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EEGLAB Overview 



What is EEGLAB? 

• Large open-source toolbox for EEG analysis (70k lines, 
90k d/loads, 5000-9000 users on discussion list) 

• Neuroscience focus & features (ICA, 3d source 
localization, statistics, multi-subject analysis, graphics) 

• Developed by Arno Delorme and Scott Makeig (et al.) 
under NIH funding 

• 20+ plugins (NFT, SIFT, BCILAB,  
MPT, …) 

• Currently being extended for  
real-time experimentation  
(MoBILAB, ERICA platform) 











BCILAB Overview 



What is BCILAB? 

http://sccn.ucsd.edu/wiki/BCILAB 



Idea & Purpose 

• Like EEGLAB, but for BCI (and/or cognitive state 
assessment) 

– Seeding a community 

– Strengthening links between BCI and Neuroscience 

• SCCN’s in-house tool for BCI problems 

– Main focus: Advanced cognitive monitoring 

– Part of a large US research program (CaN CTA) 

– Funded by ARL (and ONR, Swartz Foundation, …) 



Research Directions 

• HCI: User-state monitoring, intelligent assistive systems 

• Neuroscience: Brain feedback experiments 

• Clinical: Communication and control devices for the 
severely disabled 

• Entertainment: Computer game controllers 



Research Directions 

• Neuroscience: also, decoding models of brain dynamics 
(exploratory research) 

 

 



BCILAB’s Niche 

• State of the art 
• Largest collection of machine learning & signal processing 

components in any open-source BCI package 
– Many standard components (CSP, LDA, SVM, …) 
– Many modern components (SBL, SSA, AMICA, HKL, DPGMM, LR-

DAL, …) 
– Some novel components (OSR, RSSD, SSB, …) 

• Next-generation framework 
– Fully probabilistic 
– Model inference from data corpora* 
– Anatomical priors, other neuroscience-aware features 
– Processing of parallel streams 

(*: not yet in the current release) 



(Intangible) Aims 

• Low entry barrier 
– Developers: Simple plugin framework, low overhead 
– Experimenters: User-friendliness, GUI, canned approaches 

• Low usage friction 
– Flexible, unobstructive 
– Simple things easy to achieve, complex things possible 

• Efficiency 
– No redundant computations (caching, …) 
– Parallel computation 
– Capable scripting (batch analysis, parameter search, …) 
– Automation 

 



Theory, Terminology  
and BCILAB Equivalents 



Signals 

• We measure one or more (multi-channel, 
fixed-rate) signals of a person 

– EEG, ECoG, MEG, … 

– EMG, EOG, Gaze, MoCap, … 

EEG 



Signal Representations 
Signal Bundle 
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Data Sources 

• Signals in BCILAB originate from device plugins 

• Currently: BioSemi, TCP, OSC, BCI2000, DataRiver, 
playback, etc. 

• More planned (e.g., BrainProducts, ANT, g.Tec, 
Emotiv, …) 

• Quite easy to extend (typically a few 10s of LoC) 



Basic Framework 

• The goal is to build an oracle that consumes these 
signals and can answer (pre-defined) queries about 
cognitive state of the person 

• BCIs fit into that framework 

BCI 

EEG 

EMG 

Q? 

A! 



Basic Framework 

• In BCILAB, outputs may be point estimates (scalar, 
vector) or probability distributions (discrete / 
continuous) 

– usually discrete prob. distributions 

BCI 

EEG 

EMG 

Q? 

A! 



Basic Framework 

• A BCI is specified/described by a “BCI model” 

BCI 

EEG 

EMG 

Q? 

A! 

BCI Model 

describes 



Model Structure 

• All BCI models contain a mapping f(X) that maps a 
limited-length signal segment 𝐗 ∈ ℝ𝐶×𝑇 onto the 
output 𝑦 

– In BCILAB called the model’s “prediction function” 

– May also accept segments from multiple signals 

 

 Prediction Function 

y = f(X) 

y X 



Model Structure 

• Note: the prediction function involves a functional 
form and possibly some fixed parameters 

– Functional form reflects a relationship between 
measurements and cognitive state (inverse for some 
assumed generative mechanism) 

 

Prediction Function 

y = f(X) 

Functional form, e.g., 
𝑦 = 𝑤 var 𝑾𝑿  +  𝑏 

Parameters, e.g., 
𝑾,𝑤, 𝑏 



Model Structure 

• May also apply signal processing methods (here 
called filters) to the input signals (e.g., for 
computational efficiency or to leverage tools) 

