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4.1 Adaptivity in BCIs 



Unknown Parameters 

• for most BCI questions and implementations, the 
parameters leading to best accuracy (W,b, …) are a 
priori unknown… 
– Depend on highly variable factors  

(e.g., sensor placement, subject state) 

– Different for every person, task, montage, etc.  

– Depend on hard-to-measure factors  
(e.g., brain functional map) 

– Depend on expensive-to-measure factors  
(e.g., brain folding) 

 

• How to solve this problem? 



Model Calibration 

• Can use calibration / training data to estimate 
parameters from, and a separate calibration step 

 

      Calibration data       Calibration data 

BCI 
Model 

BCI 
Model 

Calibration step Calibration step 



Prior Knowledge 

• Prior knowledge is neuroscientific, such as: 
– Anatomical atlases 

(e.g. Talairach, LONI) 
– Functional atlases 

(if available) 
 

– Timing information  
(e.g. neural latencies,  
reaction times) 

 

– Brain idle rhythm 
frequency bands 
(alpha, beta, theta, …) 
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Prior Knowledge 

• Prior knowledge is neuroscientific, such as: 
– Anatomical atlases 

(e.g. Talairach, LONI) 
– Functional atlases 

(if available) 
 

– Timing information  
(e.g. neural latencies,  
reaction times) 

 

– Frequency bands of  
oscillatory processes 
(alpha, beta, theta, …) 



Calibration Data 

• Example/calibration data is used to calculate 
optimal parameters of a BCI, and is extremely 
important 

 



The Ideal Calibration Data 

• Collected with the same/similar measurement 
apparatus as used for online runs 

– otherwise extra transformations and uncertainty 
incurred 

• Comprises multiple independent realizations / 
repetitions / trials (to quantify variability) 

–  one-shot learning (one exemplar) is much harder 



The Ideal Calibration Data 

• Collected under conditions that are as close to 
those of the online runs as possible (i.e., drawn 
from the same statistical distribution) 

– Same person is preferable 

– Same sensor arrangement is preferable 

– Same session is preferable 

– Task parameters (stress level, …) should be similar 

• Obviously a cost/benefit tradeoff:  

– Would trade off some performance for being able to 
reuse one recording for multiple sessions and persons 



The Ideal Calibration Data 

• If there is a bias (e.g., different session), data 
should cover multiple realizations (e.g., 
multiple sessions) to capture variability 

• A plain EEG recording is “unlabeled” (no 
knowledge about the association between raw 
observed signal and the cognitive state 
variable of interest) 

• Labeled data (person is “surprised” / “not 
surprised”) is far more useful than unlabeled 



The Ideal Calibration Data 

• Labels are assigned per realization (e.g., per 
trial) and index the output that the BCI shall 
produce for this class of data 

    A     B     A 



Summary 

• The required data to calibrate a BCI resembles 
data produced by controlled psychological 
experiments 

 

Zander et al., 2010 



Summary 

• Features 

– continuous EEG (or other) 

– multiple trials/blocks (capturing variation) 

– randomized (eliminating confounds) 

– event markers to encode cognitive state 
conditions of interest, e.g., stimuli/responses 
(called “target markers” in BCILAB) 

• Can also be used for offline performance tests 

S2 S1 R1 S1 



Big Picture 
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4.2 Machine Learning 



Machine Learning 

• Large field with 100s of algorithms 

• Most methods conform to a common framework of a 
training function and a prediction function 

 

 

 

 

 

• Intermediate model parameters 𝜽 capture the 
learned relationship 

• Data 𝑿 ∈ ℝ𝑁×𝐹 and Labels / target values 𝒚 ∈ ℝ𝑁×𝐷 
N = #trials, F = #features, D = #output dims. 

