
Lecture 8: Optimization-based
Approaches

Introduction to Modern Brain-Computer Interface
Design

Christian A. Kothe

SCCN, UCSD

Outline

1. Introduction

2. Going Beyond CSP

3. Large-Scale Machine Learning

4. Application to the Spectral Model

5. Application to ERPs

6. Learning ERP and Oscillatory Weights
Simultaneously

7. Practical Remarks

8.1 Introduction

Beyond CSP

• A unified, globally optimal solution to spatial
filter estimation has recently been proposed
(as an alternative to CSP+LDA)

• The method learns in a single step both the
spatial filters and the relative weights for the
filtered variance

• This is an optimization-based approach

Optimization

• Broad field, concerned with finding
assignments to parameters that minimize a
cost function 𝒇

• Two branches: Local optimization and Global
Optimization

Best 𝜽

𝜽1 𝜽2

Global Optimization

• Aims to find the global optimum of a function,
even if it has multiple local optima

• Can be approximate (e.g., Simulated
Annealing) or exact (e.g., Branch-and-Bound)

• Problem: Can be extremely slow, especially on
high-dimensional and pathological data

Doable Problematic

Local Optimization

• Improving an initial guess of a parameter by
incremental updates

• Method 1, Gradient Descent: walk into the
direction of steepest descent, requires 1st
derivative 𝒈 of cost function

𝜽1 𝜽2

Local Optimization

• Method 2, Newton Method: account for local
curvature, requires 2nd derivative 𝑩 of
function (Hessian matrix)

• Can be very efficient if 𝒈/𝑩 is easy to
compute (or easy to approximate otherwise)

(starves)

Newton Gradient Descent

Local Optimization

• Method 3, Quasi-Newton: approximates 𝑩−𝟏
incrementally from gradients gathered along
the way (no second derivatives necessary)

• Practical variant: L-BFGS (Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno) – one of
the best known “off-the-shelf” second-order
optimizers, very easy to use

>> xopt = liblbfgs(@myfunc,x0)

Local Optimization

• Method 3, Quasi-Newton: approximates 𝑩−𝟏
incrementally from gradients gathered along
the way (no second derivatives necessary)

• Practical variant: L-BFGS (Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno) – one of
the best known “off-the-shelf” second-order
optimizers, very easy to use

>> xopt = liblbfgs(@myfunc,x0)

Problems

• Local Optimization can run into local minima
or starve on plateaus, except if the function
has some suitable properties…

Stuck.

𝜽1 𝜽2

Convexity

• Convex functions have exactly one local
optimum, also for every 𝒙, 𝒚 and 𝑡 ∈ [0,1] the
following holds:

𝑓 𝑡𝒙 + 1 − 𝑡 𝒚 ≤ 𝑡𝑓 𝒙 + 1 − 𝑡 𝑓(𝒚)

• This makes them exactly solvable by local
optimization methods

• Surprisingly many problem types can be
formulated as convex optimization problems

Smoothness

• Many relevant BCI problems amount to
optimization problems with non-differentiable
features (e.g., sparse problems), so smooth
optimization is not immediately applicable

• Fixes: Can use smooth surrogate functions (e.g.,
proximal optimization), or solve an equivalent
problem that is smooth (see convex duality) or
split the non-smooth terms off (see operator
splitting), or use non-smooth methods (e.g.,
subgradient descent)

8.2 Going Beyond CSP

(and a bit of equation juggling!)

Transforming CSP

• Consideration: Given a zero-mean trial 𝑿 ∈ ℝ𝐶×𝑇
with covariance 𝚺 ∈ ℝ𝐶𝑥𝐶 , spatial filters 𝑾 ∈
ℝ𝑆𝑥𝐶 , linear weights 𝜽 ∈ ℝ𝑆and bias b

• Omitting the log from CSP, we have:
𝑦 = 𝑏 + 𝜽var 𝑾𝑿

• Rewriting in terms of individual spatial filters 𝑾𝑘:

𝑦 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

Transforming CSP

• Consideration: Given a zero-mean trial 𝑿 ∈ ℝ𝐶×𝑇
with covariance 𝚺 ∈ ℝ𝐶𝑥𝐶 , spatial filters 𝑾 ∈
ℝ𝑆𝑥𝐶 , linear weights 𝜽 ∈ ℝ𝑆and bias b

