
Lecture 8: Optimization-based 
Approaches 

Introduction to Modern Brain-Computer Interface 
Design 

 
Christian A. Kothe 

SCCN, UCSD 



Outline 

1. Introduction 

2. Going Beyond CSP 

3. Large-Scale Machine Learning 

4. Application to the Spectral Model 

5. Application to ERPs 

6. Learning ERP and Oscillatory Weights 
Simultaneously 

7. Practical Remarks 

 

 



 



8.1 Introduction 



Beyond CSP 

• A unified, globally optimal solution to spatial 
filter estimation has recently been proposed 
(as an alternative to CSP+LDA) 

• The method learns in a single step both the 
spatial filters and the relative weights for the 
filtered variance 

• This is an optimization-based approach 



Optimization 

• Broad field, concerned with finding 
assignments to parameters that minimize a 
cost function 𝒇 

• Two branches: Local optimization and Global 
Optimization 

Best 𝜽 

𝜽1 𝜽2 



Global Optimization 

• Aims to find the global optimum of a function, 
even if it has multiple local optima 

• Can be approximate (e.g., Simulated 
Annealing) or exact (e.g., Branch-and-Bound) 

• Problem: Can be extremely slow, especially on 
high-dimensional and pathological data 

Doable Problematic 



Local Optimization 

• Improving an initial guess of a parameter by 
incremental updates 

• Method 1, Gradient Descent: walk into the 
direction of steepest descent, requires 1st 
derivative 𝒈 of cost function 

𝜽1 𝜽2 



Local Optimization 

• Method 2, Newton Method: account for local 
curvature, requires 2nd derivative 𝑩 of 
function (Hessian matrix) 

• Can be very efficient if 𝒈/𝑩 is easy to 
compute (or easy to approximate otherwise) 

(starves) 

Newton Gradient Descent 



Local Optimization 

• Method 3, Quasi-Newton: approximates 𝑩−𝟏 
incrementally from gradients gathered along 
the way (no second derivatives necessary) 

• Practical variant: L-BFGS (Limited-Memory 
Broyden-Fletcher-Goldfarb-Shanno) – one of 
the best known “off-the-shelf” second-order 
optimizers, very easy to use 
 
>> xopt = liblbfgs(@myfunc,x0) 
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Problems 

• Local Optimization can run into local minima 
or starve on plateaus, except if the function 
has some suitable properties… 

Stuck. 

𝜽1 𝜽2 



Convexity 

• Convex functions have exactly one local 
optimum, also for every 𝒙, 𝒚 and 𝑡 ∈ [0,1] the 
following holds: 
 

𝑓 𝑡𝒙 + 1 − 𝑡 𝒚 ≤ 𝑡𝑓 𝒙 + 1 − 𝑡 𝑓(𝒚) 
 

• This makes them exactly solvable by local 
optimization methods 

• Surprisingly many problem types can be 
formulated as convex optimization problems 

 



Smoothness 

• Many relevant BCI problems amount to 
optimization problems with non-differentiable 
features (e.g., sparse problems), so smooth 
optimization is not immediately applicable 

• Fixes: Can use smooth surrogate functions (e.g., 
proximal optimization), or solve an equivalent 
problem that is smooth (see convex duality) or 
split the non-smooth terms off (see operator 
splitting), or use non-smooth methods (e.g., 
subgradient descent) 

 



 



8.2  Going Beyond CSP 

(and a bit of equation juggling!) 



Transforming CSP 

• Consideration: Given a zero-mean trial 𝑿 ∈ ℝ𝐶×𝑇 
with covariance 𝚺 ∈ ℝ𝐶𝑥𝐶 , spatial filters 𝑾 ∈
ℝ𝑆𝑥𝐶 , linear weights 𝜽 ∈ ℝ𝑆and bias b 

 

• Omitting the log from CSP, we have: 
𝑦 =  𝑏 + 𝜽var 𝑾𝑿  

 

 

• Rewriting in terms of individual spatial filters 𝑾𝑘: 

𝑦 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1
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Transforming CSP 

• The variance term can be expressed using the covariance 
matrix 𝚺 of segment 𝑿: 

𝑦 =  𝑏 + 𝜽𝑘

𝑆

𝑘=1

var 𝑾𝑘𝑿 = 𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝚺𝑾𝑘
⊺  

 