 

Machine Learning Method 
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Machine Learning 

• The Machine Learning Framework is largely 
trial-based (learning from exemplars) 

• Most methods come in form of two functions: 
learning function and prediction function 

• Learning function is often far more complex 
than the prediction function 

 



Sub-Types In ML 

• Supervised Learning: given a set of 
(input,output) pairs as training data, learn a 
parametric (or “non-parametric”) model M that 
encodes the mapping from input to output 

• Unsupervised Learning: given a set of training 
examples, learn the structure in the input space 
(e.g. clusters, manifolds, probability density) 

• Semi-Supervised Learning: Some training 
examples have labels, others do not 

• Others: e.g., Active Learning, Online Learning, … 



Related Areas 

• Probability Theory 

• Statistics 

• Optimization 

• Neural Networks 

• Artificial Intelligence, … 



Using Machine Learning 

• Often, one trial segment (sample) is extracted for 
every target marker in the calibration recording and 
is used as training exemplar Xk 

• Its associated label yk can be deduced from the 
target marker 

S2 S1 R1 S1 

2 1 1 

, , 
… 



Using Machine Learning 

• The training function computes a parameter (here 𝜽) 
of the prediction function such that the performance 
on the given example data is optimal 

• What is considered optimal depends on extra 
assumptions (a.k.a. priors) 

S2 S1 R1 S1 
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Detour: Feature Extraction 

• Caveat: Off-the-shelf machine learning methods 
often do not work very well when applied to raw 
signal segments of the calibration recording 

– too high-dimensional (too many parameters to fit) 

– too complex structure to be captured (too much 
modeling freedom) 

1000s of degrees of freedom! 



Detour: Feature Extraction 

• Solution: Introduce additional mapping (called 
“feature extraction”) from raw signal segments onto 
feature vectors 

– output is often of lower dimensionality 

– hopefully statistically “better” distributed (easier to 
handle for machine learning) 

 



Examples of Feature Extraction 

• Depends on the process of interest (e.g. 
oscillation, ERP peak, complex phenomenon) 

• For oscillations, e.g.: 

– log-Variance (logarithm yields more convenient data 
distributions) 

– Part of the Fourier spectrum 

• For ERPs, e.g.: 

– Peak latency, height, width (artificial example) 

– Mean in one or more time ranges relative to an event 

– Subset of Wavelet coefficients 



 



4.3 Concrete Case Study 



Example Calibration Problem 

• Task: A person is presented with a sequence of 
300 images (one ever 2 seconds). Half of the 
images are exciting, the other half are not. 
One channel of EEG (at Cz location) is recorded. 

• Question: How to design a BCI that can 
determine whether a person is shown an exciting 
or a non-exciting image? 

• Approach: For each trial k, cut out an epoch Xk of 
1s length, extract a short vector of features fk, 
and assign a label yk in {E,NE}. Use machine 
learning to find an optimal statistical mapping 
from fk onto yk. 



Extracting Features of a Peak 

• A supposed characteristic peak in a time 
window (relative to an event) could be 
characterized by three parameters: 

 Latency  
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e
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t 
 

         Width        



Resulting Feature Space 

• Plotting the 3-element feature vectors for all 
exciting trials in red, and non-exciting trials in 
green, we obtain two distributions in a 3d 
space: 



• Including the feature extraction, the analysis process 
is as follows: 

ML with Feature Extraction 
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Using Machine Learning 

• The feature vectors are passed on to a machine 
learning function (e.g., Linear Discriminant Analysis) 

f1 

f2 f3 

e.g., LDA e.g., LDA 



Using Machine Learning 

• The feature vectors are passed on to a machine 
learning function (e.g., Linear Discriminant Analysis) 

• … which determines a parametric predictive mapping 

f1 

f2 f3 

e.g., LDA e.g., LDA 

𝜽 



LDA In a Nutshell 

• Given trial segments 𝒙𝑘  (in vector form) in 𝒞1 and 𝒞2, 

𝝁𝑖 = 
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

,   Σ𝑖 =  𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

 

 
𝜽 = Σ1 + Σ2

−1 𝝁2 − 𝝁1 , b = −𝜽⊺ 𝝁1 + 𝝁2 /2 

 

• Caveat: θ often high-dimensional but only few trials available 

• Can use a regularized estimator instead, here using shrinkage; 
instead of Σ𝑖, we use Σ 𝑖 above: 

 
Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰 

 