– receive a signal and produce a transformed signal 

– online-capable and possibly adaptive / stateful 

– represented as plugins in BCILAB, more than 40 
methods built in 

Filter 



Major Filter Types 

• Spatial filters (channel selection, surface Laplacian, 
ICA, CSP*, sparse recovery, …) 

• Spectral filters (FIR, IIR, FFT) 

• Epoch-based filters (windowing, Wavelet transform, 
Fourier transform, STFT, …) 

• Miscellaneous (resampling, dipole fitting, …) 

*: not implemented as a filter in BCILAB 



Model Structure 

• Putting all together, a BCI model in BCILAB contains a 
filter graph and a prediction function 

• Provides enough flexibility for most BCI designs 

Filter Filter 

Filter 

Filter 

Filter Graph Prediction Function 

… 

BCI Model 



Online Data Flow 

• In BCILAB, the filter graph receives all input samples, 
but the prediction function may be called on demand 

Filter Filter 

Filter 

Filter 

Filter Graph 

Prediction Function 

EEG 

EMG 

filtered data 

Predict 

tPred 



Online Data Flow 

• In BCILAB, the filter graph receives all input samples, 
but the prediction function may be called on demand 

– In most current BCIs, the prediction function consists of a 
dedicated “feature extraction” step and “prediction” step 

Filter Filter 

Filter 

Filter 

Filter Graph 

Prediction Function 

Extract 
Features 

EEG 

EMG 

filtered data 

Pre-
dict 

tPred 



One Problem 

• for most BCI questions and implementations, the 
parameters leading to best accuracy are a priori 
unknown! 

– Depend on hard-to-measure factors  
(e.g., brain functional map) 

– Depend on expensive-to-measure factors  
(e.g., brain folding) 

– Depend on highly variable factors  
(e.g., sensor placement, subject state) 

– Different for every person, task, montage, etc. 



One Problem 

• Example per-channel parameters across four 
subjects: 

Person 1                     Person 2                      Person 3                     Person 4 

(image: Blankertz et al. 2007) 



Model Calibration 

• Need calibration / training data to estimate 
parameters from and a separate calibration step 

 

      Calibration data 

BCI 
Model 

Calibration step 



Model Calibration 

• In theory many possibilities (e.g. MR scanner data + 
Beamforming) 



Model Calibration 

• In theory many possibilities (e.g. MR scanner data + 
Beamforming)  

• Most successful way (so far): utilize data where both 
the BCI input (e.g. EEG) and desired output (cognitive 
state) is known – in BCILAB called “calibration 
recording” – and adapt BCI parameters using 
machine learning algorithms 

Model 

Calibration recording 

machine learning 



Calibration Recording 

• Standard psychological experiment 

– continuous EEG (or other) 

– multiple trials/blocks (capturing variation) 

– randomized (eliminating confounds) 



Calibration Recording 

• Standard psychological experiment 

– continuous EEG (or other) 

– multiple trials/blocks (capturing variation) 

– randomized (eliminating confounds) 

– event markers to encode cognitive state 
conditions of interest, e.g., stimuli/responses 
(called “target markers” in BCILAB) 

 

S2 S1 R1 S1 



Machine Learning 

• Large field with 100s of algorithms 

• Most methods conform to a common interface of a 
training function and a prediction function 

– training function accepts a matrix of feature vectors 
(samples) 𝑿 ∈ ℝ𝑁×𝐹 and target values 𝒚 ∈ ℝ𝑁×𝐷 with 
F the # of features per sample, N the # of samples, D 
the dimensionality of the target space (usually D=1); 
the output is a model with parameters 𝜽 

– prediction function accepts a matrix of feature vectors 
𝑿, model parameters 𝜽 and produces estimates of the 
corresponding target values 𝒚 



Machine Learning 

• BCILAB has a plugin framework for machine learning 
(with >60 built-in algorithms) 

• Supports some additional formats for X, e.g., matrix-
valued features and y (e.g., common distributions) 

• Training function also accepts additional parameters 

Machine Learning Method 

Training 
function 

Prediction 
function 

X 

y 
𝜽 

𝜽 

X 
y 



Model Calibration, cont. 

