
Lecture 9: BCILAB Scripting and
Plugins

Introduction to Modern Brain-Computer Interface
Design

Christian A. Kothe

SCCN, UCSD

Outline

1. Prerequisites

2. Defining an Approach

3. All Other Steps

9.1 Prerequisites

Finding the Right Functions

• There is a scriptable function for every GUI
command

• For documentation on script functions see
Help menu or type doc function_name or
help function_name

• Most functions have a brief summary,
documentation for all input arguments, and
code examples

• Some functions have paper references, some
have cross-references

Calling Syntax

• Most functions take their arguments in the order in
which they are listed in the documentation, and some
can alternatively called with all parameters passed in
as name-value pairs (using the same names as in the
help text, in CamelCase)

• If in doubt, pass them in by name – less chance of
getting the order wrong, etc.

• It is usually a bad idea to try to mix positional and
name-value arguments in one call – don’t do it unless
that’s the default way to call the function

• Example:
bci_train(mydata,myapproach)

bci_train(‘Data’,mydata,’Approach’,myapproach)

Loading Data

• A data set (no matter what file format) is
loaded using the function io_loadset()

• It is almost always enough pass in just the file
name, as in the example:
data = io_loadset(‘/somepath/somefile.xyz’)

9.2 Defining an Approach

Defining a new Approach

• Defining an approach is the most complex area in scripting
because a data structure must be constructed

• Since an approach is a particular instance of a BCI paradigm
(used with custom parameters), an approach definition
consists of:
– The name of the paradigm (e.g., CSP, WindowMeans)
– Optionally a list of arguments for the paradigm’s calibrate()

function

• The default way to specify an approach is as a cell array
whose first element is the name of the paradigm and
whose remaining elements are arguments to its calibrate()
function

• Example:

appr = {‘CSP’,‘SignalProcessing’,...,‘FeatureExtraction’,...};

Approach Parameters

• The parameters are a list of name-value pairs

• Important: The argument of an approach are
not passed in a long ‘flat’ list, but they are
organized in a hierarchy, i.e. some parameters
have named sub-parameters

• Example:

app = {‘CSP’,’Prediction’,{‘MachineLearning’, …}};

MachineLearning is a sub-parameter of Prediction

Prediction is a “top-level” parameter

Approach Parameters

• Which parameter names a BCI paradigm exposes
is the business of the BCI paradigm

• However, practically all of them adhere to a
uniform scheme of 2 top-level parameter names:

– SignalProcessing is a top-level parameter that
determines the signal processing stages that shall be
used

– Prediction is a top-level parameter that governs how
the prediction function is being calibrated or applied

Correspondence With The GUI

• There is a 1:1 correspondence between the hierarchy of
parameters that are specified in scripts and the layout of the
parameter tree in the approach definition GUI

The SignalProcessing
parameter

Sub-parameters of
SignalProcessing

Sub-Parameter
of Resampling

(itself a sub-parameter
of SignalProcessing)

Correspondence With The GUI

• Therefore: If in doubt about parameter
names, look them up in the GUI

• It is also okay to look up the parameter names
in the function documentation or code, but
they can be nested in a hierarchy of functions
calling each other

Default Values

• Each parameter has a default value (unless it makes
absolutely no sense), which can also be looked up in
the GUI

Default = 100

By default enabled

By default disabled

Parameter Help

• Each parameter has a help text, which is also visible
in the GUI panel (at the bottom)

Help text for the
selected parameter

The SignalProcessing Parameter

• Has one named sub-parameter for every signal processing
plugin that can be used (these are found automatically)

• The name under which a given signal processing plugin
appears is up to the plugin – they declare this property at the
beginning of their code (you can look it up there)

Name of the sub-parameter as which
this plugin shows up in the approach
definition (below SignalProcessing)

The SignalProcessing Parameter

• The plugins that are listed under SignalProcessing are
those in the directories:

– code/filters (file names beginning with flt_)

– code/dataset_editing (file names beginning with set_)

• The value assigned to a sub-parameter (e.g.,
FIRFilter) that is presented by a function (e.g.,
flt_fir.m) is by default a cell array of arguments to
that function

• The arguments can be passed in any format accepted
by the function, but preferably they should again be
passed as name-value pairs to avoid confusion

Configuring Signal Processing
Stages

• Example:

app={‘CSP’,’SignalProcessing’, ...

 {‘FIRFilter’,{‘Frequencies’,[7 8 14 15]}}};

• This example defines a CSP-based approach that uses a
particular Frequencies value in its FIR filter

• The FIR filter is now also “enabled” if it was not before

(MATLAB line break)

Disabling Signal Processing
Stages

• It is sometimes useful to disable a parameter that is enabled
by default: This can be written (by convention) as follows:

app={‘CSP’,’SignalProcessing’,{‘Resampling’,[]};

• Note that these are [] brackets – using {} accidentally would
still enable the filter, but passes an empty argument list to it!

Shortcuts for the Impatient

• BCILAB has the unhealthy habit of allowing short forms for
most things – I recommend to avoid them whenever possible,
but it helps recognizing them

• The most salient short-cut form is when a parameter that has
sub-parameters is not assigned a cell array of arguments (like
it should), but instead directly the value of the first sub-
argument

• Example:

app={‘CSP’,’SignalProcessing’,{‘Resampling’,200}};

• … is equivalent to:

app={‘CSP’,’SignalProcessing’,...

