differences might explain this discrepancy; else, such effects might not reflect alpha-band 

activity generated in frontal cortex or might not be specifically associated with alpha-

band modulation. 

Our alpha-band results are not inconsistent with reported associations between 

alpha-band frequencies and cognitive processes (Vogt et al., 1998). In these studies, 

alpha-band effects were assigned to ‘upper’ and ‘lower’ alpha bands relative to a posited 

peak mean individual subject alpha frequency (IAF) averaged across posterior scalp

channels (Klimesch et al., 1998). Our results, by contrast, revealed three clusters of alpha 

IMs at, below, and above the individual IC peak mean frequency – an important 

difference (see Fig. 2). These results show that only a multiple spatiotemporal source 

model, such as the ICA-based model we used here, can adequately account for the 

spectral and spatial complexity of alpha-band scalp activity.

Our model also differs from those positing alpha-band power fluctuations to be 

dominated by a non-separable, nonlinear dynamic mechanism that produces modulation 
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time series that are self-similar over a wide range of time scales (Linkenkaer-Hansen et 

al., 2001). Though in their simplest form such models ignore the spatial complexity of 

alpha-band activity and its clear reactivity to external events, it could be of interest to 

apply such time-series embedding analyses to IC and IM time series.

Physiology. Several neuromodulators (including ACh and GABA) are known to affect 

alpha-band power (Lukatch and MacIver, 1997; Bao and Wu, 2003). ACh plays an 

important role in regulating attention related to alpha-band power modulation (Worden et 

al., 2000), and also plays a role in memory as shown by animal ACh deprivation 

experiments (Arendt, 1994). In presumably ACh-deprived early Alzheimer’s dementia 

patients, the peak mean alpha-band frequency decreases slightly (Coben et al., 1983), 

while ACh-agonist nicotine increases the resting alpha-band frequency (Kadoya et al., 

1994; Lindgren et al., 1999). These reports suggest possible ACh involvement in the 

alpha-band IM processes. 

Beta-band modulators. Lower and higher beta-band IMs (Fig. 6) were largely free of 

harmonic structure, consistent with long-reported observations of beta band activities 

independent of lower frequency rhythms (Roopun et al., 2006). Some beta-band activity 

is associated with DA as it is disrupted by nigro-striatal DA projection damage in 

Parkinson’s disease (Pezard et al., 2001; Williams et al., 2002), D2 receptor antagonists 

(Dimpfel et al., 1992), and increased by acute cocaine administration (Herning et al., 

1985). ACh has also been shown to increase neuronal firing frequency in thalamic slice 

preparations (McCormick, 1992). The prevalence, as shown in Fig. S1, of high-beta band 

activity along the sensorimotor strip has long been noted (Jasper, 1949; Crone et al., 

1998).

Broadband modulators. Although gamma-band phenomena observed in vivo are often 

reported to have a wide-band character, both the width and smoothness of the broadband 

IM frequency templates (Fig. 7) is striking, suggesting global, distributed, and region-

specific changes in cortical excitation. Together, they suggest the possibility that previous 

analyses of gamma-band effects, both on the scalp and in the cortex, may have missed 
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their true spectral extent through masking by other modulator processes, especially at 

lower frequencies, and by other activities including muscle artifacts at higher frequencies. 

Else, possibly IM analysis of data collected during performance of other tasks might 

reveal narrower gamma-band effects.

Global high/low cluster. The frequency profile of the global high/low IM cluster (Fig. 

7A) is generally consistent with changes in behavioral arousal (Makeig and Jung, 1996). 

ACh is associated with behavioral arousal through its effects on thalamus (Steriade et al., 

1982), and its extensive projections from the basal forebrain (Stewart et al., 1985) inhibit 

low-frequency and promote high-frequency cortical activity (Stewart et al., 1984; 

Herculano-Houzel et al., 1999). NE projections from the locus coeruleus (LC) are also 

widespread throughout cortex (Jones et al., 1977), and LC stimulation in both awake 

monkeys (Swick et al., 1994) and anesthetized rats (Berridge and Foote, 1991; Brown et 

al., 2005) also reduces low-frequency and increases high-frequency local field activity, 

both in frontal cortex and thalamus (Pinault and Deschenes, 1992). The correlation 

between local field power and BOLD signal in auditory cortex has a similar frequency 

profile that further associates cortical high-frequency versus low-frequency balance with 

arousal (Mukamel et al., 2005).

