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7.1 Basics and Examples 



Oscillatory Processes 

• Best example: cortical idle rhythms, e.g. 
occipital alpha, motor cortex alpha+beta 

 

 

Malmivuo and Plonsey, 1995 



Experimental Task 

• The experiment consists of 160 trials (pause at ½ the 
experiment) . Each trial begins with a letter (either L or R) 
displayed for 3s. The subject is instructed to 
subsequently imagine either a left-hand or a right-hand 
movement. Each trial ends with a blank screen displayed 
for 3.5s. 



Motor Cortex ERD/ERS 

• Event-Related Synchronization / Desynchronization: 
attentuation of motoric idle rhythms in response to an event 

• Average spectrogram for left-hand movement imagination in 
red + average spectrogram for right-hand movement 
imagination in green (160 trials each, stimulus at t=0) 
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Motor Cortex ERD/ERS 

• Alternative visualization of information 
content per time-frequency resel, same data: 

time (s)  

freq
u

e
n

cy (H
z) 

 



 



7.2 The Spatial Filter Problem 



Quantifying Oscillatory  
Processes 

• Nonlinear operation in play, on source signals 

• Necessary due to shift indeterminacy of source 
waveforms (no precise time/phase-locking, jitter …) 

• In oscillatory processes represented by determining 
the amplitude of source oscillations 
 

𝑺 =  𝑾𝑿                         𝑭 =  DFT(𝑺)                      𝑦 =  𝜽𝑭 +  𝑏 
 

• Nonlinear operation, also discards phase information 
(If done on channels, source spectral properties cannot 
be recovered) 
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Latent Variable Viewpoint 
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How to Learn the Spatial Filter W? 

• Option A – No Learning: use fixed ad hoc 
filters instead  

• Performance not abysmal, but far from 
optimal – room for improvement 

Common Average 
Reference 

Bipolar Derivations Surface Laplacian 
Derivations 



How to Learn the Spatial Filter W? 

• Option B – Top-down: using neural-network 
like back-propagation / gradient descent 
(supervised learning) 

• Inputs X are known, desired outputs y are 
known, spectral mapping in between is known 

• For any (W,𝜽) can calculate 
the loss given known X 
and y, and update it 
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How to Learn the Spatial Filter W? 

• Option C – Bottom-up: Without looking at the 
labels y, learn a good spatial filter W for the 
data (unsupervised learning) 

• Criterion for a good spatial filter? Independent 
Component Analysis, Dictionary Learning, PCA 
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How to Learn the Spatial Filter W? 

• Option D – Both: Perform a mixture of 
unsupervised and supervised learning 

• Supervised ICA, Unsupervised pre-training + 
supervised fine-tuning, … 
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How to Learn the Spatial Filter W? 

• Option E – Using Direct Observations: Is there 
a way to observe W directly from data? 

• If given an MR scan (or default image), can use 
e.g., Beamforming 
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How to Learn the Spatial Filter W? 

• Option F – Using Additional Assumptions: 
These can make the problem solvable 

• Powerful assumption: the source activation in 
the time window of interest is jointly 
Gaussian-distributed 
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7.3 Common Spatial Patterns 



Common Spatial Patterns 

• Most popular algorithm in BCI field for 
learning spatial filters for oscillatory processes 

• Assumptions:  

– Frequency band and time window are known 

– band-passed signal is jointly Gaussian within the 
time window 

– Source activity constellation differs between two 
classes 

 

 



Common Spatial Patterns 

• Different source activities for a left-hand epoch vs. a 
right-hand epoch (band-passed to 7-30 Hz) 

• Signal activation is scatter-plotted for channels C3 
and C4: 

Blankertz 2009 



Common Spatial Patterns 

• Goal: Design a pair of spatial filters (i.e., spatial 
transforms) such that the filtered signal’s variance is 
maximal for one class while minimal for the other 

• And vice versa 
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Three Ways to Compute It 