 {‘Resampling’,{‘SamplingRate’,200}}};

This number is assigned to the first
sub-argument of the resampling filter

(=the target sampling rate)

Shortcuts for the Impatient

• BCILAB has the unhealthy habit of allowing short forms for
most things – I recommend to avoid them whenever possible,
but it helps recognizing them

• The most salient short-cut form is when a parameter that has
sub-parameters is not assigned a cell array of arguments (like
it should), but instead directly the value of the first sub-
argument

• Example:

app={‘CSP’,’SignalProcessing’,{‘Resampling’,200}};

• … is equivalent to:

app={‘CSP’,’SignalProcessing’,...

 {‘Resampling’,{‘SamplingRate’,200}}};

Multi-Option Parameters

• The last kind of parameter that deserves mention are multi-
option parameters, which consists of a selection argument (a
string) and for each possible value a different list of sub-
arguments

• An example are the different alternative variants supported
by the ICA filter: amica, infomax, etc., all of which have
algorithm-specific sub-arguments

• Below, the parameter named Variant is set to ‘fastica’, and the
MaxIterations sub-parameter of Variant for the fastica case is
set to 1000

Multi-Option Parameters

• In scripts, multi-option parameters are written just like the
overall approach definition: as a cell array whose first element
is the name of the selection followed by name-value pairs for
this case

• Example:

…,‘Variant’,{‘fastica’,‘MaxIterations’,1000,‘Approach’,’symm’}

• … is equivalent to setting what is shown here in the GUI:

Other Paradigm Parameters

• The other parameters behave in exactly the
same ways

• Example:
– MachineLearning is a sub-parameter of Prediction,

it has a Learner sub-parameter

– Learner is a multi-option parameter with one case
for each machine learning plugin (e.g., ‘lda’, ’qda’,
’logreg’, …)

– The sub-parameters of the respective case are
those that are exposed by the respective plugin
function (e.g., ml_trainqda.m)

Configuring the Machine Learning
Stage

• Thus, the following is a valid way to configure
the machine learning function of a paradigm:

app={‘CSP’, ’Prediction’,{‘MachineLearning’, …

 {‘Learner’,{‘qda’ ‘WeightedBias’,true}}}};

• It corresponds to the following GUI setting:

Shortcut for Multi-Options

• Here is one last shortcut for today:

app={‘CSP’, ’Prediction’,{‘MachineLearning’, …

 {‘Learner’,‘qda’}}};

 Instead of at least {‘qda’}

9.3 All Other Steps

Calibrating (“Training”) a Model

• A new BCI model is created using a previously
loaded data set (the training set) and a
previously defined approach

• This is done using the function bci_train (the
equivalent of the “Train new model…” dialog)

• Example:

raw = io_loadset(‘imag.set’)

app = {‘SpecCSP’, ... };

[loss,model,stats] = bci_train(‘Data’,raw,’Approach’,app, ...

 ‘TargetMarkers’,{‘S 1’,’S 2’});

Calibrating a Model

• The bci_train function usually takes 3 inputs:

– The data (Data parameter)

– The approach (Approach parameter)

– The description of how event types map onto
class labels (TargetMarkers, same as in the GUI)

• The function returns three outputs:

– The overall loss estimate (e.g. error rate)

– The learned model

– Statistics about the model and training process,
including results of a cross-validation

Calibrating a Model

• The bci_train function therefore not only
returns a model but also produces estimates
about the likely future performance

• If this is too slow, it can be disabled (in an
extra parameter to bci_train)

Visualizing a Model

• Models are visualized using the function
bci_visualize

• Example:
bci_visualize(mymodel)

• This function can take extra arguments that
are passed on to the responsible drawing
function (but few drawing functions have
arguments)

Applying a Model to Test Data

• For offline application to test data, the
function bci_predict can be used – it applies
the BCI model to each trial in the data and
calculates loss statistics

• Example:

[outputs,loss,stats] = ...

 bci_predict(‘Data’,mydata,’Model’,mymodel);

• Note: the first output are the model’s
predictions for each trial in the data

Annotating Data with
Continuous BCI Outputs

• The BCI output can be attached as an extra
channel (or multiple channels, each
representing the probability of class k) to a
data set, using the function bci_annotate

• Example:

newset = bci_annotate(‘Data’,mydata,’Model’,mymodel)

Reading Real-Time Data

• Real-time data can be acquired from a device
and written into a named workspace variable
using the online reader plugins (run_read*
functions)

• Examples:

run_readbiosemi(); # read from a BioSemi device

run_readdataset(‘MatlabStream’,’mystream’,’Dataset’,myset);

Sending Real-Time Outputs

• The outputs of a BCI model as applied to some
stream(s) can be calculated in the background
online and passed on to some destination –
this is done using the online writer plugins
(run_write*)

• These functions take usually the name of the
model to use and the name(s) of the stream(s)
to use

• Example:

run_writevisualization(‘Model’,’mymodel’, ...

 ’SourceStream’,’mystream’)

Performing Batch Analyses

• Using bci_batchtrain, a single approach can be
efficiently applied to a list of data sets or file
names

• Also multiple approaches can be applied to
one or more data sets in an automated
manner

• Can not just train models but also make
predictions and evaluate losses on test data
sets

Parameter Search

• It is possible to replace (practically) any value
in an approach definition by a so-called
“search range”, i.e. a list of possible values to
try automatically in a systematic manner

• A search range is specified by writing the
expression search(value1, value2, …, valueN)

• Multiple search parameters in one approach
lead to combinatorial grid search (slow!)

• Example:

app={‘CSP’,’Prediction’,{‘FeatureExtraction’,{ ...

 ‘PatternPairs’,search(1,2,3)}}};

L9 Questions?