• And 𝑾𝑘𝚺𝑾𝑘
⊺ can be replaced by the inner product 

between two matrices 𝑾𝑘𝑾𝑘
⊺, 𝚺 , and regrouped: 

𝑏 + 𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝒌
⊺, 𝚺 =  𝑏 +  𝜽𝑘

𝑆

𝑘=1

𝑾𝑘𝑾𝒌
⊺, 𝚺
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Transforming CSP 

• Thus this form is linear in the covariance matrix of X: 
 

𝑦 = 𝑏 + 𝜣, 𝚺 = 𝒃 + 𝛉 vec(𝚺) 

 

• Could again learn 𝛉  using a simple linear method 
(e.g., LDA), but very high-dimensional 

(#parameters=C2
2

) 

• Need a method suitable for large-scale problems 



 



8.3 Large-Scale Machine Learning 



Large-Scale Machine Learning 

• Discriminative learning approaches like Support 
Vector Machines (SVMs) and Generalized Linear 
Models (GLMs) are well-adapted to high-dimensional 
/ large-scale problems 

• These directly optimize the parameters 𝜽 given the 
data 



Large-Scale Machine Learning 

• Logistic Regression is a GLM that maps X onto 
binary outputs via a logistic “link function” 

𝑞𝜃 𝑌 = 𝑦 𝑋 =
1

1 + 𝑒−𝑦𝑓𝜃(𝑿)
, (𝑦 ∈ −1,+1 ) 

 

–  f0(X)  
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probability that Y=1  

(or Y=-1) 



Large-Scale Machine Learning 

• Logistic Regression is a GLM that maps X onto 
binary outputs via a logistic “link function” 

𝑞𝜃 𝑌 = 𝑦 𝑋 =
1

1 + 𝑒−𝑦𝑓𝜃(𝑿)
, (𝑦 ∈ −1,+1 ) 

 

• … and linear function 𝑓𝜃(𝑿) 
𝑓𝜃(𝑿) =  𝜽𝑿 + 𝑏 



Large-Scale Machine Learning 

• 𝜽 can be obtained via off-the-shelf convex 
optimization tools (such as CVX) by solving the 
problem 
 

min
𝜽

log 1 + 𝑒−𝒚𝑓𝜃 𝑿  

 

• The log(…) term is called the logistic loss and 
quantifies the misfit between predicted labels 
and true labels, for a particular choice of 𝜽 



Large-Scale Machine Learning 

• For large problems, solution is still prone to  
over-fitting to random noise in the data – need 
to plug in some additional assumptions 
 

min
𝜽

log 1 + 𝑒−𝒚𝑓𝜃 𝑿 + 𝜆Ω(𝜽) 

• Many choices for regularization term Ω 

– Ω 𝜽 = 𝜽 2 encourages small weights 

– Ω 𝜽 = 𝜽 1 = 𝜽1 + 𝜽2 +⋯ encourages sparsity 

– can also get sparsity on groups of weights 

– combinations of these, … 



 



8.4 Application to the Spectral 
Model 



Applying to the Spectral Model 

• In the previous supervised oscillatory model 
𝑦 = 𝑏 + 𝜣, 𝚺 , the matrix-shaped 𝜣 allows 
for a special matrix norm regularization Ω 𝜣 : 

  min
   𝜣

log 1 + 𝑒−𝒚𝑓𝜣 𝓧 + …  𝜎𝑘(𝜣)

𝑟𝑎𝑛𝑘(𝜣)

𝑘=1

 

• This encourages a low-rank structure in 𝜣, i.e. 
𝜣 is a sum of a small set  
of spatial filters 
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Applying to the Spectral Model 

• Thus, the weight matrix is equivalent to the 
weighted sum of a small set of spatial filters 
applied to the covariance matrix of the signal! 

