
Introduction to BCILAB
A MATLAB Toolbox and EEGLAB Plugin

Christian A. Kothe

Swartz Center for Computational
Neuroscience, UCSD

EEGLAB Overview

What is EEGLAB?

• Large open-source toolbox for EEG analysis (70k lines,
90k d/loads, 5000-9000 users on discussion list)

• Neuroscience focus & features (ICA, 3d source
localization, statistics, multi-subject analysis, graphics)

• Developed by Arno Delorme and Scott Makeig (et al.)
under NIH funding

• 20+ plugins (NFT, SIFT, BCILAB,
MPT, …)

• Currently being extended for
real-time experimentation
(MoBILAB, ERICA platform)

BCILAB Overview

What is BCILAB?

http://sccn.ucsd.edu/wiki/BCILAB

Idea & Purpose

• Like EEGLAB, but for BCI (and/or cognitive state
assessment)

– Seeding a community

– Strengthening links between BCI and Neuroscience

• SCCN’s in-house tool for BCI problems

– Main focus: Advanced cognitive monitoring

– Part of a large US research program (CaN CTA)

– Funded by ARL (and ONR, Swartz Foundation, …)

Research Directions

• HCI: User-state monitoring, intelligent assistive systems

• Neuroscience: Brain feedback experiments

• Clinical: Communication and control devices for the
severely disabled

• Entertainment: Computer game controllers

Research Directions

• Neuroscience: also, decoding models of brain dynamics
(exploratory research)

BCILAB’s Niche

• State of the art
• Largest collection of machine learning & signal processing

components in any open-source BCI package
– Many standard components (CSP, LDA, SVM, …)
– Many modern components (SBL, SSA, AMICA, HKL, DPGMM, LR-

DAL, …)
– Some novel components (OSR, RSSD, SSB, …)

• Next-generation framework
– Fully probabilistic
– Model inference from data corpora*
– Anatomical priors, other neuroscience-aware features
– Processing of parallel streams

(*: not yet in the current release)

(Intangible) Aims

• Low entry barrier
– Developers: Simple plugin framework, low overhead
– Experimenters: User-friendliness, GUI, canned approaches

• Low usage friction
– Flexible, unobstructive
– Simple things easy to achieve, complex things possible

• Efficiency
– No redundant computations (caching, …)
– Parallel computation
– Capable scripting (batch analysis, parameter search, …)
– Automation

Theory, Terminology
and BCILAB Equivalents

Signals

• We measure one or more (multi-channel,
fixed-rate) signals of a person

– EEG, ECoG, MEG, …

– EMG, EOG, Gaze, MoCap, …

EEG

Signal Representations
Signal Bundle

.streams

…

Signal 1

Signal 2

Signal n

…

Signal

.data

.event

.srate 200Hz
.xmin 0.0s

.chanlocs

.dipfit

…

S2 S1 R1

Data Sources

• Signals in BCILAB originate from device plugins

• Currently: BioSemi, TCP, OSC, BCI2000, DataRiver,
playback, etc.

• More planned (e.g., BrainProducts, ANT, g.Tec,
Emotiv, …)

• Quite easy to extend (typically a few 10s of LoC)

Basic Framework

• The goal is to build an oracle that consumes these
signals and can answer (pre-defined) queries about
cognitive state of the person

• BCIs fit into that framework

BCI

EEG

EMG

Q?

A!

Basic Framework

• In BCILAB, outputs may be point estimates (scalar,
vector) or probability distributions (discrete /
continuous)

– usually discrete prob. distributions

BCI

EEG

EMG

Q?

A!

Basic Framework

• A BCI is specified/described by a “BCI model”

BCI

EEG

EMG

Q?

A!