• Omitting the log from CSP, we have:
𝑦 = 𝑏 + 𝜽var 𝑾𝑿

• Rewriting in terms of individual spatial filters 𝑾𝑘:

𝑦 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

var 𝑾𝑘𝑿

X WX var(WX) 2.3
4.5

Transforming CSP

• Consideration: Given a zero-mean trial 𝑿 ∈ ℝ𝐶×𝑇
with covariance 𝚺 ∈ ℝ𝐶𝑥𝐶 , spatial filters 𝑾 ∈
ℝ𝑆𝑥𝐶 , linear weights 𝜽 ∈ ℝ𝑆and bias b

• Omitting the log from CSP, we have:
𝑦 = 𝑏 + 𝜽var 𝑾𝑿

• Rewriting in terms of individual spatial filters 𝑾𝑘:

𝑦 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

var 𝑾𝑘𝑿

X WX var(WX) 2.3
4.5

Transforming CSP

• The variance term can be expressed using the covariance
matrix 𝚺 of segment 𝑿:

𝑦 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

var 𝑾𝑘𝑿 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝚺𝑾𝑘
⊺

• And 𝑾𝑘𝚺𝑾𝑘
⊺ can be replaced by the inner product

between two matrices 𝑾𝑘𝑾𝑘
⊺, 𝚺 , and regrouped:

𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝒌
⊺, 𝚺 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝒌
⊺, 𝚺

= 𝑏 + 𝜣, 𝚺

Transforming CSP

• The variance term can be expressed using the covariance
matrix 𝚺 of segment 𝑿:

𝑦 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

var 𝑾𝑘𝑿 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝚺𝑾𝑘
⊺

• And 𝑾𝑘𝚺𝑾𝑘
⊺ can be replaced by the inner product

between two matrices 𝑾𝑘𝑾𝑘
⊺, 𝚺

𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝒌
⊺, 𝚺 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝒌
⊺, 𝚺

= 𝑏 + 𝜣, 𝚺

Transforming CSP

• The variance term can be expressed using the covariance
matrix 𝚺 of segment 𝑿:

𝑦 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

var 𝑾𝑘𝑿 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝚺𝑾𝑘
⊺

• And 𝑾𝑘𝚺𝑾𝑘
⊺ can be replaced by the inner product

between two matrices 𝑾𝑘𝑾𝑘
⊺, 𝚺

𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝑘
⊺, 𝚺 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝒌
⊺, 𝚺

= 𝑏 + 𝜣, 𝚺

𝑾𝑘

𝑾𝑘
⊺

𝑾𝑘𝑾𝑘
⊺

Transforming CSP

• The variance term can be expressed using the covariance
matrix 𝚺 of segment 𝑿:

𝑦 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

var 𝑾𝑘𝑿 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝚺𝑾𝑘
⊺

• And 𝑾𝑘𝚺𝑾𝑘
⊺ can be replaced by the inner product

between two matrices 𝑾𝑘𝑾𝑘
⊺, 𝚺 , and regrouped:

𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝑘
⊺, 𝚺 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝑘
⊺, 𝚺

= 𝑏 + 𝜣, 𝚺

Transforming CSP

• Thus this form is linear in the covariance matrix of X:

𝑦 = 𝑏 + 𝜣, 𝚺 = 𝒃 + 𝛉 vec(𝚺)

• Could again learn 𝛉 using a simple linear method
(e.g., LDA), but very high-dimensional

(#parameters=C2
2

)

• Need a method suitable for large-scale problems

8.3 Large-Scale Machine Learning

Large-Scale Machine Learning

• Discriminative learning approaches like Support
Vector Machines (SVMs) and Generalized Linear
Models (GLMs) are well-adapted to high-dimensional
/ large-scale problems

• These directly optimize the parameters 𝜽 given the
data

Large-Scale Machine Learning

• Logistic Regression is a GLM that maps X onto
binary outputs via a logistic “link function”

𝑞𝜃 𝑌 = 𝑦 𝑋 =
1

1 + 𝑒−𝑦𝑓𝜃(𝑿)
, (𝑦 ∈ −1,+1)

– f0(X) 

Large-Scale Machine Learning

• Logistic Regression is a GLM that maps X onto
binary outputs via a logistic “link function”

