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8.1 Introduction



Beyond CSP

* A unified, globally optimal solution to spatial
filter estimation has recently been proposed
(as an alternative to CSP+LDA)

* The method learns in a single step both the
spatial filters and the relative weights for the
filtered variance

* This is an optimization-based approach



Optimization

* Broad field, concerned with finding
assignments to parameters that minimize a

cost function f
 Two branches: Local optimization and Global
Optimization
Best 6




Global Optimization

* Aims to find the global optimum of a function,
even if it has multiple local optima

* Can be approximate (e.g., Simulated
Annealing) or exact (e.g., Branch-and-Bound)

* Problem: Can be extremely slow, especially on
high-dimensional and pathological data
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Local Optimization

* I[mproving an initial guess of a parameter by
incremental updates

e Method 1, Gradient Descent: walk into the
direction of steepest descent, requires 15t
derivative g of cost function




Local Optimization

e Method 2, Newton Method: account for local
curvature, requires 2" derivative B of

function (Hessian matrix)

* Can be very efficient if g/B is easy to
to approximate otherwise)
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Newton Gradient Descent



Local Optimization

e Method 3, Quasi-Newton: approximates B~1
incrementally from gradients gathered along
the way (no second derivatives necessary)

* Practical variant: L-BFGS (Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno) — one of
the best known “off-the-shelf” second-order
optimizers, very easy to use



Local Optimization

e Method 3, Quasi-Newton: approximates B~1
incrementally from gradients gathered along
the way (no second derivatives necessary)

* Practical variant: L-BFGS (Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno) — one of
the best known “off-the-shelf” second-order
optimizers, very easy to use

>> xopt = liblbfgs (@myfunc, x0)



Problems

* Local Optimization can run into local minima
or starve on plateaus, except if the function
has some suitable properties...

Stuck.




Convexity

* Convex functions have exactly one local
optimum, also for every x, y and t € |0,1] the
following holds:

flex+ (A =-t)y) <tf(x) + (1 -)f ()

* This makes them exactly solvable by local
optimization methods

e Surprisingly many problem types can be
formulated as convex optimization problems



Smoothness

 Many relevant BCl problems amount to
optimization problems with non-differentiable
features (e.g., sparse problems), so smooth
optimization is not immediately applicable

* Fixes: Can use smooth surrogate functions (e.g.,
proximal optimization), or solve an equivalent
problem that is smooth (see convex duality) or
split the non-smooth terms off (see operator
splitting), or use non-smooth methods (e.g.,
subgradient descent)
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8.2 Going Beyond CSP

(and a bit of equation juggling!)



Transforming CSP

* Consideration: Given a zero-mean trial X € R¢*T

with covariance £ € R“*¢, spatial filters W €
R>*C | linear weights @ € R>and bias b



Transforming CSP

* Consideration: Given a zero-mean trial X € R¢*T

with covariance £ € R“*¢, spatial filters W €
R>*C | linear weights @ € R>and bias b

* Omitting the log from CSP, we have:
y = b+ @var(WX)
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Transforming CSP

Consideration: Given a zero-mean trial X € R¢*T

with covariance £ € R“*¢, spatial filters W €
R>*C | linear weights @ € R>and bias b

Omitting the log from CSP, we have:
y = b+ @var(WX)

Rewriting in terms of individual spatial filters W:

S
y=b>b+ z 0, var(W,X)
k=1



Transforming CSP

* The variance term can be expressed using the covariance
matrix X of segment X:

S S
Yy = b + z Hk Var(WkX) =b+ z Ok (szwkT)
k=1 k=1



Transforming CSP

* The variance term can be expressed using the covariance
matrix X of segment X:

S S
Yy = b + z Hk Var(WkX) =b+ z Ok (szwkT)
k=1 k=1

 And WkZIWkT can be replaced by the inner product
between two matrices (WkaT, 2‘.)



