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10.1 Prerequisites



Prerequisites

* Neuroscientifically interpretable BClI models
rely on being able to spatially locate the
parameters and the importance/weight
assigned to them by models

* Can be accomplished in multiple ways:
— Calculate 3d gain field for spatial filters

— Represent models in terms of localizable signal
components

— Represent models in a very large space of cortical
basis vectors (one per patch)



Prerequisites

* Currently in practice the easiest is to utilize
spatially localizable components

* Can be done via Independent Component
Analysis and Dipole fitting (our choice at
SCCN)



dependent Component Analysis

 |CAis a method to learn spatial filters for statistically
independent brain sources in an unsupervised manner
(i.e. no need for labels)

e Basicideais to learn a square filter matrix W such that
the filtered signal components are statistically maximally
independent




dependent Component Analysis

* There are dozens of ways to implement it —

currently best for EEG are extended Infomax
and AMICA o
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10.2 Source Sighal Feature
Extraction



omputational

°°°°°° —source Signal Feature Extraction

* Source components need no further spatial
filtering, so features can be extracted directly
from them, including:

— spectral measures
— non-linear temporal measures
— higher-order (inter-component) features

* Since ICs are statistically independent, only a
sparse set of components is relevant for any
given (BCl or other) question — allows for
sparsity assumptions



Component Spectral Features

* Fourier spectrum
— Windowed DFT/FFT W
— Welch spectral estimation

— Multi-taper spectral estimation



Component Spectral Features

* Fourier spectrum
— Windowed DFT/FFT
— Welch spectral estimation
— Multi-taper spectral estimation

* Time/Frequency representations
— Short-Time Fourier Transform (STFT)
— Continuous Wavelet Transform (CWT)
— Discrete wavelet transform (DWT)
— Time-frequency distributions




* Fourier spectrum
— Windowed DFT/FFT
— Welch spectral estimation
— Multi-taper spectral estimation

* Time/Frequency representations
— Short-Time Fourier Transform (STFT)
— Continuous Wavelet Transform (CWT)
— Discrete wavelet transform (DWT)
— Time-frequency distributions

* Between-Component Features
— Coherence

— Phase-Locking Value
— Effective Connectivity
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Integrating Structural
Prior Knowledge

 Amounts to side assumptions about the data
* For example:

— Spatial smoothness (correlation)
— Sparsity, group sparsity
— Shared latent structure between parameters
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Integrating Structural
Prior Knowledge

 Amounts to side assumptions about the data

* For example:
— Spatial smoothness (correlation)
— Sparsity, group sparsity
— Shared latent structure between parameters
— Kernels for non-linear features
— “Dictionaries” of known (learned) features
— Per-trial parameters (e.g. outlyingness, time shift)
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10.3 Location-based Prior
Knowledge



Source-Space Modeling

* |f IC sources are localized using, e.g., dipole
fitting or NFT, parameters (@) have a location

1




Integrating Quantitative Prior
Knowledge

* |f weights have an associated location (refer to
a localized signal components), anatomical
prior knowledge can be used

* For example, reweight the regularizing penalty
based on probability of source bemg located
inside a particular brain area

* Brain atlases: Talairach, LONI




Integrating Empirical Prior
Knowledge

* |Information gathered from other subjects can
be factored into a given model (e.g., add an
extra penalty or Bayesian pr

* Having spatially localized
parameters enables
location-dependent priors
and spatial coregistration ol
alignment of multi-subject
data
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10.4 Recent Example: Attention
Shifting



Experimental Task

38 subjects (2 age groups, ignored here)
32 channels EEG

Stimulus stream: Targets (20%) & Non-Targets (80%), randomly interleaved
order (100-400ms onset-to-onset SOA)

Some delivered visually (bright and dark rectangles), others delivered
acoustically (beeps and boops)

Sporadically (6600ms onset-to-onset): Instructions to switch to another
sensory modality (“LOOK” / “HEAR”), bimodal delivery

Other blocks at beginning/end of experiment, ignored here
Ca. 260 switch trials total per subject
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Analysis Goal

* Build a classifier that can determine the
directionality of a subject’s attention switch
(auditory to visual or visual to auditory)

 Parameterize the model in a way that is
interpretable from a neuroscience perspective

* Evaluate its performance (mis-classification
rate)
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Continuous wavelet
Raw EEG Linear spatial decomposition time/frequency
segments / trials (multi-model AMICA) decomposition
(complex Morlet)




2. Predictive Model

e Severely underdetermined without additional
side assumptions

* Assumptions here: sparse in components low-

rank in time/frequency [T A

* Also an anatomical prior = 6]



2. Predictive Model

Severely underdetermined without additional
side assumptions

Assumptions here: sparse in components low-

rank in time/frequency — s —
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Results: Classification Accuracy

* Analysis approach

— 10-fold chronological cross-validation, 5 trials margin
between training set and test set

— Nested cross-validation on training set to optimize
the regularization parameter (A)

— ICA and other data statistics only computed on the
training set, recomputed for every fold

e Test-set prediction attained: mean 86.4% correct
across all subjects (chance level 50%), p<0.001
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Results: Full Model Structure
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Caveats

* Takes several hours to compute (currently)

* Independent Components are learned without
label knowledge — not guaranteed that
relevant processes are captured

e Spatial decomposition can be derailed by
strong artifacts in the data (get artifact
components rather than brain components)
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10.5 Outlook



Open Research Areas

 What are the fundamental accuracy limits
imposed by our current EEG sensors?

e How far are we from these limits with our
current approaches?