𝑞𝜃 𝑌 = 𝑦 𝑋 =
1

1 + 𝑒−𝑦𝑓𝜃(𝑿)
, (𝑦 ∈ −1,+1)

– f0(X) 

Interpreted as the
probability that Y=1

(or Y=-1)

Large-Scale Machine Learning

• Logistic Regression is a GLM that maps X onto
binary outputs via a logistic “link function”

𝑞𝜃 𝑌 = 𝑦 𝑋 =
1

1 + 𝑒−𝑦𝑓𝜃(𝑿)
, (𝑦 ∈ −1,+1)

• … and linear function 𝑓𝜃(𝑿)
𝑓𝜃(𝑿) = 𝜽𝑿 + 𝑏

Large-Scale Machine Learning

• 𝜽 can be obtained via off-the-shelf convex
optimization tools (such as CVX) by solving the
problem

min
𝜽

log 1 + 𝑒−𝒚𝑓𝜃 𝑿

• The log(…) term is called the logistic loss and
quantifies the misfit between predicted labels
and true labels, for a particular choice of 𝜽

Large-Scale Machine Learning

• For large problems, solution is still prone to
over-fitting to random noise in the data – need
to plug in some additional assumptions

min
𝜽

log 1 + 𝑒−𝒚𝑓𝜃 𝑿 + 𝜆Ω(𝜽)

• Many choices for regularization term Ω

– Ω 𝜽 = 𝜽 2 encourages small weights

– Ω 𝜽 = 𝜽 1 = 𝜽1 + 𝜽2 +⋯ encourages sparsity

– can also get sparsity on groups of weights

– combinations of these, …

8.4 Application to the Spectral
Model

Applying to the Spectral Model

• In the previous supervised oscillatory model
𝑦 = 𝑏 + 𝜣, 𝚺 , the matrix-shaped 𝜣 allows
for a special matrix norm regularization Ω 𝜣 :

 min
 𝜣

log 1 + 𝑒−𝒚𝑓𝜣 𝓧 + … 𝜎𝑘(𝜣)

𝑟𝑎𝑛𝑘(𝜣)

𝑘=1

• This encourages a low-rank structure in 𝜣, i.e.
𝜣 is a sum of a small set
of spatial filters

Applying to the Spectral Model

• In the previous supervised oscillatory model
𝑦 = 𝑏 + 𝜣, 𝚺 , the matrix-shaped 𝜣 allows
for a special matrix norm regularization Ω 𝜣 :

min
𝜣

log 1 + 𝑒−𝒚𝑓𝜣 𝓧 + 𝜆 𝜎𝑘(𝜣)

𝑟𝑎𝑛𝑘(𝜣)

𝑘=1

• This encourages a low-rank structure in 𝜣, i.e.
𝜣 is a sum of a small set
of spatial filters

Applying to the Spectral Model

• In the previous supervised oscillatory model
𝑦 = 𝑏 + 𝜣, 𝚺 , the matrix-shaped 𝜣 allows
for a special matrix norm regularization Ω 𝜣 :

min
𝜣

log 1 + 𝑒−𝒚𝑓𝜣 𝓧 + 𝜆 𝜎𝑘(𝜣)

𝑟𝑎𝑛𝑘(𝜣)

𝑘=1

• This encourages a low-rank structure in 𝜣, i.e.
𝜣 is a sum of a small set
of spatial filters

𝜣 = + + …

Applying to the Spectral Model

• Thus, the weight matrix is equivalent to the
weighted sum of a small set of spatial filters
applied to the covariance matrix of the signal!

𝜣 = + + …

(colors a bit off)

8.5 Application to ERPs

Application to ERPs

• Same approach can be applied to the raw data
epoch X instead of its covariance matrix 𝜮

• So we optimize for a GLM 𝑦 = 𝑏 + 𝜣,𝑿

min
𝜣

log 1 + 𝑒−𝒚𝑓𝜣 𝓧 + 𝜆 𝜎𝑘(𝜣)

𝑟𝑎𝑛𝑘(𝜣)

𝑘=1

Application to ERPs

• Same approach can be applied to the raw data
epoch X instead of its covariance matrix 𝜮

• This learns a linear ERP weight matrix with
one weight for each channel and time point