Broadband clusters. Rather than being confined to a particular band, the two broadband 

IM clusters (Figs. 7B and 7C) scale a wide portion of the EEG spectrum with a dB 

weighting that increases smoothly with frequency. As noted in Methods, slowly 

increasing IM templates affect the power-law fall-off of the affected IC spectra. Power-

law scaling of local field events has been observed in isolated visual cortex (Beggs and 

Plenz, 2003), though Bedard et al. argue that 1/f scaling of local field and EEG signals 

may also be produced simply by capacitive filtering effects of cell membranes in 

neuropile (Bedard et al., 2006). The possible plateau in broadband cluster templates 

above 40 Hz (Fig. 7B-C) was confirmed in several trial decompositions with frequencies 

between 1 and 125 Hz in which broadband IM template effects were sometimes near-

constant between ~50 Hz and 125 Hz (Fig. S5).
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Solo broadband IMs. This IM cluster demonstrates that ICA applied to scalp data can 

spatially separate gamma-band phenomena. Conceivably, the cluster of solo broadband 

IMs equivalent dipoles in medial sub-genual cortex (Figs. 7C, S1), strongly connected to 

amygdala and limbic influences, might reflect participants’ active emotional control

during these experiments (Bush et al., 2000; Winston et al., 2003; Koenigs and Tranel, 

2007), while the relative lateral occipital solo broadband IM densities (Fig. S1) might 

support their use of visual imagery (Kosslyn et al., 1995; Pietrini et al., 2004). Note that, 

unlike in working memory experiments (Onton et al., 2005), in the current experiments 

no IC density or IM cluster appeared in or near dorsal anterior cingulate cortex (Fig. S1).

Conclusions. Together, these results demonstrate that the dynamic character of locally 

synchronous cortical field potentials that produce scalp EEG activity exhibits distinct 

modes of concurrent variation with several new or under-appreciated features: (a) the 

dominance of non-sinusoidal alpha-band spindles in both centrolateral and posterior 

cortex; (b) the appearance of alpha spindle IMs with distinct alpha-band peak frequencies 

in the same ICs; (c) the clear separation of alpha-harmonic beta modulation from

uniquely beta-band modulators, and (d) the three types of markedly broadband 

modulators, whose presence and full frequency span may have been masked in previous 

EEG analyses based on pre-defined frequency bins or bands by the complexity of spectral 

dynamics. The generality of the results reported here must be evaluated across subject 

task and analysis parameters. Exploring the relationship of the recovered IM modes to 

actions of known neuromodulatory systems may also be of interest.
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Figure legends:

Figure 1. Independent spectral modulators of scalp EEG signals. Independent 

component analysis (ICA), applied to EEG data recorded at a large number of scalp 

electrodes, (a) identifies temporally distinct (independent) signals generated by partial

synchronization of local field potentials within cortical patches (b) and summing (∑∑∑∑) in 

different linear combinations at each electrode depending on the distance and orientation 

of each cortical patch from the scalp (a) and reference electrode (c). The spectra of 

resulting cortical independent components (ICs) monotonically decrease with frequency, 

on average, but exhibit large and frequent variations across time. These spectral 

modulations may be modeled as exponentially weighted influences of several near-

independent modulator (IM) processes (d) that independently modulate or scale (∏∏∏∏) the 

activity spectra of one or more independent component (IC) signals. On converting the 

IC spectra to log power, combined IM influences on IC spectra are converted to log-

linear weighted sums of IM influences, allowing a second linear ICA decomposition,

applied to the IC log power spectra, to separate the effects of the individual IM processes 

(d) across EEG frequencies and IC sources (b).