Transforming CSP

* The variance term can be expressed using the covariance
matrix X of segment X:

S S
Yy = b + z Hk Var(WkX) =b+ z Ok (szwkT)
k=1 k=1

 And WkZWkT can be replaced by the inner product
between two matrices (WkaT, 2‘.)
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Transforming CSP

* The variance term can be expressed using the covariance
matrix X of segment X:

S S
Yy = b + z Hk Var(WkX) =b+ z Ok (szwkT)
k=1 k=1

 And WkZIWkT can be replaced by the inner product
between two matrices (WkaT, 2‘.), and regrouped:

S

S
b +ZBR (WkaT,Z> — b+ Zﬂk WkaT,Z
k=1 k=1

=b +(0,X)



Transforming CSP

 Thus this form is linear in the covariance matrix of X:

y=b+(0,X) = b + Ovec(T)

* Could again learn 0 using a simple linear method
(e.g., LDA), but very high-dimensional

(#parameterszsz)

* Need a method suitable for large-scale problems
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8.3 Large-Scale Machine Learning



Large-Scale Machine Learning

* Discriminative learning approaches like Support
Vector Machines (SVMs) and Generalized Linear
Models (GLMs) are well-adapted to high-dimensional
/ large-scale problems

* These directly optimize the parameters 8 given the
data




Large-Scale Machine Learning

* Logistic Regression is a GLM that maps X onto

binary outputs via a logistic “link function”

1
—yfo(X)’ (y S {_1: +1})

1+e
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Large-Scale Machine Learning

* Logistic Regression is a GLM that maps X onto
binary outputs via a logistic “link function”

1
qH(Y — ylx) — —yfo(X)’ (y S {_1: +1})

/ 1+e

Interpreted as the
probability that Y=1
(or Y=-1)

T



Large-Scale Machine Learning

* Logistic Regression is a GLM that maps X onto
binary outputs via a logistic “link function”

1
qH(Y — ylx) — —yfo(X)’ (y S {_1: +1})

1+e

* ...and linear function fy(X)
fg(X) = 60X + b



Large-Scale Machine Learning

* O can be obtained via off-the-shelf convex
optimization tools (such as CVX) by solving the
problem

min log(1 + e™Y6(X))

 The log(...) term is called the logistic loss and
guantifies the misfit between predicted labels
and true labels, for a particular choice of 0



Large-Scale Machine Learning

* For large problems, solution is still prone to
over-fitting to random noise in the data — need
to plug in some additional assumptions

mgn log(l + e"YfH(X)) + 1Q0(0)

* Many choices for regularization term ()
— Q(0) = ||8]|? encourages small weights
- Q(08) = ||0]|; = 10,] + |10,] + -+ encourages sparsity
— can also get sparsity on groups of weights
— combinations of these, ...



Swartz

Center for
omputational
euroscience




8.4 Application to the Spectral
Model



Applying to the Spectral Model

* |n the previous supervised oscillatory model
y = b + (6, X), the matrix-shaped @ allows
for a special matrix norm regularization Q(0):

m@in log(l + e_YfQ(x)) + ..



Applying to the Spectral Model

* |n the previous supervised oscillatory model
y = b + (6, X), the matrix-shaped @ allows

for a special matrix norm regularization Q(0):
rank (@)

m@in log(l + e_YfQ(x)) + A z 0y (0)
k=1



Applying to the Spectral Model

* |n the previous supervised oscillatory model
y = b + (6, X), the matrix-shaped @ allows

for a special matrix norm regularization Q(0):
rank (@)

m@in log(l + e_YfQ(x)) + A z 0y (0)
k=1

* This encourages a low-rank structure in 0, i.e.

=




* Applying to the Spectral Model

* Thus, the weight matrix is equivalent to the
weighted sum of a small set of spatial filters
applied to the covariance matrix of the signal!