𝜣=

Application to ERPs

• Same approach can be applied to the raw data
epoch X instead of its covariance matrix 𝜮

• This learns a linear ERP weight matrix with
one weight for each channel and time point

𝜣=

time weights

spatial filter

Application to ERPs

• Same approach can be applied to the raw data
epoch X instead of its covariance matrix 𝜮

• This learns a linear ERP weight matrix with
one weight for each channel and time point

• 𝜣 is low-rank, so corresponds to a sum of a
few spatial filters and their weights over time

𝜣=

Application to ERPs

• Thus, no hand-selected time windows needed

• Also, results are regularized to find / pick up
few sources and their relevant time courses

Application to ERPs

• Thus, no hand-selected time windows needed

• Also, results are regularized to find / pick up
few sources and their relevant time courses

• Rapid Serial Visual Presentation (RSVP) task:

8.6 Learning ERP and Oscillatory
Weights Simultaneously

Feature Combination

• If for each trial instead of the covariance matrix or
the raw ERP, a block-diagonal concatenation of both
is used, the method learns a low-rank weight matrix
combining both features simultaneously

𝜣 =

Feature Combination

• If for each trial instead of the covariance matrix or
the raw ERP, a block-diagonal concatenation of both
is used, the method learns a low-rank weight matrix
combining both features simultaneously

• For a block-diagonal weight matrix 𝜣, it holds that

is equivalent to solving for its blocks 𝜣𝑏:

min
𝜣

 … + 𝜆 𝜎𝑘(𝜣)

𝑟𝑎𝑛𝑘(𝜣)

𝑘=1

min
𝜣

 … + 𝜆 𝜎𝑘(𝜣𝑏)

𝑟𝑎𝑛𝑘(𝜣𝑏)

𝑘=1

𝐵

𝑏=1

Sparsity and Feature Selection

• Also, covariance matrices for multiple frequency bands
and time windows can be concatenated

• For regularizers that are a sum of terms (of a certain
type), most terms in the sum will be driven to zero and
only a sparse subset of terms remains non-zero, i.e., the
relevant features are selected automatically

• Recovery of the relevant support is statistically extremely
efficient – it holds that the number of irrelevant
dimensions under which the support can be accurately
recovered is exponential in the number of observations
(i.e., trials) [Ng 1998]

min
𝜣

 … + 𝜆 …

𝑏=1

Sparsity and Feature Selection

• Thus, only the relevant subset of frequencies
or time windows (for covariance) or ERP
sources is typically learned

• Can be taken even further, e.g., could
encourage weights for different
time/frequency bins to share a small set of
spatial filters (again using rank constraints on
concatenated matrices) – this is called multi-
task learning

Final Prediction Functions

• Basic oscillatory case (assuming X is band-passed):

𝑦 =
1

1 + 𝑒− (𝑏+ 𝜣,𝑿𝑿⊺)

• ERP case (X can be band-passed):

𝑦 =
1

1 + 𝑒− (𝑏+ 𝜣,𝑿)

• Combined cases (here for temporal filters 𝑭1 and 𝑭2):

𝑦 =
1

1 + 𝑒

− 𝜣,

𝑿 𝟎 𝟎
𝟎 𝑿𝑭𝟏𝑿⊺ 𝟎

𝟎 𝟎 𝑿𝑭𝟐𝑿
⊺

− 𝑏

8.7 Practical Remarks

Solving It

• Problems of this size are impossible to solve
using CVX; need a custom solver

• For a wide range of sparse estimation
problems the DAL (Dual-Augmented
Lagrangian) solver is applicable and very fast

• For an even wider range of problems the
ADMM (Alternating Direction Method of
Multipliers) framework is applicable and also
very fast

ADMM

• Framework for distributed very large scale
optimization – leads to parallel algorithms

• Can be done with very simple MATLAB code

Boyd, 2010

These are often fairly simple problems

Other Methods in
this Framework

• Support Vector Machines: use a different loss
function (“hinge loss” instead of logistic loss)

• Multiple Kernel Learning: using group sparsity
on kernel matrices (selecting few kernels)

• Hierarchical Kernel Learning: very advanced
non-linear feature selection approach using
tree-structured sparsity

• Linear Regression: Usable for a continuous
output space instead of discrete

L8 Questions?