Figure 2. Representative independent modulation templates from one subject. IM 

window weights and frequency templates derived by multiplying the series of spectral 

deviations from the mean in each 1-s overlapping time window with the PCA/ICA 

unmixing matrix. Each row represents a computed IM, and each column an IC.  The 

figure shows the relative effects of 7 of 15 extracted IMs for this subject on the log power 

spectra of 11 ICs out of the 20 ICs used in the analysis.  The top row shows the IC scalp 

maps, and the leftmost column, the IM window weight histograms. Most IMs modulated 

the spectra of several ICs (colored squares), except IM12, which modulated power at 

higher frequencies for IC9 only. 

Figure 3. Maximal IM effects on IC power spectra. The maximal positive effects of five 

IMs (from Fig. 2) on the power spectra of nine ICs (colored traces), computed by back-

projecting the highest positive time window weight for each IM and adding back the IC 

mean log-power spectrum (black traces).  The upper borders of the grey areas show the 

(99th-percentile) maxima of raw power at each frequency, both in the entire IC data 
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(lighter grey) and in the dimension-reduced data decomposed by ICA (darker grey). Note 

the various (here, positive) effects of the IMs on the IC spectra.

Figure 4. Multiple modulations of IC alpha band activity. A. Maximal spectral 

modulations (as in Fig. 3) for two alpha band modulators (IM3 and IM4) acting on a left 

somatomotor component (IC13) accounting for mu-rhythm activity across left parietal 

and frontal midline scalp (see map, B). B. Upper panel: Map of the IC13 scalp 

projection. Blue and yellow areas receive projections with opposite sign. Lower panel: 

Scatter plot of IM3 versus IM4 window weights. Red and light blue dots group time 

windows with dominant IM3 and IM4 weighting, respectively. Lavender dots show time 

windows positively weighted for both modulators. C. Colored traces show the IC13 

power spectra for the selected time windows (from B). Black traces plot the means of the 

selected window spectra. Note the variations in peak alpha frequency between 10 Hz and 

12 Hz, here modeled as reflecting the influences of IM3 and IM4. D. Light blue and red 

traces show 3 s of IC13 activity centered on the midpoints of the selected time windows 

(see B and C) and then aligned to their central upward-going central peaks. Black traces 

show the mean phase-aligned activations. The vertical dotted black line indicates the 

center of phase alignment and the slanted dotted lines, the ±10 th local maxima in each 

mean waveform. The mean and single-trial activity waveforms are not sinusoidal, but 

rather are composed of sharp upward-going peaks and broad, blunted troughs, like the 

Greek letter mu (µ). 

Figure 5. Alpha-band IM clusters. IMs for the 34 subjects were clustered based on 

similarities in power modulation templates. IM template frequency axes were linearly 

warped to align the respective IC mean alpha-band peak frequency to 1× (10 Hz). Red 

traces are clustered frequency-adjusted IM templates, and black traces their means. 

Mean MRI images show the 3-D distribution of equivalent dipole localizations of ICs 

contributing one or more IM templates to the cluster. Black balls are clustered IMs 

without co-modulates. Green lines connect co-modulated ICs (i.e., ICs with clustered 

templates belonging to the same IM).  Warm-color balls indicate IC dipoles co-

modulated with the same sign as the maximally modulated IC dipole; cool-color balls 

dipoles of ICs co-modulated with opposite sign. The three alpha-band IM clusters 
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affected IC activity either at, below, or above the mean IC alpha peak frequency, 

respectively. 

Figure 6. Beta-band IM clusters. Two clusters of beta-band modulators maximally 

affecting low beta (13-25 Hz) and high beta (25-35 Hz) activities respectively. (Left 

panels) Clustered IM templates (blue traces), and their means (black traces). (Center 

panels) 3-D distribution of equivalent dipole locations, as in Fig. 5, for ICs modulated by 

clustered IMs. (Right panels) Sample IM templates for each cluster.

Figure 7. Broadband IM clusters. (Left panels) Broadband IM templates (green traces) 

and their means (black traces). (Center panels) Equivalent dipole distributions of 

modulated ICs (as in Fig. 5). (Right panels) Sample IM templates for each cluster. A.