• In BCILAB, typically one trial segment (sample) is 
extracted for every target marker in the calibration 
recording 

S2 S1 R1 S1 

2 1 1 

, , 
… Training 

function 
Model 

X,y 𝜽 



Feature Extraction 

• Problem: Standard machine learning methods often 
do not work very well when applied to raw signal 
segments X of the calibration recording 

– too high-dimensional (too many parameters to fit) 

– too complex structure to be captured (too much 
modeling freedom) 

– (but note: different story for custom methods) 

1000s of degrees of freedom 



Feature Extraction 

• Solution: Introduce additional mapping (called 
“feature extraction”) from raw signal segments onto 
feature vectors 

– output is often of lower dimensionality 

– hopefully better distributed in the feature space (easy 
to handle for machine learning) 

 



• With feature extraction, the analysis process is as 
follows: 

Model Calibration, cont. 

S2 S1 R1 S1 

2 1 1 

, , 
… 

Training 
function Model! 

X,y 

Feature 
extractor 

𝑓1
𝑓2
⋮

 
𝑓1
𝑓2
⋮
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𝑓2
⋮
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2 1 1 

… 

𝜽 

e.g., var()  
or mean() 



BCI Paradigms 

• BCI paradigms are the coarsest plugin type in BCILAB 
and tie all parts of a BCI approach together 

– calibrate function: accepts a calibration recording (with 
markers), additional parameters, and produces a BCI 
model; may utilize machine learning, signal processing 
and/or other methods 

– prediction function: serves as the prediction function for 
the resulting BCI model 

– optionally additional code, e.g., for feature extraction and 
feature adaptation (feature learning and/or feature 
selection) 

 



BCI Paradigms 

• BCI paradigms are the coarsest plugin type in BCILAB 
and tie all parts of a BCI approach together 

• Note: Multiple approaches can be realized with a 
single paradigm (using different parameters) 

 

Calibration recording 

Calibrate 
Filter Graph 

Pre- 
dict 

BCI Model 



BCI Paradigm Plugins 

• For event-related potentials 
– Time-window averages (explained next) 
– Wavelet features 
– First-order DAL 

• For oscillatory processes 
– Common Spatial Patterns, Regularized CSPs, Spectrally 

weighted CSP, … 
– Channel-based approaches 
– ICA-based approaches (OSR, RSSD, …) 
– Second-order DAL 
– … 



Concrete Approach for ERPs 



Example Approach for ERPs 

• Suppose a calibrate function with steps: 

1. Apply an IIR band-pass filter to raw data (0.5 - 15 Hz) 

2. Extract 0.8 s segments around stimuli in recording 

3. Extract features and run machine learning 

 



Example Approach for ERPs 

• Suppose a calibrate function with steps: 

1. Apply an IIR band-pass filter to raw data (0.5 - 15 Hz) 

2. Extract 0.8 s segments around stimuli in recording 

3. Extract features and run machine learning 

• Applied to a recording with 100 stimuli of type A and 
100 stimuli of type B 

 

A B A 



Resulting filtered segments 

Stimulus (A or B) 



Resulting filtered segments 
Condition A signal  
distribution 

Condition B signal 
distribution 

Mean response with Gaussian noise  
envelope (dashed) 



Extracting Features 

For each trial segment, calculate signal mean in  
three time windows (gives 3-dim feature vectors per trial) 

f1 f2 f3 

f1 

f2 f3 



Using Machine Learning 

• The feature vectors are passed on to a machine 
learning function (e.g., Linear Discriminant Analysis) 

f1 

f2 f3 

e.g., LDA 

𝜽 



LDA In a Nutshell 

• Given trial segments 𝒙𝑘  (in vector form) in 𝒞1 and 𝒞2, 

𝝁𝑖 = 
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

,   Σ𝑖 =  𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

 

 
𝜽 = Σ1 + Σ2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2 

 

• Caveat: θ often high-dimensional but only few trials available 

• Can use a regularized estimator instead, here using shrinkage; 
instead of Σ𝑖, we use Σ 𝑖 above: 

 
Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰 

 

 



LDA In a Nutshell 

• Given trial segments 𝒙𝑘  (in vector form) in 𝒞1 and 𝒞2, 

𝝁𝑖 = 
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

,   Σ𝑖 =  𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

 

 
𝜽 = Σ1 + Σ2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2 

 

• Caveat: θ often high-dimensional but only few trials available 

• Can use a regularized estimator instead, here using shrinkage; 
instead of Σ𝑖, we use Σ 𝑖 above: 

 
Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰 

 

 



Machine Learning Plugins 

• Generative Models (LDA, RLDA, QDA, GMMs) 

• Discriminative Models (SVMs, RVMs, GLMs, 
HKL, …) 

• Custom Frameworks (convex optimization, 
graphical models, …) 



Calibration: Summary 

• Basic calibration in BCILAB typically involves: 

– Filtering the data (possibly adapting filters) 

