Lecture 9: BCILAB Scripting and
Plugins

Introduction to Modern Brain-Computer Interface
Design

Christian A. Kothe
SCCN, UCSD

Outline

1. Prerequisites
2. Defining an Approach
3. All Other Steps

Swartz

Center for
omputational
euroscience

9.1 Prerequisites

Finding the Right Functions

* There is a scriptable function for every GUI
command

* For documentation on script functions see

Help menu or type doc function name or
help function name

* Most functions have a brief summary,
documentation for all input arguments, and
code examples

* Some functions have paper references, some
have cross-references

Calling Syntax

Most functions take their arguments in the order in
which they are listed in the documentation, and some
can alternatively called with all parameters passed in
as name-value pairs (using the same names as in the
help text, in CamelCase)

If in doubt, pass them in by name — less chance of
getting the order wrong, etc.

It is usually a bad idea to try to mix positional and
name-value arguments in one call —don’t do it unless
that’s the default way to call the function

Example:

bci train (mydata,myapproach)
bci train(‘Data’,mydata,’Approach’,myapproach)

Loading Data

* A data set (no matter what file format) is
loaded using the function io_loadset()

* |tis almost always enough pass in just the file
name, as in the example:

data = io_loadset(‘/somepath/somefile.xyz’)

Swartz

Center for
omputational
euroscience

9.2 Defining an Approach

Defining a new Approach

Defining an approach is the most complex area in scripting
because a data structure must be constructed

Since an approach is a particular instance of a BCl paradigm
(used with custom parameters), an approach definition
consists of:
— The name of the paradigm (e.g., CSP, WindowMeans)
— Optionally a list of arguments for the paradigm’s calibrate()
function

The default way to specify an approach is as a cell array
whose first element is the name of the paradigm and
whose remaining elements are arguments to its calibrate()
function

Example:

appr = {‘CSP’,‘SignalProcessing’, ..., ‘FeatureExtraction’,...};

Approach Parameters

 The parameters are a list of name-value pairs

* Important: The argument of an approach are
not passed in a long ‘flat’ list, but they are

organized in a hierarchy, i.e. some parameters
have named sub-parameters

e Example:

app = {‘CSP’,’'Prediction’, { ‘MachinelLearning’, ..}};

/ MachinelLearning is a sub-parameter of Prediction

Prediction is a “top-level” parameter

Approach Parameters

 Which parameter names a BCl paradigm exposes
is the business of the BCI paradigm

 However, practically all of them adhere to a
uniform scheme of 2 top-level parameter names:

— SignalProcessing is a top-level parameter that

determines the signal processing stages that shall be
used

— Prediction is a top-level parameter that governs how
the prediction function is being calibrated or applied

Swartz 1

Center for
omputational

Correspondence With The GUI

* Thereisa 1:1 correspondence between the hierarchy of
parameters that are specified in scripts and the layout of the
parameter tree in the approach definition GUI

-} Review/edit approach o]
The SignalProcessing — Approach properties
parameter \ 52| 4 ||= =t =l
J E] Miscellaneous -
SignalProcessing
Sub-Parameter FilterOrdering
. EQGRemaoval [
of Resampling —_— [=] Resampling v
(itself a sub-parameter ———> samplingRate 100
. . FilterLength 10
of SignalProcessing) Stopbandisight 1
TypeSelection I
MarkerInsertion I
=¥ ChannelSelection r
SUb'pa rameters of Z — Surfacelaplacian I
SignalProcessing —> Rereferencing r
ICA r

=3 Correspondence With The GUI

* Therefore: If in doubt about parameter
names, look them up in the GUI

* |tis also okay to look up the parameter names
in the function documentation or code, but
they can be nested in a hierarchy of functions
calling each other

Default Values

e Each parameter has a default value (unless it makes
absolutely no sense), which can also be looked up in

the GUI

) Review/edit approach

— Approach properties

=101 %]

e[81 ||=] =5 =i

] Miscellaneous
[-] SignalProcessing
FilterOrdering
EOGRemoval
= Resampling
SamplingRate
FilterLength
StopbandWeight
TypeSelection
MarkerInsertion
ChannelSelection
surfacelaplacian
Rereferendng
ICA

— By default enabled

Default = 100

B
t

By default disabled

P =
Swartz

Center for
omputational
euroscience

Parameter Help

* Each parameter has a help text, which is also visible

in the GUI panel (at the bottom)

Help text for the

—
2+ selected parameter

Type of regularization. Regularizes the robustness [flexibility of covariance estimates.
Auto iz analytical covariance shrinkage, shrinkage is shrinkage as selected via plambda,
and independence is feature independence, also selected via plambda.