BCI Model

describes

Model Structure

• All BCI models contain a mapping f(X) that maps a
limited-length signal segment 𝐗 ∈ ℝ𝐶×𝑇 onto the
output 𝑦

– In BCILAB called the model’s “prediction function”

– May also accept segments from multiple signals

 Prediction Function

y = f(X)

y X

Model Structure

• Note: the prediction function involves a functional
form and possibly some fixed parameters

– Functional form reflects a relationship between
measurements and cognitive state (inverse for some
assumed generative mechanism)

Prediction Function

y = f(X)

Functional form, e.g.,
𝑦 = 𝑤 var 𝑾𝑿 + 𝑏

Parameters, e.g.,
𝑾,𝑤, 𝑏

Model Structure

• May also apply signal processing methods (here
called filters) to the input signals (e.g., for
computational efficiency or to leverage tools)

– receive a signal and produce a transformed signal

– online-capable and possibly adaptive / stateful

– represented as plugins in BCILAB, more than 40
methods built in

Filter

Major Filter Types

• Spatial filters (channel selection, surface Laplacian,
ICA, CSP*, sparse recovery, …)

• Spectral filters (FIR, IIR, FFT)

• Epoch-based filters (windowing, Wavelet transform,
Fourier transform, STFT, …)

• Miscellaneous (resampling, dipole fitting, …)

*: not implemented as a filter in BCILAB

Model Structure

• Putting all together, a BCI model in BCILAB contains a
filter graph and a prediction function

• Provides enough flexibility for most BCI designs

Filter Filter

Filter

Filter

Filter Graph Prediction Function

…

BCI Model

Online Data Flow

• In BCILAB, the filter graph receives all input samples,
but the prediction function may be called on demand

Filter Filter

Filter

Filter

Filter Graph

Prediction Function

EEG

EMG

filtered data

Predict

tPred

Online Data Flow

• In BCILAB, the filter graph receives all input samples,
but the prediction function may be called on demand

– In most current BCIs, the prediction function consists of a
dedicated “feature extraction” step and “prediction” step

Filter Filter

Filter

Filter

Filter Graph

Prediction Function

Extract
Features

EEG

EMG

filtered data

Pre-
dict

tPred

One Problem

• for most BCI questions and implementations, the
parameters leading to best accuracy are a priori
unknown!

– Depend on hard-to-measure factors
(e.g., brain functional map)

– Depend on expensive-to-measure factors
(e.g., brain folding)

– Depend on highly variable factors
(e.g., sensor placement, subject state)

– Different for every person, task, montage, etc.

One Problem

• Example per-channel parameters across four
subjects:

Person 1 Person 2 Person 3 Person 4

(image: Blankertz et al. 2007)

Model Calibration

• Need calibration / training data to estimate
parameters from and a separate calibration step

 Calibration data

BCI
Model

Calibration step

Model Calibration

• In theory many possibilities (e.g. MR scanner data +
Beamforming)

Model Calibration

• In theory many possibilities (e.g. MR scanner data +
Beamforming)

• Most successful way (so far): utilize data where both
the BCI input (e.g. EEG) and desired output (cognitive
state) is known – in BCILAB called “calibration
recording” – and adapt BCI parameters using
machine learning algorithms

Model

Calibration recording

machine learning

Calibration Recording

• Standard psychological experiment

– continuous EEG (or other)

– multiple trials/blocks (capturing variation)

– randomized (eliminating confounds)

Calibration Recording

• Standard psychological experiment

– continuous EEG (or other)

– multiple trials/blocks (capturing variation)

– randomized (eliminating confounds)

– event markers to encode cognitive state
conditions of interest, e.g., stimuli/responses
(called “target markers” in BCILAB)

S2 S1 R1 S1

Machine Learning

• Large field with 100s of algorithms

• Most methods conform to a common interface of a
training function and a prediction function

– training function accepts a matrix of feature vectors
(samples) 𝑿 ∈ ℝ𝑁×𝐹 and target values 𝒚 ∈ ℝ𝑁×𝐷 with
F the # of features per sample, N the # of samples, D
the dimensionality of the target space (usually D=1);
the output is a model with parameters 𝜽

– prediction function accepts a matrix of feature vectors
𝑿, model parameters 𝜽 and produces estimates of the
corresponding target values 𝒚

Machine Learning

• BCILAB has a plugin framework for machine learning
(with >60 built-in algorithms)

• Supports some additional formats for X, e.g., matrix-
valued features and y (e.g., common distributions)

• Training function also accepts additional parameters

Machine Learning Method

Training
function

Prediction
function

X

y
𝜽

𝜽

X
y

Model Calibration, cont.

