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10.1 Prerequisites 



Prerequisites 

• Neuroscientifically interpretable BCI models 
rely on being able to spatially locate the 
parameters and the importance/weight 
assigned to them by models 

• Can be accomplished in multiple ways: 

– Calculate 3d gain field for spatial filters 

– Represent models in terms of localizable signal 
components 

– Represent models in a very large space of cortical 
basis vectors (one per patch) 



Prerequisites 

• Currently in practice the easiest is to utilize 
spatially localizable components 

• Can be done via Independent Component 
Analysis and Dipole fitting (our choice at 
SCCN) 

 



Independent Component Analysis 

• ICA is a method to learn spatial filters for statistically 
independent brain sources in an unsupervised manner 
(i.e. no need for labels) 

• Basic idea is to learn a square filter matrix W such that 
the filtered signal components are statistically maximally 
independent 
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Independent Component Analysis 

• There are dozens of ways to implement it – 
currently best for EEG are extended Infomax 
and AMICA 

• Surprisingly, many 
ICs have dipolar 
scalp topographies 

• Can be practically 
localized via dipole 
fitting 



 



10.2 Source Signal Feature 
Extraction 



Source Signal Feature Extraction 

• Source components need no further spatial 
filtering, so features can be extracted directly 
from them, including:  
– spectral measures 

– non-linear temporal measures 

– higher-order (inter-component) features 

• Since ICs are statistically independent, only a 
sparse set of components is relevant for any 
given (BCI or other) question – allows for 
sparsity assumptions 



Component Spectral Features 

• Fourier spectrum 
– Windowed DFT/FFT 

– Welch spectral estimation 

– Multi-taper spectral estimation 

• Time/Frequency representations 
– Short-Time Fourier Transform (STFT) 

– Continuous Wavelet Transform (CWT) 

– Discrete wavelet transform (DWT) 

– Time-frequency distributions  

• Between-Component Features 
– Coherence 

– Phase-Locking Value 

– Effective Connectivity 
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Integrating Structural  
Prior Knowledge 

• Amounts to side assumptions about the data 

• For example: 

– Spatial smoothness (correlation) 

– Sparsity, group sparsity 

– Shared latent structure between parameters 

 

Low-Rank Assumption Smoothness Assumption 



Integrating Structural  
Prior Knowledge 

• Amounts to side assumptions about the data 

• For example: 

– Spatial smoothness (correlation) 

– Sparsity, group sparsity 

– Shared latent structure between parameters 

– Kernels for non-linear features 

– “Dictionaries” of known (learned) features 

– Per-trial parameters (e.g. outlyingness, time shift) 

 



 



10.3 Location-based Prior 
Knowledge 



Source-Space Modeling 

• If IC sources are localized using, e.g., dipole 
fitting or NFT, parameters (𝜽) have a location 



Integrating Quantitative Prior 
Knowledge 

• If weights have an associated location (refer to 
a localized signal components), anatomical 
prior knowledge can be used 

• For example, reweight the regularizing penalty 
based on probability of source being located 
inside a particular brain area 

• Brain atlases: Talairach, LONI 

 

 

 



Integrating Empirical Prior  
Knowledge 

• Information gathered from other subjects can 
be factored into a given model (e.g., add an 
extra penalty or Bayesian prior) 

• Having spatially localized  
parameters enables  
location-dependent priors  
and spatial coregistration or  
alignment of multi-subject  
data 

 

 

 



 



10.4 Recent Example: Attention 
Shifting 



Experimental Task 

• 38 subjects (2 age groups, ignored here)  
• 32 channels EEG 
• Stimulus stream: Targets (20%) & Non-Targets (80%), randomly interleaved 

order (100-400ms onset-to-onset SOA) 
• Some delivered visually (bright and dark rectangles), others delivered 

acoustically (beeps and boops) 
• Sporadically (6600ms onset-to-onset): Instructions to switch to another 

sensory modality (“LOOK” / “HEAR”), bimodal delivery 
• Other blocks at beginning/end of experiment, ignored here 
• Ca. 260 switch trials total per subject 