* Need a model that is mathematically optimal
(under widely agreeable assumptions) to
answer this question empirically



Open Research Areas

Hierarchical models that include data from
multiple people and sessions

Inclusion of neuroscientific knowledge (from
the book and from quantitative sources, e.g.,
data bases)

Inclusion of auxiliary data (e.g., MoCap, etc.)

Desighing methods that are entirely principled
and optimal

Designing methods that directly target real-
world applications (e.g., robustness)



What We Did Not Cover

Fully Bayesian approaches (graphical models,
variational inference, Bayesian model selection)
and connections to optimization

Existing multi-subject BCl approaches (e.g., Altun
2010, Fazli 2011)

Beamforming techniques (e.g., Wentrup 2009)
Connectivity-based approaches (e.g., Daly 2012)
Non-standard signal features (e.g., Brodu 2012)



Some Concluding Remarks

Simple and fast methods (e.g., LDA) often work
remarkably well (much easier to write a paper if it
takes 5 seconds to compute instead of 5 hours)

But: approaches that take 5 hours today were largely
intractable 10 years ago — so new territory to explore

The importance of assumptions cannot be overstated
(as opposed to getting sidetracked with ad hoc
algorithms and questions)

Provably optimal and well-defined methods allow us to
directly test our assumptions (with fewer random or
unexplained effects)

It is too easy to evaluate things in not entirely proper
ways — ultimately hampers progress, always do it right!
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10.6 Further Reading



BCl Papers Worth Reading

B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Mueller, "Single-trial
analysis and classification of ERP components - A tutorial”, Neurolmage,
vol. 56, no. 2, pp. 814-825, May 2011.

F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
BCl designs: unified theory and new algorithms,” IEEE Transactions on
Biomedical Engineering, vol. 58, no. 2, pp. 355-362, Feb. 2011.

R. Tomioka and K.-R. Mueller, A regularized discriminative framework for
EEG analysis with application to brain-computer interface", Neurolmage,
vol. 49, no. 1, pp. 415-432, 2010.

B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Mueller, and G. Curio, "The
non-invasive Berlin brain-computer interface: Fast acquisition of effective
performance in untrained subjects", Neurolmage, vol. 37, no. 2, pp. 539-

550, Aug. 2007.

M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, "Beamforming
in noninvasive brain-computer interfaces”, IEEE Trans. Biomed. Eng., vol.
56, no. 4, pp. 1209-1219, Apr. 2009.



BCl Surveys

e A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, "A
survey of signal processing algorithms in brain-computer

interfaces based on electrical brain signals", J. Neural Eng.,
vol. 4, no. 2, pp. R32—-R57, Jun. 2007.

* F Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B.
Arnaldi, "A review of classification algorithms for EEG-
based brain-computer interfaces", J. Neural Eng., vol. 4, no.
2, pp. R1-R13, Jun. 2007.

* S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang,
K. Kreutz-Delgado, "Evolving Signal Processing for Brain—
Computer Interfaces”, Proc. IEEE, vol. 100, pp. 1567-1584,
2012.



Interesting Technical Papers

D.P. Wipf and S. Nagarajan, “A Unified Bayesian Framework
for MEG/EEG Source Imaging,” Neurolmage, vol. 44, no. 3,
February 2009.

S. Haufe, R. Tomioka, and G. Nolte, “Modeling sparse
connectivity between underlying brain sources for
EEG/MEG,” Biomedical Engineering, no. c, pp. 1-10, 2010.

S. Boyd, N. Parikh, E. Chu, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers,” Information Systems

Journal, vol. 3, no. 1, pp. 1-122, 2010.

P. Zhao and B. Yu, “On Model Selection Consistency of
Lasso,” Journal of Machine Learning Research, vol. 7 pp.
2541-2563, 2006.



Technical Papers, ct'd

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng, “Multimodal
Deep Learning,” in Proceedings of the 28th International
Conference on Machine Learning, 2011.

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying
natural images from human brain activity,” Nature, vol. 452, no.
7185, pp. 352-355, Mar. 2008.

O. Jensen et al., “Using brain-computer interfaces and brain-state
dependent stimulation as tools in cognitive neuroscience,” Frontiers
in Psychology, vol. 2, p. 100, 2011.

D.-H. Kim1, N. Lu, R. Ma,. Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M.
Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L.
Xu, M. Li, H.-J. Cung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.
G. Omenetto, Y Huang, T. Coleman, J. A. Rogers, “Epidermal
electronics,” Science vol. 333, no. 6044, 838-843, 2011.



Researchers to Watch

Klaus-Robert Mueller et al. (TU Berlin) — one of the leading
BCI groups
http://www.bbci.de/publications.html

Marcel van Gerven et al. (Donders) — BCl and Neuroscience
with a Bayesian approach
https://sites.google.com/a/distrep.org/distrep/publications

Ryota Tomioka (U Tokyo) — known for some technical
achievements

http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka

Karl Friston et al. (UC London) — working on relevant
underpinnings for neuroimaging (outside BClI)
http://www.fil.ion.ucl.ac.uk/Research/publications.html

Leading Statisticians and Machine Learners: Michael I. Jordan,
Andrew Ng, Lawrence Carin, Zoubin Ghahramani, Francis
Bach, Geoffrey Hinton, Ruslan Salakhutdinov, Yeh Whye Teh,
David Blei, ...
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L10 Questions?