– Extracting trial segments and features (if 
necessary) 

– Applying a machine learning function 

– Specifying the model structure (filter graph, 
prediction function, parameters) 



Visualizing θ 

• Linear model weights can be visualized as a 
(color-coded) value per time window and 
channel 

• Below: 6 windows, 21 channels, ERP task 



Evaluating Model Performance 



Offline Evaluation 

• Given calibration data 

• Estimate model parameters (spatial filters, statistics) 

• Apply the model to new data (online / single-trial) 

• Optionally: compare outputs with known state, compute 
loss statistics for the model / approach (e.g., mis-
classification rate) 

Model 

Calibration recording Future data… 



Offline Evaluation 

• Evaluation of computational approaches on a single data 
set? 

Calibration recording 

? 



Offline Evaluation 

• Evaluation of computational approaches on a single data 
set? 

– Can not test on the training data! (always on separate 
data) 

– Instead can split data set repeatedly into training/test 
blocks systematically, a.k.a. cross-validation 

               Training  
                   part 

Test 
part 

Model 



Resolving Free Parameters 

• Can be done using cross-validation in a grid search (try all 
values of free parameters) 

• Caveat: Resulting “optimal” numbers are non-reportable 
(cherry-picked!) 

Best 
Model 

Training Test 

For all param. values… 



Resolving Free Parameters 

• Can be done using cross-validation in a grid search (try all 
values of free parameters) 

• Caveat: Resulting “optimal” numbers are non-reportable 
(cherry-picked!) 

• But may test resulting best model on separate data  

 

Best 
Model 

Training Test 

For all param. values… 
Future data… 



Resolving Free Parameters 

• Can be done using cross-validation in a grid search (try all 
values of free parameters) 

• Caveat: Resulting “optimal” numbers are non-reportable 
(cherry-picked!) 

• But may test resulting best model on separate data  

• Or run grid search within an outer cross-validation (“nested 
cross-validation”) 

Test 
part 

Best 
Model 

Training Test 

For all param. values… 



Next: Basic GUI Tour 



Startup 



Toolbox GUI 



Getting Help (if Needed) 



Getting Help (if Needed) 



Getting Help (if Needed) 



Getting Help (if Needed) 

http://sccn.ucsd.edu/wiki/BCILAB 



Use Case A 

• You just recorded pilot data for some new study 

• The idea is to try to estimate a certain aspect of 

cognitive state 

• The question is what method works best, and 

what accuracies can be achieved 

 



Use Case A 

• Scenario: Subject is instructed to imagine a 

hand movement, either left hand or right hand 

(standard BCI case) 

• Task: Estimate, from raw data, which hand 

movement was imagined 

• Experimental data: EEG, 32 channels, 2 

sessions (each ~30 min.) 



Experimental task 

• 160 trials 

• Randomized Instruction: L or R 

• Displayed for 3s, followed by blank screen 

for 3.5s 

• Sample: 



Loading the Data 



Loading the Data 



Loading the Data 



Defining an Approach 

• An approach addresses both parts of the BCI problem: 

Mapping from observed signals to predictions, and 

learning the unknown parameters 



Defining an Approach 

• You never start completely from scratch, but on the basis 

of what is known to work 

Common Spatial 

Pattern 



Defining an Approach 

• Some of these work best for oscillatory processes, 

others for ERP-like features, etc. 

These are user-

defined 

These are pre-defined 

templates 



Defining an Approach 

Also see help 

text 



Defining an Approach 

Adapt the template 

to your experiment 



Configuring an Approach 

• Key properties can be configured in this dialog 

Trial epoch properties usually need to be 

adapted 



Configuring an Approach 

Also, target marker types in the data have to be specified 



Reviewing/Editing an Approach 

• The next panel allows to edit 

all properties of the approach 

• Filter stages can be added 

and configured 

• Feature extraction can be  

configured 

• Machine learning components 

can be selected and  

configured 

• For now, nothing to do 



Saving the Approach 

Method description 

Executive summary 

May save on disk 



Learning a Predictive Model 

• Put the method to the test... 