EPOCNLLA
[=] Prediction
[=] FeatureExtraction
TimeWindows [-0.15-0.1;-0.1 -0.05;-0.0...
= MachineLearning
[=] Learner Ida
Lambda 1
Reqgularizer auto
WeightedBias r
WeightedCov r]
ConfigLayout SignalProcessing. Resampling, =
Regularizer

Help Cancel I oK

“='The SignalProcessing Parameter

* Has one named sub-parameter for every signal processing
plugin that can be used (these are found automatically)

 The name under which a given signal processing plugin
appears is up to the plugin — they declare this property at the
beginning of their code (you can look it up there)

a9z
a3
94
a5
94
a7
98 — if ~exp beginfun('filter') return; end
99

- -
- - n
S22 al=s0.

firpm, ilter

e o e o

100 — declare properties|('name', 'FIRFilter®, 'foll:

1011 ‘k\

Name of the sub-parameter as which
this plugin shows up in the approach
definition (below SignalProcessing)

omputational

euroscience

The SignalProcessing Parameter

* The plugins that are listed under SignalProcessing are
those in the directories:
— code/filters (file names beginning with flt_)
— code/dataset_editing (file names beginning with set)

* The value assigned to a sub-parameter (e.g.,
FIRFilter) that is presented by a function (e.g.,

flt_firm) is by default a cell array of arguments to
that function

 The arguments can be passed in any format accepted
by the function, but preferably they should again be
passed as name-value pairs to avoid confusion

Configuring Signal Processing
Stages

(MATLAB line break)

Example:
/

app={ ‘CSP’,’SignalProcessing’,
{‘FIRFilter’, { ‘Frequencies’, [7 8 14 15]}}}»

This example defines a CSP-based approach that uses a
particular Frequencies value in its FIR filter

The FIR filter is now also “enabled” if it was not before

Disabling Signal Processing
Stages

* Itis sometimes useful to disable a parameter that is enabled
by default: This can be written (by convention) as follows:

app={ ‘CSP’,’SignalProcessing’, { ‘Resampling’, []};

* Note that these are [] brackets — using {} accidentally would
still enable the filter, but passes an empty argument list to it!

Shortcuts for the Impatient

* BCILAB has the unhealthy habit of allowing short forms for
most things — | recommend to avoid them whenever possible,
but it helps recognizing them

 The most salient short-cut form is when a parameter that has
sub-parameters is not assigned a cell array of arguments (like
it should), but instead directly the value of the first sub-
argument

 Example:

app={‘CSP’,’SignalProcessing’, { ‘Resampling’,200}};

Y,

This number is assigned to the first
sub-argument of the resampling filter
(=the target sampling rate)

Shortcuts for the Impatient

BCILAB has the unhealthy habit of allowing short forms for
most things — | recommend to avoid them whenever possible,
but it helps recognizing them

The most salient short-cut form is when a parameter that has
sub-parameters is not assigned a cell array of arguments (like
it should), but instead directly the value of the first sub-
argument

Example:

app={‘CSP’,’SignalProcessing’, { ‘Resampling’,200}};

... is equivalent to:

app={ ‘CSP’,’SignalProcessing’, ...
{ ‘Resampling’, { ‘SamplingRate’, 200} }};

Multi-Option Parameters

* The last kind of parameter that deserves mention are multi-
option parameters, which consists of a selection argument (a

string) and for each possible value a different list of sub-
arguments

* An example are the different alternative variants supported
by the ICA filter: amica, infomax, etc., all of which have
algorithm-specific sub-arguments

* Below, the parameter named Variant is set to ‘fastica’, and the
Maxlterations sub-parameter of Variant for the fastica case is

=] sUrtTaceLapliacian I L
set to 1000 MeighbourCount 8
Rereferendng r
= ICA ¥
MaxIterations 1,000
Approach symm
MumICs
Monlinearity tanh

Multi-Option Parameters

In scripts, multi-option parameters are written just like the
overall approach definition: as a cell array whose first element
is the name of the selection followed by name-value pairs for
this case

Example:

..., ‘Variant’, { ‘fastica’, ‘MaxIterations’, 1000, ‘Approach’,’symm’ }

... is equivalent to setting what is shown here in the GUI:

= SUrTacELapIaaan v "
MeighbourCount g8
Rereferencing r
= ICA v
MaxIterations 1,000
Approach SYmm
MumICs
Monlinearity tanh

Other Paradigm Parameters

 The other parameters behave in exactly the
same ways

 Example:

