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4.1 Adaptivity in BCls



Unknown Parameters

* for most BCl questions and implementations, the
parameters leading to best accuracy (W,b, ...) are a
priori unknown...

— Depend on highly variable factors
(e.g., sensor placement, subject state)

— Different for every person, task, montage, etc.

— Depend on hard-to-measure factors
(e.g., brain functional map)

— Depend on expensive-to-measure factors
(e.g., brain folding)

* How to solve this problem?



Model Calibration

* Can use calibration / training data to estimate
parameters from, and a separate calibration step

Calibration data

e

Calibration step




Prior Knowledge
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Prior Knowledge

* Prior knowledge is neuroscientific, such as:

— Anatomical atlases
(e.g. Talairach, LONI)

— Functional atlases
(if available)

— Timing information
(e.g. neural latencies,
reaction times)

— Frequency bands of
oscillatory processes
(alpha, beta, thets, ...)
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Calibration Data

Example/calibration data is used to calculate

optimal parameters of a BCI, and is extremely
Important
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The Ideal Calibration Data

e Collected with the same/similar measurement
apparatus as used for online runs

— otherwise extra transformations and uncertainty
incurred

* Comprises multiple independent realizations /
repetitions / trials (to quantify variability)

— one-shot learning (one exemplar) is much harder



The Ideal Calibration Data

* Collected under conditions that are as close to
those of the online runs as possible (i.e., drawn
from the same statistical distribution)

— Same person is preferable

— Same sensor arrangement is preferable

— Same session is preferable

— Task parameters (stress level, ...) should be similar

* Obviously a cost/benefit tradeoff:

— Would trade off some performance for being able to
reuse one recording for multiple sessions and persons



The Ideal Calibration Data

 |f thereis a bias (e.g., different session), data
should cover multiple realizations (e.g.,
multiple sessions) to capture variability

e A plain EEG recording is “unlabeled” (no
knowledge about the association between raw
observed signal and the cognitive state
variable of interest)

* Labeled data (person is “surprised” / “not
surprised”) is far more useful than unlabeled



Swartz{

Center for
omputational

2 The Ideal Calibration Data

* Labels are assigned per realization (e.g., per
trial) and index the output that the BCl shall
produce for this class of data
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Summary

* The required data to calibrate a BCl resembles
data produced by controlled psychological
experiments

Time in ms

Zander et al., 2010



Summary

* Features
— continuous EEG (or other)
— multiple trials/blocks (capturing variation)
— randomized (eliminating confounds)

— event markers to encode cognitive state
conditions of interest, e.g., stimuli/responses
(called “target markers” in BCILAB)

* Can also be used for offline performance tests
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4.2 Machine Learning



Machine Learning

e Large field with 100s of algorithms

e Most methods conform to a common framework of a
training function and a prediction function

Data »

Labels »
N

Training
function

/ Machine Learning Method

B Model

New Data »
Model B)

Prediction
function

* Intermediate model parameters @ capture the

learned relationship

e Data X € RV*¥ and Labels / target values y € RV*P
N = #trials, F = #features, D = #output dims.



Machine Learning

 The Machine Learning Framework is largely
trial-based (learning from exemplars)

* Most methods come in form of two functions:
learning function and prediction function

* Learning function is often far more complex
than the prediction function



Sub-Types In ML

Supervised Learning: given a set of
(input,output) pairs as training data, learn a
parametric (or “non-parametric”) model M that
encodes the mapping from input to output

Unsupervised Learning: given a set of training
examples, learn the structure in the input space
(e.g. clusters, manifolds, probability density)

Semi-Supervised Learning: Some training
examples have labels, others do not

Others: e.g., Active Learning, Online Learning, ...



Related Areas

Probability Theory
Statistics

Optimization

Neural Networks
Artificial Intelligence, ...



Using Machine Learning

e Often, one trial segment (sample) is extracted for

every target marker in the calibration recording and
is used as training exemplar X,

* Its associated label y, can be deduced from the
target marker
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Using Machine Learning

* The training function computes a parameter (here 0)
of the prediction function such that the performance

on the given example data is optimal
 What is considered optimal depends on extra

assumptions (a.k.a. priors)
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Detour: Feature Extraction

e Caveat: Off-the-shelf machine learning methods
often do not work very well when applied to raw
signal segments of the calibration recording

— too high-dimensional (too many parameters to fit)

— too complex structure to be captured (too much
modeling freedom)

1000s of degrees of freedom!