• In BCILAB, typically one trial segment (sample) is
extracted for every target marker in the calibration
recording

S2 S1 R1 S1

2 1 1

, ,
… Training

function
Model

X,y 𝜽

Feature Extraction

• Problem: Standard machine learning methods often
do not work very well when applied to raw signal
segments X of the calibration recording

– too high-dimensional (too many parameters to fit)

– too complex structure to be captured (too much
modeling freedom)

– (but note: different story for custom methods)

1000s of degrees of freedom

Feature Extraction

• Solution: Introduce additional mapping (called
“feature extraction”) from raw signal segments onto
feature vectors

– output is often of lower dimensionality

– hopefully better distributed in the feature space (easy
to handle for machine learning)

• With feature extraction, the analysis process is as
follows:

Model Calibration, cont.

S2 S1 R1 S1

2 1 1

, ,
…

Training
function Model!

X,y

Feature
extractor

𝑓1
𝑓2
⋮

𝑓1
𝑓2
⋮

𝑓1
𝑓2
⋮

, ,

2 1 1

…

𝜽

e.g., var()
or mean()

BCI Paradigms

• BCI paradigms are the coarsest plugin type in BCILAB
and tie all parts of a BCI approach together

– calibrate function: accepts a calibration recording (with
markers), additional parameters, and produces a BCI
model; may utilize machine learning, signal processing
and/or other methods

– prediction function: serves as the prediction function for
the resulting BCI model

– optionally additional code, e.g., for feature extraction and
feature adaptation (feature learning and/or feature
selection)

BCI Paradigms

• BCI paradigms are the coarsest plugin type in BCILAB
and tie all parts of a BCI approach together

• Note: Multiple approaches can be realized with a
single paradigm (using different parameters)

Calibration recording

Calibrate
Filter Graph

Pre-
dict

BCI Model

BCI Paradigm Plugins

• For event-related potentials
– Time-window averages (explained next)
– Wavelet features
– First-order DAL

• For oscillatory processes
– Common Spatial Patterns, Regularized CSPs, Spectrally

weighted CSP, …
– Channel-based approaches
– ICA-based approaches (OSR, RSSD, …)
– Second-order DAL
– …

Concrete Approach for ERPs

Example Approach for ERPs

• Suppose a calibrate function with steps:

1. Apply an IIR band-pass filter to raw data (0.5 - 15 Hz)

2. Extract 0.8 s segments around stimuli in recording

3. Extract features and run machine learning

Example Approach for ERPs

• Suppose a calibrate function with steps:

1. Apply an IIR band-pass filter to raw data (0.5 - 15 Hz)

2. Extract 0.8 s segments around stimuli in recording

3. Extract features and run machine learning

• Applied to a recording with 100 stimuli of type A and
100 stimuli of type B

A B A

Resulting filtered segments

Stimulus (A or B)

Resulting filtered segments
Condition A signal
distribution

Condition B signal
distribution

Mean response with Gaussian noise
envelope (dashed)

Extracting Features

For each trial segment, calculate signal mean in
three time windows (gives 3-dim feature vectors per trial)

f1 f2 f3

f1

f2 f3

Using Machine Learning

• The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

f1

f2 f3

e.g., LDA

𝜽

LDA In a Nutshell

• Given trial segments 𝒙𝑘 (in vector form) in 𝒞1 and 𝒞2,

𝝁𝑖 =
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

, Σ𝑖 = 𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

𝜽 = Σ1 + Σ2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2

• Caveat: θ often high-dimensional but only few trials available

• Can use a regularized estimator instead, here using shrinkage;
instead of Σ𝑖, we use Σ 𝑖 above:

Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰

LDA In a Nutshell

• Given trial segments 𝒙𝑘 (in vector form) in 𝒞1 and 𝒞2,

𝝁𝑖 =
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

, Σ𝑖 = 𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

𝜽 = Σ1 + Σ2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2

• Caveat: θ often high-dimensional but only few trials available

• Can use a regularized estimator instead, here using shrinkage;
instead of Σ𝑖, we use Σ 𝑖 above:

Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰

Machine Learning Plugins

• Generative Models (LDA, RLDA, QDA, GMMs)

• Discriminative Models (SVMs, RVMs, GLMs,
HKL, …)