• A) Optimization Problem: Given a set of 𝑡 trial 
segments 𝑿𝑡 ∈ ℝ𝑑×𝑁, per-trial covariance 

matrices 𝚺𝑡 = 𝑿𝑡𝑿𝑡
⊺ ∈ ℝ𝑑×𝑑, and per-class 

average covariance matrices 𝜮(𝑐) = 𝜮𝑡
𝑐, 

optimize the spatial filter 𝒘𝑐 for class 𝑐 as: 

𝒘𝑐 =
max

𝒘
   𝒘⊺𝜮(𝑐)𝒘  s.t.  𝒘⊺ 𝜮 −1 + 𝜮 +1 𝒘 = 1 
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𝒘⊺𝜮𝒘 yields the variance in direction w 



Three Ways to Compute It 

• B) Generalized Eigenvalue Problem: Given per-class avg. 
covariance matrices 𝜮𝒄, find the simultaneous 
diagonalizer 𝑽 of 𝜮−𝟏 and𝜮+𝟏:  
 

𝑽⊺𝜮−1𝑽 = 𝑫−1, 
𝑽⊺𝜮+1𝑽 = 𝑫+1,  

 

for diag. 𝑫−1 and 𝑫+1 such that 𝑫−𝟏 + 𝑫+𝟏 = 𝑰. 

• This yields a generalized eigenvalue problem of 
the form 

 

𝑽⊺𝜮−1𝑽 = 𝑫  ⋀  𝑽⊺ 𝜮−1 + 𝜮+1 𝑽 = 𝑰 

 



Three Ways to Compute It 

• Given the generalized eigenvalue problem of the 
form 

 

𝑽⊺𝜮−1𝑽 = 𝑫  ⋀  𝑽⊺ 𝜮−1 + 𝜮+1 𝑽 = 𝑰 
 

• The k smallest and largest eigenvalues in 
𝑫 correspond to k leftmost/rightmost columns in 𝑽 
(spatial filters) that yield smallest (largest) variance in 
class -1 and simultaneously largest (smallest) 
variance in class +1 

• Very easy in MATLAB: 
>> [V,D] = eig(cov1,cov1+cov2) 



Three Ways to Compute It 

• C) Geometric Approach: A more intuitive approach is a 
three-step procedure:  

1. Determine a whitening transform U for the average of 
both covariance matrices (blue) using PCA 

2. Apply it to one of the matrices and calculate its principal 
components P (green) 

3. The spatial filter operation W is to first whiten by U and 
then transform by P-1, i.e. 𝑾 = 𝑷−1𝑼 so then 𝑺 =  𝑾𝑿 

Dornhege, 2004 

1. 2. 3. 



• Produces well-adapted filters (left) and occasionally 
roughly dipolar filter inverses (right) 

• Note that typically only filters for the k top and k 
bottom eigenvalues are retained 
 
 
 

 

 

 

Resulting Spatial Filters 

W W-1 



CSP Prediction Function 

• The CSP Prediction function amounts to: 

– Spatial filtering 

– Log-variance calculation 

– Application of a linear (or non-linear) classifier 

 

𝑦 =  sign(𝜽 log var 𝑾𝑿 +  𝑏) 

 



Putting it all Together 

• A CSP-based BCI typically operates on a band-
pass filtered signal 

• Choice of the frequency band is not trivial 

• The online window length does not need to 
correspond to the training window length 

 Filter Graph 

FIR Bandpass  
(7-30Hz) 

FIR Bandpass  
(7-30Hz) 

tPred 

𝑦 =  sign(𝜽 log var 𝑾𝑿 +  𝑏) 𝑦 =  sign(𝜽 log var 𝑾𝑿 +  𝑏) 

Prediction Function 



 



7.4 Alternatives and Extensions 



Choosing the Classifier 

• Feature space is low-dimensional (4-6) and 
distributions are well-behaved 

• Simple linear classifiers perform well, LDA is 
hard to beat in practice (strong assumptions) 