 

𝜽 

b 



Resulting Predictive Map 

• LDA generates parameters of a linear mapping 

 
y = 𝜽𝒙 + 𝑏 

 

• For classification, the mapping is actually non-
linear:  

y = sign(𝜽𝒙 + 𝑏) 

 



More on LDA 

• Assumptions:  
– Data in each class is distributed according to a 

Gaussian distribution 

– Shape of the distribution is identical for all classes 

• Benefits: 
– Simple, fast and optimal in the large-sample limit if 

assumptions are true 

• Problems: 
– Very sensitive to outliers (non-Gaussian) 

– Covariance matrix estimates become unreliable / 
unusable for too few trials and too many dimensions 

 



Putting it Together 

1. Apply band-pass filter to calib. recording 

2. Extract epochs relative to target markers 

3. Extract features for each epoch (here: peaks) 

4. Submit all feature vectors & target labels to 
LDA to calculate 𝜽 and 𝑏 of the predictive 
mapping 

 



Filter Graph 

Putting it Together 

• For online operation, the overall prediction 
function consists of the feature extraction 
followed by the predictive map 

• This yield a primitive “excitement detector” 
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BCI Models 

• BCIs are described by “BCI models” that specify both 
the filter graph and the prediction function (incl. its 
parameters) 

• These models are the result of the calibration step 
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“BCI Paradigms” 

• BCI paradigms are a notion that was first developed 
in the BCILAB framework 

• A BCI paradigm is the full description and codification 
of a particular type of calibration and prediction 
process 
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4.4 Performance Evaluation 



How to Evaluate a Model? 

Model Model 

Calibration recording(s) 

machine learning 



Overall Evaluation Strategies 

• When given calibration data and test data… 

• Estimate model parameters (spatial filters, statistics) 

• Apply the model to new data (online / single-trial) 

• Measure prediction performance or loss 

Model Model 

Calibration data Future data… 



Overall Evaluation Strategies 

• Note: Overall loss estimate between a vector 
of predictions 𝒑 and a vector of targets 𝒕 is a 
summary statistic 

 

• Mean-Square Error: 

– 𝐿𝑀𝑆𝐸(𝒑, 𝒕)  =
1

𝑁
 (𝒑𝑘 − 𝒕𝑘)

2 𝑘  

• Mis-Classification Rate: 

– 𝐿𝑀𝐶𝑅(𝒑, 𝒕)  =  
1

𝑁
  

 1, 𝒑𝑘 ≠ 𝒕𝑘
0, 𝒑𝑘 = 𝒕𝑘

 𝑘  



Overall Evaluation Strategies 

• What if there is no second data set? 

Model Model 

Calibration data Future data… 

Compute Loss 



Overall Evaluation Strategies 

• Alternative: split one data set repeatedly into 
training/test blocks systematically, a.k.a. cross-
validation 

• Each trial is used for testing once 

• Time series data: Prefer block-wise cross-validation 
over randomized 

                        Training  
                           part 
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Model Model 



Overall Evaluation Strategies 

• Consideration: Since neighboring trials are more 
closely related than training and future online data, 
leave a margin of several trials/seconds between 
training and test 

• Standard splitting schemes: 5x, 10x 

                        Training  
                           part 

Test 
part 

Model Model 



Overall Evaluation Strategies 

• Parameter search can be done using cross-validation 
in a grid search (try all values of free parameters) 

• Quite general (e.g. can search for best method) 
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Overall Evaluation Strategies 

• Parameter search can be done using cross-validation 
in a grid search (try all values of free parameters) 

• Quite general (e.g. can search for best method) 

• However: Cannot directly report “best performance” 
estimates (=cherry-picked), except on future data 
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Training Test 

For all param. values… 
Future data… 



Overall Evaluation Strategies 

• Parameter search can be done using cross-validation 
in a grid search (try all values of free parameters) 

• Alternatively: Parameter search can be nested within 
an outer cross-validation (“nested cross-validation”) 

Test 
part 

Best 
Model 
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Training Test 

For all param. values… 



 



L4 Questions? 