• Custom Frameworks (convex optimization,
graphical models, …)

Calibration: Summary

• Basic calibration in BCILAB typically involves:

– Filtering the data (possibly adapting filters)

– Extracting trial segments and features (if
necessary)

– Applying a machine learning function

– Specifying the model structure (filter graph,
prediction function, parameters)

Visualizing θ

• Linear model weights can be visualized as a
(color-coded) value per time window and
channel

• Below: 6 windows, 21 channels, ERP task

Evaluating Model Performance

Offline Evaluation

• Given calibration data

• Estimate model parameters (spatial filters, statistics)

• Apply the model to new data (online / single-trial)

• Optionally: compare outputs with known state, compute
loss statistics for the model / approach (e.g., mis-
classification rate)

Model

Calibration recording Future data…

Offline Evaluation

• Evaluation of computational approaches on a single data
set?

Calibration recording

?

Offline Evaluation

• Evaluation of computational approaches on a single data
set?

– Can not test on the training data! (always on separate
data)

– Instead can split data set repeatedly into training/test
blocks systematically, a.k.a. cross-validation

 Training
 part

Test
part

Model

Resolving Free Parameters

• Can be done using cross-validation in a grid search (try all
values of free parameters)

• Caveat: Resulting “optimal” numbers are non-reportable
(cherry-picked!)

Best
Model

Training Test

For all param. values…

Resolving Free Parameters

• Can be done using cross-validation in a grid search (try all
values of free parameters)

• Caveat: Resulting “optimal” numbers are non-reportable
(cherry-picked!)

• But may test resulting best model on separate data

Best
Model

Training Test

For all param. values…
Future data…

Resolving Free Parameters

• Can be done using cross-validation in a grid search (try all
values of free parameters)

• Caveat: Resulting “optimal” numbers are non-reportable
(cherry-picked!)

• But may test resulting best model on separate data

• Or run grid search within an outer cross-validation (“nested
cross-validation”)

Test
part

Best
Model

Training Test

For all param. values…

Next: Basic GUI Tour

Startup

Toolbox GUI

Getting Help (if Needed)

Getting Help (if Needed)

Getting Help (if Needed)

Getting Help (if Needed)

http://sccn.ucsd.edu/wiki/BCILAB

Use Case A

• You just recorded pilot data for some new study

• The idea is to try to estimate a certain aspect of

cognitive state

• The question is what method works best, and

what accuracies can be achieved

Use Case A

• Scenario: Subject is instructed to imagine a

hand movement, either left hand or right hand

(standard BCI case)

• Task: Estimate, from raw data, which hand

movement was imagined

• Experimental data: EEG, 32 channels, 2

sessions (each ~30 min.)

Experimental task

• 160 trials

• Randomized Instruction: L or R

• Displayed for 3s, followed by blank screen

for 3.5s

• Sample:

Loading the Data

Loading the Data

Loading the Data

Defining an Approach

• An approach addresses both parts of the BCI problem:

Mapping from observed signals to predictions, and

learning the unknown parameters

Defining an Approach

• You never start completely from scratch, but on the basis

of what is known to work

Common Spatial

Pattern

Defining an Approach

• Some of these work best for oscillatory processes,

others for ERP-like features, etc.

These are user-

defined

These are pre-defined

templates

Defining an Approach

Also see help

text

Defining an Approach

Adapt the template

to your experiment

Configuring an Approach

• Key properties can be configured in this dialog

Trial epoch properties usually need to be

adapted

Configuring an Approach

Also, target marker types in the data have to be specified

Reviewing/Editing an Approach

• The next panel allows to edit

all properties of the approach

• Filter stages can be added

and configured

• Feature extraction can be

configured

• Machine learning components

can be selected and

configured

• For now, nothing to do

Saving the Approach

Method description

Executive summary

May save on disk

Learning a Predictive Model

• Put the method to the test...