Global high/low cluster of IMs adjusting the ratio of high-frequency versus low-

frequency power in all cortical ICs, with a mean frequency fulcrum near 25 Hz. B. 

Cluster of IMs that selectively co-modulated and/or spatially redistributed broadband 

power across several (but not all) IC, with stronger effects at higher frequencies.  C. 

Cluster of IMs that increased or decreased broadband power above 5-10 Hz, and 

particularly above 30 Hz, in a single IC process. 
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Figure 1. Independent spectral modulators of scalp EEG signals. Independent component 
analysis (ICA), applied to EEG data recorded at a large number of scalp electrodes, (a) 

identifies temporally distinct (independent) signals generated by partial synchronization 
of local field potentials within cortical patches (b) and summing ( ) in different linear 

combinations at each electrode depending on the distance and orientation of each cortical 
patch from the scalp (a) and reference electrode (c). The spectra of resulting cortical 

independent components (ICs) monotonically decrease with frequency, on average, but 
exhibit large and frequent variations across time. These spectral modulations may be 
modeled as exponentially weighted influences of several near-independent modulator 

(IM) processes (d) that independently modulate or scale ( ) the activity spectra of one 
or more independent component (IC) signals. On converting the IC spectra to log power, 
combined IM influences on IC spectra are converted to log-linear weighted sums of IM 

influences, allowing a second linear ICA decomposition, applied to the IC log power 
spectra, to separate the effects of the individual IM processes (d) across EEG frequencies 

and IC sources (b). 
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Figure 2. Representative independent modulation templates from one subject. IM window 
weights and frequency templates derived by multiplying the series of spectral deviations 
from the mean in each 1-s overlapping time window with the PCA/ICA unmixing matrix. 

Each row represents a computed IM, and each column an IC. The figure shows the 
relative effects of 7 of 15 extracted IMs for this subject on the log power spectra of 11 

ICs out of the 20 ICs used in the analysis. The top row shows the IC scalp maps, and the 
leftmost column, the IM window weight histograms. Most IMs modulated the spectra of 

several ICs (colored squares), except IM12, which modulated power at higher 
frequencies for IC9 only.  
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Figure 3. Maximal IM effects on IC power spectra. The maximal positive effects of five 
IMs (from Fig. 2) on the power spectra of nine ICs (colored traces), computed by back-
projecting the highest positive time window weight for each IM and adding back the IC 
mean log-power spectrum (black traces). The upper borders of the grey areas show the 

(99th-percentile) maxima of raw power at each frequency, both in the entire IC data 
(lighter grey) and in the dimension-reduced data decomposed by ICA (darker grey). Note 

the various (here, positive) effects of the IMs on the IC spectra. 
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Figure 4. Multiple modulations of IC alpha band activity. A. Maximal spectral modulations 
(as in Fig. 3) for two alpha band modulators (IM3 and IM4) acting on a left somatomotor 

component (IC13) accounting for mu-rhythm activity across left parietal and frontal 
midline scalp (see map, B). B. Upper panel: Map of the IC13 scalp projection. Blue and 
yellow areas receive projections with opposite sign. Lower panel: Scatter plot of IM3 

versus IM4 window weights. Red and light blue dots group time windows with dominant 
IM3 and IM4 weighting, respectively. Lavender dots show time windows positively 

weighted for both modulators. C. Colored traces show the IC13 power spectra for the 
selected time windows (from B). Black traces plot the means of the selected window 
spectra. Note the variations in peak alpha frequency between 10 Hz and 12 Hz, here 

modeled as reflecting the influences of IM3 and IM4. D. Light blue and red traces show 3 
s of IC13 activity centered on the midpoints of the selected time windows (see B and C) 

and then aligned to their central upward-going central peaks. Black traces show the mean 
phase-aligned activations. The vertical dotted black line indicates the center of phase 

alignment and the slanted dotted lines, the Â±10 th local maxima in each mean 
waveform. The mean and single-trial activity waveforms are not sinusoidal, but rather are 
composed of sharp upward-going peaks and broad, blunted troughs, like the Greek letter 

mu ( ).  