 

𝜣 =  + +  … 

(colors a bit off) 



 



8.5 Application to ERPs 



Application to ERPs 

• Same approach can be applied to the raw data 
epoch X instead of its covariance matrix 𝜮 

• So we optimize for a GLM 𝑦 = 𝑏 + 𝜣,𝑿  
 

min
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Application to ERPs 

• Same approach can be applied to the raw data 
epoch X instead of its covariance matrix 𝜮 

• This learns a linear ERP weight matrix with 
one weight for each channel and time point 

 

 

 

• 𝜣 is low-rank, so corresponds to a sum of a 
few spatial filters and their weights over time 

 

𝜣= 



Application to ERPs 

• Thus, no hand-selected time windows needed 

• Also, results are regularized to find / pick up 
few sources and their relevant time courses 



Application to ERPs 

• Thus, no hand-selected time windows needed 

• Also, results are regularized to find / pick up 
few sources and their relevant time courses 

• Rapid Serial Visual Presentation (RSVP) task: 



 



8.6 Learning ERP and Oscillatory 
Weights Simultaneously 



Feature Combination 

• If for each trial instead of the covariance matrix or 
the raw ERP, a block-diagonal concatenation of both 
is used, the method learns a low-rank weight matrix 
combining both features simultaneously 

𝜣 = 



Feature Combination 

• If for each trial instead of the covariance matrix or 
the raw ERP, a block-diagonal concatenation of both 
is used, the method learns a low-rank weight matrix 
combining both features simultaneously 

• For a block-diagonal weight matrix 𝜣, it holds that 
 
 
 
is equivalent to solving for its blocks 𝜣𝑏:  

 

min
𝜣

 … + 𝜆  𝜎𝑘(𝜣)

𝑟𝑎𝑛𝑘(𝜣)

𝑘=1

 

min
𝜣

 … + 𝜆  𝜎𝑘(𝜣𝑏)

𝑟𝑎𝑛𝑘(𝜣𝑏)

𝑘=1

𝐵

𝑏=1

 



Sparsity and Feature Selection 

• Also, covariance matrices for multiple frequency bands 
and time windows can be concatenated 

• For regularizers that are a sum of terms (of a certain 
type), most terms in the sum will be driven to zero and 
only a sparse subset of terms remains non-zero, i.e., the 
relevant features are selected automatically 

 

 

• Recovery of the relevant support is statistically extremely 
efficient – it holds that the number of irrelevant 
dimensions under which the support can be accurately 
recovered is exponential in the number of observations 
(i.e., trials) [Ng 1998] 

min
𝜣

 … + 𝜆 …

𝑏=1

 



Sparsity and Feature Selection 

• Thus, only the relevant subset of frequencies 
or time windows (for covariance) or ERP 
sources is typically learned 

• Can be taken even further, e.g., could 
encourage weights for different 
time/frequency bins to share a small set of 
spatial filters (again using rank constraints on 
concatenated matrices) – this is called multi-
task learning 



Final Prediction Functions 

• Basic oscillatory case (assuming X is band-passed): 

𝑦 =
1

1 + 𝑒− (𝑏+ 𝜣,𝑿𝑿⊺ )
 

• ERP case (X can be band-passed):  

𝑦 =
1

1 + 𝑒− (𝑏+ 𝜣,𝑿 )
 

• Combined cases (here for temporal filters 𝑭1 and 𝑭2): 

𝑦 =
1

1 + 𝑒

− 𝜣,

𝑿 𝟎 𝟎
𝟎 𝑿𝑭𝟏𝑿⊺ 𝟎

𝟎 𝟎 𝑿𝑭𝟐𝑿
⊺

− 𝑏

 

 



 



8.7 Practical Remarks 



Solving It 

• Problems of this size are impossible to solve 
using CVX; need a custom solver 

• For a wide range of sparse estimation 
problems the DAL (Dual-Augmented 
Lagrangian) solver is applicable and very fast 

• For an even wider range of problems the 
ADMM (Alternating Direction Method of 
Multipliers) framework is applicable and also 
very fast 



ADMM 

• Framework for distributed very large scale 
optimization – leads to parallel algorithms 

• Can be done with very simple MATLAB code 

Boyd, 2010 

These are often fairly simple problems 



Other Methods in  
this Framework 

• Support Vector Machines: use a different loss 
function (“hinge loss” instead of logistic loss) 

• Multiple Kernel Learning: using group sparsity 
on kernel matrices (selecting few kernels) 

• Hierarchical Kernel Learning: very advanced 
non-linear feature selection approach using 
tree-structured sparsity 

• Linear Regression: Usable for a continuous 
output space instead of discrete 

 



 



L8 Questions? 