Analysis Goal 

• Build a classifier that can determine the 
directionality of a subject’s attention switch 
(auditory to visual or visual to auditory) 

• Parameterize the model in a way that is 
interpretable from a neuroscience perspective 

• Evaluate its performance (mis-classification 
rate) 



Linear spatial decomposition 
(multi-model AMICA) 

1. Signal Decomposition 
Continuous wavelet  

time/frequency  
decomposition  

(complex Morlet) 

Raw EEG  
segments / trials 



2. Predictive Model 

• Severely underdetermined without additional 
side assumptions 

• Assumptions here: sparse in components, low-
rank in time/frequency 

• Also an anatomical prior 𝜽𝑘 



2. Predictive Model 

• Severely underdetermined without additional 
side assumptions 

• Assumptions here: sparse in components, low-
rank in time/frequency 

• Also an anatomical prior 

• Can be solved as a single large convex 
optimization problem: 

min
𝜣
log 1 + 𝑒−𝒚(𝜣𝑿+𝑏) + 𝜆  𝜎𝑘(𝜽𝑐)

𝑟𝑎𝑛𝑘(𝜽𝑐)

𝑘=1

𝐶

𝑐=1

 

𝜽𝑘 



Results: Classification Accuracy 

• Analysis approach 

– 10-fold chronological cross-validation, 5 trials margin 
between training set and test set 

– Nested cross-validation on training set to optimize  
the regularization parameter (𝜆) 

– ICA and other data statistics only computed on the  
training set, recomputed for every fold 

• Test-set prediction attained: mean 86.4% correct 
across all subjects (chance level 50%), p<0.001 

               Training  
                   part 

Test 
part 



Results: Full Model Structure 

 



Caveats 

• Takes several hours to compute (currently) 

• Independent Components are learned without 
label knowledge – not guaranteed that 
relevant processes are captured 

• Spatial decomposition can be derailed by 
strong artifacts in the data (get artifact 
components rather than brain components) 

 

 



 



10.5 Outlook 



Open Research Areas 

• What are the fundamental accuracy limits 
imposed by our current EEG sensors? 

• How far are we from these limits with our 
current approaches? 

• Need a model that is mathematically optimal 
(under widely agreeable assumptions) to 
answer this question empirically 

 

 



Open Research Areas 

• Hierarchical models that include data from 
multiple people and sessions 

• Inclusion of neuroscientific knowledge (from 
the book and from quantitative sources, e.g., 
data bases) 

• Inclusion of auxiliary data (e.g., MoCap, etc.) 

• Designing methods that are entirely principled 
and optimal 

• Designing methods that directly target real-
world applications (e.g., robustness) 



What We Did Not Cover 

• Fully Bayesian approaches (graphical models, 
variational inference, Bayesian model selection) 
and connections to optimization 

• Existing multi-subject BCI approaches (e.g., Altun 
2010, Fazli 2011) 

• Beamforming techniques (e.g., Wentrup 2009) 

• Connectivity-based approaches (e.g., Daly 2012) 

• Non-standard signal features (e.g., Brodu 2012) 



Some Concluding Remarks 

• Simple and fast methods (e.g., LDA) often work 
remarkably well (much easier to write a paper if it 
takes 5 seconds to compute instead of 5 hours) 

• But: approaches that take 5 hours today were largely 
intractable 10 years ago – so new territory to explore 

• The importance of assumptions cannot be overstated 
(as opposed to getting sidetracked with ad hoc 
algorithms and questions) 

• Provably optimal and well-defined methods allow us to 
directly test our assumptions (with fewer random or 
unexplained effects) 

• It is too easy to evaluate things in not entirely proper 
ways – ultimately hampers progress, always do it right! 