Page 33 of 43

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

The Journal of Neuroscience
For Peer Review Only



Figure 5. Alpha-band IM clusters. IMs for the 34 subjects were clustered based on 
similarities in power modulation templates. IM template frequency axes were linearly 

warped to align the respective IC mean alpha-band peak frequency to 1Ã� (10 Hz). Red 
traces are clustered frequency-adjusted IM templates, and black traces their means. 
Mean MRI images show the 3-D distribution of equivalent dipole localizations of ICs 
contributing one or more IM templates to the cluster. Black balls are clustered IMs 

without co-modulates. Green lines connect co-modulated ICs (i.e., ICs with clustered 
templates belonging to the same IM). Warm-color balls indicate IC dipoles co-modulated 
with the same sign as the maximally modulated IC dipole; cool-color balls dipoles of ICs 
co-modulated with opposite sign. The three alpha-band IM clusters affected IC activity 

either at, below, or above the mean IC alpha peak frequency, respectively.  
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Figure 6. Beta-band IM clusters. Two clusters of beta-band modulators maximally 
affecting low beta (13-25 Hz) and high beta (25-35 Hz) activities respectively. (Left 

panels) Clustered IM templates (blue traces), and their means (black traces). (Center 
panels) 3-D distribution of equivalent dipole locations, as in Fig. 5, for ICs modulated by 

clustered IMs. (Right panels) Sample IM templates for each cluster. 
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Figure 7. Broadband IM clusters. (Left panels) Broadband IM templates (green traces) 
and their means (black traces). (Center panels) Equivalent dipole distributions of 

modulated ICs (as in Fig. 5). (Right panels) Sample IM templates for each cluster. A. 
Global high/low cluster of IMs adjusting the ratio of high-frequency versus low-frequency 
power in all cortical ICs, with a mean frequency fulcrum near 25 Hz. B. Cluster of IMs that 
selectively co-modulated and/or spatially redistributed broadband power across several 

(but not all) IC, with stronger effects at higher frequencies. C. Cluster of IMs that 
increased or decreased broadband power above 5-10 Hz, and particularly above 30 Hz, in 

a single IC process.  
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Figure S1. Spatial densities of independent modulator clusters. The top row shows the 
density of model dipoles for the dipolar independent component (IC) processes from 34 

subjects used in the analysis. Color scale: Equivalent dipoles/subject/cc. Rows 2-7: 
Significant density differences from random selection for the noted IM clusters. Color 

scale: same as top row. Methods: To compute density, each dipole was replaced with a 
Gaussian cloud and then summed. Finally, results were scaled to dipoles/cc/subject. 

Rows 2-6 show significant dipole density differences from this distribution for ICs whose 
log spectra were modulated by IMs in the indicated IM clusters. Statistical significance of 
the observed density differences were estimated (at p < .01, not corrected for multiple 

comparisons) by drawing equal numbers of dipoles at random and computing the spatial 
density difference for this surrogate data. Repeating this process 500 times, sorting the 

resulting density difference values at each voxel, then noting the 1st and 99th percentiles 
values at each voxel, produced threshold images which were used to mask out non-

significant density differences. 
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Figure S2. Model dipoles and connection statistics for the three alpha-band clusters. Left 
column: Equivalent dipole models (balls) and co-modulate connections (green lines). For 

details, see Fig. 5. second column. Polar angle histograms showing the distribution of 
axial plane angles of co-modulated equivalent dipole pairs (left column, red outlines). 