— Machinelearning is a sub-parameter of Prediction,
it has a Learner sub-parameter

— Learner is a multi-option parameter with one case
for each machine learning plugin (e.g., ‘Ida’, ‘qda),

logreg’, ...)
— The sub-parameters of the respective case are

those that are exposed by the respective plugin
function (e.g., ml_traingda.m)

Configuring the Machine Learning
Stage

* Thus, the following is a valid way to configure
the machine learning function of a paradigm:

app={ ‘CSP’, ’"Prediction’, {‘Machinelearning’, ..
{ ‘\Learner’, { ‘gda’ ‘WeilghtedBias’, true}}}};

* |t corresponds to the following GUI setting:

EpOCnLLA I
[=] Prediction
FeatureExtraction
[=] MachineLearning
=] Learner qda
Lambda 0
Kappa 1
Regularizer auto
WeightedBias WW
WeightedCov r —

Shortcut for Multi-Options

* Here is one last shortcut for today:

app={ ‘CSP’, ’"Prediction’, { ‘Machinelearning’, ..

{‘Learner’, *gda’}}};

b

Instead of at least {‘qda’}

Swartz

Center for
omputational
euroscience

9.3 All Other Steps

r Calibrating (“Training”) a Model

* A new BCl model is created using a previously
loaded data set (the training set) and a
previously defined approach

e This is done using the function bci_train (the
equivalent of the “Train new model...” dialog)

e Example:

raw = 10 loadset (‘'imag.set’)

app = { ‘SpecCSP’, ... };

[loss,model, stats] = bci train(‘Data’,raw,’Approach’,app, ...
‘TargetMarkers’, {'s 1',’S 2"});

Calibrating a Model

 The bci_train function usually takes 3 inputs:
— The data (Data parameter)
— The approach (Approach parameter)

— The description of how event types map onto
class labels (TargetMarkers, same as in the GUI)

* The function returns three outputs:
— The overall loss estimate (e.g. error rate)
— The learned model

— Statistics about the model and training process,
including results of a cross-validation

Calibrating a Model

* The bci_train function therefore not only
returns a model but also produces estimates
about the likely future performance

* |f this is too slow, it can be disabled (in an
extra parameter to bci_train)

Visualizing a Model

 Models are visualized using the function
bci_visualize

 Example:
bci_visualize(mymodel)

* This function can take extra arguments that
are passed on to the responsible drawing
function (but few drawing functions have
arguments)

Applying a Model to Test Data

* For offline application to test data, the
function bci_predict can be used — it applies
the BClI model to each trial in the data and
calculates loss statistics

e Example:

[outputs, loss,stats] = ...
bci predict (‘'Data’,mydata,’Model’,mymodel) ;

* Note: the first output are the model’s
predictions for each trial in the data

Annotating Data with
Continuous BC| Outputs

 The BCl output can be attached as an extra
channel (or multiple channels, each
representing the probability of class k) to a
data set, using the function bci_annotate

e Example:

newset = bcil annotate (‘Data’,mydata, Model’,mymodel)

Reading Real-Time Data

* Real-time data can be acquired from a device
and written into a named workspace variable
using the online reader plugins (run_read*
functions)

 Examples:

run readbiosemi (); # read from a BioSemi device

run readdataset (‘MatlabStream’, 'mystream’,’Dataset’,myset);

Sending Real-Time Outputs

* The outputs of a BCl model as applied to some
stream(s) can be calculated in the background
online and passed on to some destination —
this is done using the online writer plugins
(run_write®)

* These functions take usually the name of the

model to use and the name(s) of the stream(s)
to use

 Example:

run writevisualization (‘Model’, 'mymodel’, ...
"SourceStream’, "mystream’)

Performing Batch Analyses

* Using bci_batchtrain, a single approach can be
efficiently applied to a list of data sets or file
names

* Also multiple approaches can be applied to
one or more data sets in an automated
manner

e Can not just train models but also make
predictions and evaluate losses on test data
sets

Parameter Search

It is possible to replace (practically) any value
in an approach definition by a so-called
“search range”, i.e. a list of possible values to
try automatically in a systematic manner

A search range is specified by writing the
expression search(valuel, value?, ..., valueN)

Multiple search parameters in one approach
lead to combinatorial grid search (slow!)

Example:

app={ ‘CSP’, "’ Prediction’, { ‘FeatureExtraction’, {
‘PatternPairs’,search(1,2,3)}}};

Swartz

Center for
omputational
euroscience

Center for
omputational
euroscience

L9 Questions?