• Some groups prefer Quadratic Discriminant 
Analysis (QDA) or other classifiers 



Alternatives To LDA 

• Omitting the assumption of condition-independent 
noise yields Quadratic Discriminant Analysis (QDA) 

 

The Mathworks 



Alternatives To LDA 

• Omitting the assumption of condition-independent 
noise yields Quadratic Discriminant Analysis (QDA) 

• Surprisingly(?), QDA very rarely performs better than 
LDA 

The Mathworks 

One outlier can  
cause this 



Alternatives To LDA 

• Fitting multiple Gaussians for each condition instead 
of one yields Gaussian Mixture Models (GMMs) 

• GMMs serve as a good “low anchor” in BCI 
benchmarks 

The Mathworks 



Alternatives To LDA 

• Fitting multiple Gaussians for each condition instead 
of one yields Gaussian Mixture Models (GMMs) 

• GMMs serve as a good “low anchor” in benchmarks 

• Note that there is no efficient procedure to calculate 
the globally optimal GMM fit 

• The number of Gaussians is usually not known in 
advance (unless given by sub-conditions), but can be 
estimated using Bayesian methods (e.g., VDPGM*) or 
found via parameter search 

*: VDPGM = Variational Dirichlet Process Gaussian Mixture Models 



Alternatives To LDA 

• Important Type of Classifiers: Discriminative 
models (as opposed to Generative) 

• Discussed in the next lecture 



Alternatives and Extensions 

• CSP is the most popular spatial filtering 
method in the BCI field for oscillations 

• There exist >20 extensions addressing various 
limitations (frequency bands, time window, …) 

• The most successful variants so far: 

– Spectrally Weighted CSP (adaptive spectral bands) 

– Filter-Bank CSP (multiple time/frequency windows 
and feature combination) 

– Regularized CSPs (if too few training trials) 

 

 



Spectrally Weighted CSP 

• One of the best algorithms for learning the 
correct frequency bands (others: CSSP, CSSSP) 

• Iterative algorithm that alternates between 
optimizing the spatial and spectral filters 
(block coordinate descent) 

– Spatial filters are optimized using CSP 

– Spectral filters are optimized using Person’s 
correlation coefficient 



Spectrally Weighted CSP 

• Updating a spectral filter given spatially 
filtered data: 



Resulting Spatio-Spectral Filters 

• Adaptive filters for left vs. right hand 
movement imagination: 



Spec-CSP Prediction Function 

• For simplicity here implemented without any 
signal processing stage, using a temporal filter 
matrix (not very efficient): 

– S: spatial filters 

– T: temporal filters 

– 𝜽, b: linear classifier 

• Can be used for any other CSP-like approach 
that requires a temporal filter 

𝑦 =  sign(𝜽 log var 𝑺𝑿 𝑻 +  𝑏) 



Regularized CSP Variants 

• Add a regularization term and parameter that 
needs to be searched via grid search 

• Compared methods: 
– Basic CSP 

– Generic Learning CSP 

– Spatially Regularized CSP 

– Weighted Tikhonov- 
Regularized CSP 
 

• 5 pathological data sets 
(from BCI competitions) 

 Lotte et al., 2010 



Multi-Class Extensions 

• Most CSP variants are inherently defined for 
two classes 

• Not a problem – can solve CSP for pairs of 
classes, train pairwise classifiers, and 
determine most likely class by voting 

• Possibilities: one-versus-rest, one-versus-one 

• Note: classifiers should preferably produce 
probabilistic outputs so that voting can be 
done as probabilistically evidence gathering 

• A useful prob. classifier is logistic regression 



Time Window Estimation 

• The time window is a free parameter that depends 
on the task of interest 

• Can be searched as a 2d parameter space (slow!) 

• Can be chosen via heuristics (threshold the 
correlation coefficients – or use them as weighting) 



 



L 7 Questions? 