Green shapes show the 1st and 99th percentiles of surrogate data distributions created 
by randomly permuting the connections between cluster dipoles. Third column, red 

marks: Variance of the projection of the angle histograms (second column, red outlines) 
on the X (left-right) and Y (front-back) directions. Green spots: Variances of surrogate 
data histograms (see above). Note the large and highly significant dominance of the 
bilateral angle distributions for the off-peak alpha-band clusters (lower rows). Right 

column, red dots: Distributions of 3-D distances between co-modulated equivalent dipole 
pairs in the cluster. Green shapes: upper and lower limits represent 1st and 99th 

percentiles of the surrogate data distributions. Note the trend towards co-modulations 
involving nearby equivalent dipoles.  
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Figure S3. Model equivalent dipoles and co-modulated dipole pair statistics for the two 
beta-band clusters. As in Fig. S2. Note the dominance of bilateral dipole-pair connections 

for the low-beta band cluster (top middle columns) and the skew of the dipole-pair 
distance distribution towards short-range connections (upper right column).  
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Figure S4 Model equivalent dipoles and co-modulated dipole-pair connection statistics for 
the two broadband clusters. As in Fig. S3. The global high/low cluster (upper row) 

contains all the dipoles for the 18 subjects represented in this cluster. For the selective 
broadband cluster (lower row), note the skew of the co-modulated equivalent dipole pair 

histogram (lower right panel) toward local connections, and the near dominance of 
bilateral connections (lower middle panels). 
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Figure S5. IM templates from a IM decomposition including cortical and 
electromyographic ICs with extended frequency range. Representative results of an IM 

decomposition for one subject including 23 ICs, 14 cortical components with near-dipolar 
scalp maps (some shown on right), plus 9 ICs accounting predominantly for scalp EMG 

activities, at frequencies between 1 Hz and 125 Hz. The illustrated broadband IMs either 
affect a single EMG IC (left) or one or more cortical ICs (right). Figure format as in main 
Fig. 2. Note the multi-peaked time-window weight histograms of the EMG components 

(left column) and the expected concentration of their spectral effects between 20 Hz and 
100 Hz. Note, most importantly, the lack of effect of the EMG IMs on the cortical 

component spectra. Note, the sharp reductions at the line frequency, 60 Hz, from the 
broadband IM effects on cortical ICs. Checking the mean log spectra of these ICs 

confirmed the presence of similar-sized 60-Hz spikes in their power spectra in nearly all 
cases. The apparent deviance of the broadband IM templates at the line noise frequency 
(Fig. S5) likely reflects the lack of effect of these modulator processes on the remnant 

line noise in the cortical IC activations.  
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Guided Imagery Emotion Narratives 
 

Positive Emotions (alternating, in random order, with negative emotions) 

 
Awe � You are standing at a vista point observing a scene of surpassing beauty, beginning to take it all in. 
Perhaps you are watching a sunset over the ocean, or tree-topped mountains stretching to the horizon. Or 
perhaps you are taking in the vastness of the Grand Canyon.  As you view the glorious scene spread out 
before you, you are overcome by an amazing and all-encompassing feeling of complete and total awe at the 
beauty of creation. Allow this vision and feeling to permeate your entire being.  

Compassion � You are beginning to be filled with a feeling of loving concern for someone less fortunate 
than you who is suffering. Feel your body filling with intense sympathy and deep compassion for them. 
Perhaps you understand and sympathize with the suffering of a friend or loved one. Or perhaps you feel 
compassion for a stranger who is in trouble and is quietly calling out for love and understanding.  Allow 
yourself to fully experience your compassion for their plight and suffering.   

Contentment � You are beginning to feel completely at ease. Your mood is calm and pleasant.. You feel 
everything is as it should be. Just now, you are facing no opposition. You feel everything is easy and 
graceful. You feel neither excited nor sad. You are filled with a pleasant and present feeling of contentment 
with everything.  You enjoy this contented feeling as it pervades your entire body.   

Excitement � You are beginning to feel quick, energetic, uplifted. Perhaps you sense this is really your 
lucky day.  Perhaps something you dreamed of experiencing is finally about to arrive, something that opens 
up new, exciting possibilities for you. You are finally getting your chance to experience something you have 
longed been looking forward to. Your body is filled with excitement that bubbles up and out of you in every 
direction. 
Happiness � You begin to feel a feeling of lightness and brightness enter you. You feel infused with 
cheerfulness. Your mouth wants to smile; your eyes take on an undeniable glimmer. Your feeling is one of 
full and complete happiness. Perhaps you imagine a perfect day� the sun is shining and you are surrounded 
by your favorite friends, enjoying your favorite activity. Perhaps you are walking through a beautiful 
countryside, or are on your way to a special party. You have no worries. Your entire body is filled with 
idyllic happiness. 