L_'!"“ L)

(colors a bit off)
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8.5 Application to ERPs



Application to ERPs

 Same approach can be applied to the raw data
epoch X instead of its covariance matrix X

* So we optimize foraGLM y = b + (0, X)

rank (@)
m@in log(l + e_yf@(x)) + A z 0y (0)
k=1



Application to ERPs

 Same approach can be applied to the raw data
epoch X instead of its covariance matrix X

* This learns a linear ERP weight matrix with
one weight for each channel and time point
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 Same approach can be applied to the raw data
epoch X instead of its covariance matrix X

* This learns a linear ERP weight matrix with
one weight for each channel and time point

Application to ERPs
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Application to ERPs

 Same approach can be applied to the raw data
epoch X instead of its covariance matrix X

* This learns a linear ERP weight matrix with
one weight for each channel and time point

o
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* @ islow-rank, so corresponds to a sum of a
few spatial filters and their weights over time



Application to ERPs

 Thus, no hand-selected time windows needed

* Also, results are regularized to find / pick up
few sources and their relevant time courses



Application to ERPs

 Thus, no hand-selected time windows needed

* Also, results are regularized to find / pick up
few sources and their relevant time courses

e Rapid Serial Visual Presentation (RSVP) task:

Component 2

Component 1

\

—

Weight

-200 0 200 400 600 800
Timeins
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8.6 Learning ERP and Oscillatory
Weights Simultaneously



Feature Combination

If for each trial instead of the covariance matrix or
the raw ERP, a block-diagonal concatenation of both
is used, the method learns a low-rank weight matrix
combining both features simultaneously
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Feature Combination

* If for each trial instead of the covariance matrix or
the raw ERP, a block-diagonal concatenation of both
is used, the method learns a low-rank weight matrix
combining both features simultaneously

* For a block-diagonal weight matrix @, it holds that

rank(0)
m@in et A Z 0, (0)
k=1

is equivalent to solving for its blocks @:

B rank(@p)

min ... +Az z 6.(0,)
b=1 k=1



Sparsity and Feature Selection

* Also, covariance matrices for multiple frequency bands
and time windows can be concatenated

* For regularizers that are a sum of terms (of a certain
type), most terms in the sum will be driven to zero and
only a sparse subset of terms remains non-zero, i.e., the
relevant features are selected automatically

min ... +Az
0
b=1

* Recovery of the relevant support is statistically extremely
efficient — it holds that the number of irrelevant
dimensions under which the support can be accurately
recovered is exponential in the number of observations
(i.e., trials) [Ng 1998]



Sparsity and Feature Selection

* Thus, only the relevant subset of frequencies
or time windows (for covariance) or ERP
sources is typically learned

* Can be taken even further, e.g., could
encourage weights for different
time/frequency bins to share a small set of
spatial filters (again using rank constraints on
concatenated matrices) — this is called multi-
task learning



Final Prediction Functions

* Basic oscillatory case (assuming X is band-passed):
1

Y = 1+ e~ (b+(0,XX"))

 ERP case (X can be band-passed):
1

Y T 1+ - 0+0.x)
* Combined cases (here for temporal filters F; and F,):

—

Y= X 0 0

0 XFiX' 0
0 0 XFX

1+e

0,
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8.7 Practical Remarks



Solving It

* Problems of this size are impossible to solve
using CVX; need a custom solver

* For a wide range of sparse estimation
problems the DAL (Dual-Augmented
Lagrangian) solver is applicable and very fast

* For an even wider range of problems the
ADMM (Alternating Direction Method of
Multipliers) framework is applicable and also
very fast



ADMM

* Framework for distributed very large scale
optimization — leads to parallel algorithms

 Can be done with very simple MATLAB code

These are often fairly simple problems

‘-;_r-k'_l — E'"ll'glllillr Lp{f- :k- '.”k}
R+l = argmin, L,(2F L 2 yF)
gyl o= yF 4 p(AxkT 4 BRTL )

Boyd, 2010



Other Methods in
this Framework

Support Vector Machines: use a different loss
function (“hinge loss” instead of logistic loss)

Multiple Kernel Learning: using group sparsity
on kernel matrices (selecting few kernels)

Hierarchical Kernel Learning: very advanced
non-linear feature selection approach using
tree-structured sparsity

Linear Regression: Usable for a continuous
output space instead of discrete



Swartz

Center for
omputational
euroscience




Center for
omputational
euroscience

L8 Questions?