Learning a Predictive Model 

Check to get 

performance  

estimates 

Defines the performance 

metric 

Smaller number: faster, 

but lower quality 

estimates 

Approach and  

data to use 



Waiting for Results 



Reviewing Results 

Mean loss estimate (fraction of mis-classified 

trials) 

Loss for every partition of the data 

set 



Reviewing Results 

• 11% error rate is quite good for imagined 

movements; mean across studies & methods is 

probably closer to 25% 

• chance level is here 50% (keep that in mind 

when evaluating) 

• You may get multiple outputs (e.g., false 

positives, true positives, which show up in the 

table), depending on loss measure 



Visualizing Model Properties 



Visualizing Model Properties 

Motor cortex patterns, left 

hand 

Motor cortex patterns, right 

hand 

(Sorted by explained 

variance) 



Apply Model to 2nd Session 



Apply Model to 2nd Session 



Apply Model to 2nd Session 



Reviewing Results 



OR: Apply Model Online 

• (if you have a subject sitting next to you) 

• Here: use a simulated data source (playing back 

the 2nd session) 

 



Online Application 

• This adds a data feed process in the 

background 

 



Online Application 



Online Application 

• This adds a real-time inference process in the 

background 

Presented via this 

display command 

25 Hz if your 

computer is fast 

enough 



Real-time Output 

Current probability  

for class 1 

Current probability 

for class 2 



Real-time Output 

• If you have more classes, you get more bars 

• You can also remap to other parameters (e.g. 

expected value) 

• Note: the simple graphics command always 

renders into the current window 

 



Using a More Ambitious Approach 

(State of the art) 



Using a More Ambitious Approach 



Reviewing Results 

5 percent! 



Use Case B 

• Question: Can we predict whether the user 

perceives an event as being an error? 

• Experimental data: EEG, 32 channels, 2 

sessions 

 



Experimental Task 

• Experimental task: ~100 randomized trials, 3 

types of  stimuli: 

– expected/correct event: type 'S 11' 

– unexpected event A: type 'S 12' 

– unexpected event B: type 'S 13' 

• Sample: 

 



Define approach 

• This time, an ERP-specific approach is needed 

Windowed 

Means 



Major customizations 



Train model, visualize 

12% (chance level 33%) 



Train model, visualize 

Not easy to 

interpret! 



Using a Sparse Classifier 



Using a Sparse Classifier 

Selecting logreg instead of lda 

(for logistic regression) 



Using a Sparse Classifier 

Selecting vb-ard Instead of vb for the  

“Variant” field 

 

(yields “sparse logistic regression with 

variational Bayesian automatic relevance 

determination” as the classifier) 



Training, Visualizing 

Far fewer channels/ 

windows weighted! 



Training, Visualizing 

• Sparse classifiers can give more robust models 

(fewer channels / sources of errors used), and 

more interpretable models (only the most 

relevant features retained) 



Next: Basic Scripting Tour 



Scripting Examples 

• Applying a Spec-CSP approach as seen in the GUI: 



Visualization Output 



Scripting Examples 

• Running the resulting model in real time on some 
data: 



Script Output 



Scripting Examples 

• Doing a parameter search and nested cross-
validation 

Search over different alternatives 

Also: Custom cross-validation scheme 



Scripting Examples 

• Running the advanced ERP analysis (with sparse 
classifier): 



Visualization Output 



Scripting Examples 

• Running a batch analysis for 3 modern approaches 
and 136 data sets (upcoming version only): 



Sample Plugins 



BCILAB Architecture 

Dependencies 
CVX BNT GUI utils 

Driver  
I/O 

EEGLAB LIBSVM GLMNET   … 

Infrastructure 
GUI 

generation 
cluster 

computing 
disk 

caching 
helper 

functions 
environment 

services 

Signal Processing Machine Learning BCI Paradigms Devices  

Plugins 

ICA SSA FIR 

IIR FFT … 

LDA QDA 

GMM SVM … 

DAL CSP Spec-CSP 

ERP RSSD … 

TCP 

BCI2000 … 

OSC 

Framework 

Approach 
Definition 

Offline 
Evaluation 

Visualization 
Online 

Execution 

GUI / Scripting Interfaces 



FFT Filter 



Kernel SVMs (via SVMperf) 



CSP Paradigm 

 



Ongoing Work 

• Better domain-specific assumptions in BCI approaches 
(moving beyond off-the-shelf components) 
– e.g., expressed as general convex optimization, Bayesian 

inference 

• Integration of (quantitative) prior knowledge 
– Anatomical (or even functional) priors from brain atlases, 

etc. 

• Integration of larger data sources 
– Multiple recordings, multiple subjects, … 

• Better exploitation of multiple modalities 
– Hybrid BCIs, general cognitive state assessment, … 

• More hardware devices!  



Teaser: Some Model Types 

VB-ARD (on ERPs) Spec-CSP 

OSR RSSD 



Thanks! 
Questions? 

http://sccn.ucsd.edu/wiki/BCILAB 