Joy � You are beginning to sense a lightness in your being. You seem to want to smile.  You have received 
outstanding news of something that fills your heart with pure joy. You could never have dreamt of being so 
fortunate. You feel practically like walking on air. Your feeling of blissful joy is pervasive and thrilling.   

Love � You begin to feel a bright glowing feeling of love welling up inside you. Perhaps your thoughts turn 
to someone you love dearly. Or perhaps you have a more general feeling of all-encompassing love for life, 
for truth, or for love itself. Invite this feeling of unconditional and enveloping love to fill a radiate from every 
part of your being.    

Relief � You are beginning to feel like taking a deep and relaxing plunge. You are free of the stress you 
were under. Perhaps you have just finished a long and difficult project. Or perhaps a pain or illness you were 
experiencing has just gone away. You feel a distinct and satisfying feeling of relief growing in you. Allow 
your body to become lightened and freed by this profoundly welcome feeling.     
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Negative Emotions (alternating, in random order, with positive emotions) 

 
Anger � Your heart is beginning to pound, your face feels warm and a feeling of distress is growing. You 
are feeling an intense and burning anger. Perhaps you remember an event in your life that caused 
uncontrollable anger to swell inside of you. Or perhaps you imagine an injustice�someone has demolished 
your car out of contempt, or your partner has betrayed you. Let this anger escalate inside of you. 

Disgust � You begin to feel revolted by what you are experiencing. Perhaps your face and stomach tighten 
as you open a can of food and find inside a festering mess that exudes a horrible smell. Perhaps you are 
exposed to a vile scene on TV or in real life. You feel an utter disgust that makes you want to run. But you 
cannot escape it; you must endure it while feeling of disgust fills your being.   
Fear � You are beginning to feel anxious and uneasy. You feel your breathing tighten and an emptiness in 
the pit of your stomach. You are gripped with real fear and cannot escape it. Perhaps you are physically 
threatened�your house is on fire, your boat is sinking, or an earthquake is shattering your home. Or, you are 
facing a frightening emotional challenge�a public speech, or an operation. For this short time, allow the 
imagined fear to dominate your being.    
Frustration � Something is not going as you would wish. You are beginning to feel agitated. Your body 
feels tense and uncomfortable, yet you feel helpless to change your situation. Perhaps your computer has 
crashed, deleting valuable files, or your ride to the airport is now an hour late. Or perhaps you are in a hurry 
but stuck in traffic. Gradually, you are overwhelmed with a profound and utter frustration. Let this feeling of 
frustration and annoyance affect your whole body.    

Grief � You are beginning to feel weighed down and leaden. Perhaps you have learned that a loved one has 
died unexpectedly. Perhaps your work has just collapsed, or your family dissolved. You feel a profound 
feeling of grief overwhelming you like a heavy weight. Your entire body is affected. Your heart is heavy, 
your mind anguished, your face sinks. Tears begin to gather. You can do nothing but endure this grief more 
and more until it eventually wears away.   
Jealousy � You are beginning to feel a seething, hateful feeling growing inside you. You feel troubled and 
uncomfortable as a fierce feeling of jealousy takes over. Perhaps your beloved is abandoning you for 
someone more beautiful or talented. Or, perhaps you are jealous of a peer whose work receives more praise 
than yours, or you see someone enjoying financial freedom you can only dream of Allow unrelenting 
jealousy to well up within you.   

Sadness � Your mood is beginning to become heavy. You feel lethargic and dull. Your forehead begins to 
droop and the corners of your mouth to turn downwards. Behind your eyes, tears begin to well up. You feel a 
profound and inescapable sadness. Perhaps you recall a sad scene from your life, or perhaps all your 
problems have become too much for you to handle and a deep sadness has captured you,. Allow the sadness 
to fill your body and mind.    
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