 



10.6 Further Reading 



BCI Papers Worth Reading 

• B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Mueller, "Single-trial 
analysis and classification of ERP components - A tutorial", NeuroImage, 
vol. 56, no. 2, pp. 814–825, May 2011. 

• F. Lotte and C. Guan, “Regularizing common spatial patterns to improve 
BCI designs: unified theory and new algorithms,” IEEE Transactions on 
Biomedical Engineering, vol. 58, no. 2, pp. 355-362, Feb. 2011. 

• R. Tomioka and K.-R. Mueller, A regularized discriminative framework for 
EEG analysis with application to brain-computer interface", NeuroImage, 
vol. 49, no. 1, pp. 415–432, 2010. 

• B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Mueller, and G. Curio, "The 
non-invasive Berlin brain-computer interface: Fast acquisition of effective 
performance in untrained subjects", NeuroImage, vol. 37, no. 2, pp. 539–
550, Aug. 2007. 

• M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, "Beamforming 
in noninvasive brain-computer interfaces", IEEE Trans. Biomed. Eng., vol. 
56, no. 4, pp. 1209–1219, Apr. 2009. 
 



BCI Surveys 

• A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, "A 
survey of signal processing algorithms in brain-computer 
interfaces based on electrical brain signals", J. Neural Eng., 
vol. 4, no. 2, pp. R32–R57, Jun. 2007. 

• F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. 
Arnaldi, "A review of classification algorithms for EEG-
based brain-computer interfaces", J. Neural Eng., vol. 4, no. 
2, pp. R1–R13, Jun. 2007. 

• S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang, 
K. Kreutz-Delgado, "Evolving Signal Processing for Brain–
Computer Interfaces", Proc. IEEE, vol. 100, pp. 1567-1584, 
2012. 



Interesting Technical Papers 

• D.P. Wipf and S. Nagarajan, “A Unified Bayesian Framework 
for MEG/EEG Source Imaging,” NeuroImage, vol. 44, no. 3, 
February 2009. 

• S. Haufe, R. Tomioka, and G. Nolte, “Modeling sparse 
connectivity between underlying brain sources for 
EEG/MEG,” Biomedical Engineering, no. c, pp. 1-10, 2010. 

• S. Boyd, N. Parikh, E. Chu, and J. Eckstein, “Distributed 
Optimization and Statistical Learning via the Alternating 
Direction Method of Multipliers,” Information Systems 
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• P. Zhao and B. Yu, “On Model Selection Consistency of 
Lasso,” Journal of Machine Learning Research, vol. 7 pp. 
2541-2563, 2006. 
 



Technical Papers, ct’d 

• J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng, “Multimodal 
Deep Learning,” in Proceedings of the 28th International 
Conference on Machine Learning, 2011. 

• K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying 
natural images from human brain activity,” Nature, vol. 452, no. 
7185, pp. 352-355, Mar. 2008. 

• O. Jensen et al., “Using brain-computer interfaces and brain-state 
dependent stimulation as tools in cognitive neuroscience,” Frontiers 
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Researchers to Watch 

• Klaus-Robert Mueller et al. (TU Berlin) – one of the leading 
BCI groups 
http://www.bbci.de/publications.html 

• Marcel van Gerven et al. (Donders) – BCI and Neuroscience 
with a Bayesian approach 
https://sites.google.com/a/distrep.org/distrep/publications 

• Ryota Tomioka (U Tokyo) – known for some technical 
achievements 
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka 

• Karl Friston et al. (UC London) – working on relevant 
underpinnings for neuroimaging (outside BCI) 
http://www.fil.ion.ucl.ac.uk/Research/publications.html 

• Leading Statisticians and Machine Learners: Michael I. Jordan, 
Andrew Ng, Lawrence Carin, Zoubin Ghahramani, Francis 
Bach, Geoffrey Hinton, Ruslan Salakhutdinov, Yeh Whye Teh, 
David Blei, … 
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L10 Questions? 