Learning a Predictive Model

Check to get

performance

estimates

Defines the performance

metric

Smaller number: faster,

but lower quality

estimates

Approach and

data to use

Waiting for Results

Reviewing Results

Mean loss estimate (fraction of mis-classified

trials)

Loss for every partition of the data

set

Reviewing Results

• 11% error rate is quite good for imagined

movements; mean across studies & methods is

probably closer to 25%

• chance level is here 50% (keep that in mind

when evaluating)

• You may get multiple outputs (e.g., false

positives, true positives, which show up in the

table), depending on loss measure

Visualizing Model Properties

Visualizing Model Properties

Motor cortex patterns, left

hand

Motor cortex patterns, right

hand

(Sorted by explained

variance)

Apply Model to 2nd Session

Apply Model to 2nd Session

Apply Model to 2nd Session

Reviewing Results

OR: Apply Model Online

• (if you have a subject sitting next to you)

• Here: use a simulated data source (playing back

the 2nd session)

Online Application

• This adds a data feed process in the

background

Online Application

Online Application

• This adds a real-time inference process in the

background

Presented via this

display command

25 Hz if your

computer is fast

enough

Real-time Output

Current probability

for class 1

Current probability

for class 2

Real-time Output

• If you have more classes, you get more bars

• You can also remap to other parameters (e.g.

expected value)

• Note: the simple graphics command always

renders into the current window

Using a More Ambitious Approach

(State of the art)

Using a More Ambitious Approach

Reviewing Results

5 percent!

Use Case B

• Question: Can we predict whether the user

perceives an event as being an error?

• Experimental data: EEG, 32 channels, 2

sessions

Experimental Task

• Experimental task: ~100 randomized trials, 3

types of stimuli:

– expected/correct event: type 'S 11'

– unexpected event A: type 'S 12'

– unexpected event B: type 'S 13'

• Sample:

Define approach

• This time, an ERP-specific approach is needed

Windowed

Means

Major customizations

Train model, visualize

12% (chance level 33%)

Train model, visualize

Not easy to

interpret!

Using a Sparse Classifier

Using a Sparse Classifier

Selecting logreg instead of lda

(for logistic regression)

Using a Sparse Classifier

Selecting vb-ard Instead of vb for the

“Variant” field

(yields “sparse logistic regression with

variational Bayesian automatic relevance

determination” as the classifier)

Training, Visualizing

Far fewer channels/

windows weighted!

Training, Visualizing

• Sparse classifiers can give more robust models

(fewer channels / sources of errors used), and

more interpretable models (only the most

relevant features retained)

Next: Basic Scripting Tour

Scripting Examples

• Applying a Spec-CSP approach as seen in the GUI:

Visualization Output

Scripting Examples

• Running the resulting model in real time on some
data:

Script Output

Scripting Examples

• Doing a parameter search and nested cross-
validation

Search over different alternatives

Also: Custom cross-validation scheme

Scripting Examples

• Running the advanced ERP analysis (with sparse
classifier):

Visualization Output

Scripting Examples

• Running a batch analysis for 3 modern approaches
and 136 data sets (upcoming version only):

Sample Plugins

BCILAB Architecture

Dependencies
CVX BNT GUI utils

Driver
I/O

EEGLAB LIBSVM GLMNET …

Infrastructure
GUI

generation
cluster

computing
disk

caching
helper

functions
environment

services

Signal Processing Machine Learning BCI Paradigms Devices

Plugins

ICA SSA FIR

IIR FFT …

LDA QDA

GMM SVM …

DAL CSP Spec-CSP

ERP RSSD …

TCP

BCI2000 …

OSC

Framework

Approach
Definition

Offline
Evaluation

Visualization
Online

Execution

GUI / Scripting Interfaces

FFT Filter

Kernel SVMs (via SVMperf)

CSP Paradigm

Ongoing Work

• Better domain-specific assumptions in BCI approaches
(moving beyond off-the-shelf components)
– e.g., expressed as general convex optimization, Bayesian

inference

• Integration of (quantitative) prior knowledge
– Anatomical (or even functional) priors from brain atlases,

etc.

• Integration of larger data sources
– Multiple recordings, multiple subjects, …

• Better exploitation of multiple modalities
– Hybrid BCIs, general cognitive state assessment, …

• More hardware devices!

Teaser: Some Model Types

VB-ARD (on ERPs) Spec-CSP

OSR RSSD

Thanks!
Questions?

http://sccn.ucsd.edu/wiki/BCILAB