—
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Detour: Feature Extraction

e Solution: Introduce additional mapping (called
“feature extraction”) from raw signal segments onto
feature vectors

— output is often of lower dimensionality

— hopefully statistically “better” distributed (easier to
handle for machine learning)



Examples of Feature Extraction

 Depends on the process of interest (e.g.
oscillation, ERP peak, complex phenomenon)

* For oscillations, e.g.:

— log-Variance (logarithm yields more convenient data
distributions)

— Part of the Fourier spectrum
* For ERPs, e.g.:
— Peak latency, height, width (artificial example)

— Mean in one or more time ranges relative to an event
— Subset of Wavelet coefficients
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4.3 Concrete Case Study



Example Calibration Problem

* Task: A person is presented with a sequence of
300 images (one ever 2 seconds). Half of the
images are exciting, the other half are not.

One channel of EEG (at Cz location) is recorded.

* Question: How to design a BCI that can
determine whether a person is shown an exciting
or a non-exciting image?

* Approach: For each trial k, cut out an epoch X, of
1s length, extract a short vector of features f,,
and assign a label y, in {E,NE}. Use machine

learning to find an optimal statistical mapping
from f, onto y,.



* A supposed characteristic peak in a time
window (relative to an event) could be
characterized by three parameters:
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Extracting Features of a Peak



Resulting Feature Space

* Plotting the 3-element feature vectors for all
exciting trials in red, and non-exciting trials in
green, we obtain two distributions in a 3d
space:

peak latency

peak width peak amplitude



ML with Feature Extraction

* Including the feature extraction, the analysis process
is as follows:
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Using Machine Learning

* The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)
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Using Machine Learning

* The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

* ... which determines a parametric predictive mapping

e.g., LDA
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LDA In a Nutshell

* Given trial segments x;, (in vector form) in C; and C5,
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Resulting Predictive Map

* LDA generates parameters of a linear mapping

y=0x+0b

* For classification, the mapping is actually non-
linear:
y = sign(Ox + b)



More on LDA

* Assumptions:

— Data in each class is distributed according to a
Gaussian distribution

— Shape of the distribution is identical for all classes

 Benefits:

— Simple, fast and optimal in the large-sample limit if
assumptions are true

* Problems:
— Very sensitive to outliers (non-Gaussian)

— Covariance matrix estimates become unreliable /
unusable for too few trials and too many dimensions



1.
2.
3.
4.

Putting it Together

Apply band-pass filter to calib. recording
Extract epochs relative to target markers
Extract features for each epoch (here: peaks)

Submit all feature vectors & target labels to
LDA to calculate @ and b of the predictive

mapping



Putting it Together

* For online operation, the overall prediction
function consists of the feature extraction

followed by the predictive map
* This yield a primitive “excitement detector”
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BClI Models

e BCls are described by “BCl models” that specify both
the filter graph and the prediction function (incl. its

parameters)
* These models are the result of the calibration step
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process

“BCI Paradigms”

* BCI paradigms are a notion that was first developed
in the BCILAB framework

* A BCl paradigm is the full description and codification
of a particular type of calibration and prediction
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4.4 Performance Evaluation



How to Evaluate a Model?

machine learning

Calibration recording(s)




Overall Evaluation Strategies

 When given calibration data and test data...

e Estimate model parameters (spatial filters, statistics)
e Apply the model to new data (online / single-trial)

* Measure prediction performance or loss

Calibration data Future data...




Overall Evaluation Strategies

* Note: Overall loss estimate between a vector
of predictions p and a vector of targets t is a
summary statistic

* Mean-Square Error:

1
— Lysg(p,t) = ﬁZk(pk — t)°
e Mis-Classification Rate:

1'pk * tk

1
—Lycr(p,t) = Nzk{o p, =t



Overall Evaluation Strategies

e What if there is no second data set?

Compute Loss

/

Calibration data Future data...




Overall Evaluation Strategies

* Alternative: split one data set repeatedly into
training/test blocks systematically, a.k.a. cross-
validation

e Each trial is used for testing once

 Time series data: Prefer block-wise cross-validation
over randomized

Training

part




Overall Evaluation Strategies

* Consideration: Since neighboring trials are more
closely related than training and future online data,
leave a margin of several trials/seconds between
training and test

e Standard splitting schemes: 5x, 10x

Training
part




Overall Evaluation Strategies

* Parameter search can be done using cross-validation
in a grid search (try all values of free parameters)

* Quite general (e.g. can search for best method)

Best
Model

For all param. values... ’
Training




Overall Evaluation Strategies

Parameter search can be done using cross-validation
in a grid search (try all values of free parameters)

Quite general (e.g. can search for best method)

4

However: Cannot directly report “best performance’
estimates (=cherry-picked), except on future data

Best
Model

For all param. values...
: Future data...
Training
v




Overall Evaluation Strategies

* Parameter search can be done using cross-validation
in a grid search (try all values of free parameters)

* Alternatively: Parameter search can be nested within
an outer cross-validation (“nested cross-validation”)

Best
Model

For all param. values... ’
Training Test
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L4 Questions?



