Statistical Learning Theory and Brain-Machine Interface Design

Christian A. Kothe Swartz Center for Computational Neurscience, UCSD

What is a BCI/BMI?

- "A system which takes a biosignal measured from a person and predicts (in real time / on a single-trial basis) some abstract aspect of the person's cognitive state."
 - Biosignal: EEG, ECoG, MEG, ... (+ possibly non-brain data)
 - Abstract aspect of cognitive state: "type of limb movement imagined", "degree of surprisal", "type of vowel imagined"
 - (doesn't have to be properly defined for the BCI to work)

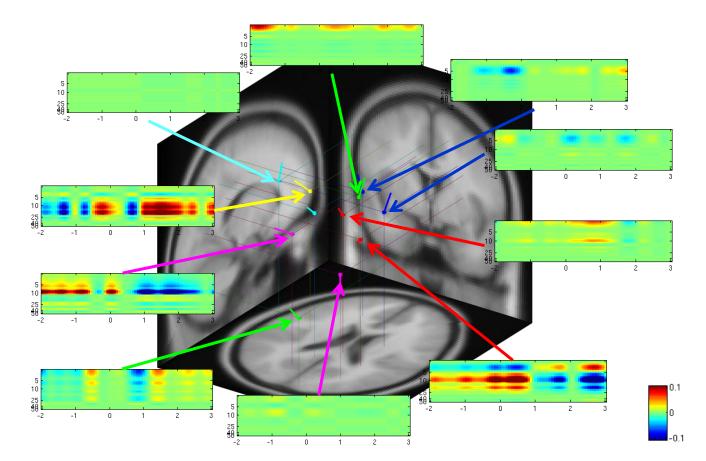
• **Clinical**: Communication and control devices for the severely disabled

- **Clinical**: Communication and control devices for the severely disabled
- HCI: User-state monitoring, intelligent assistive systems

- **Clinical**: Communication and control devices for the severely disabled
- HCI: User-state monitoring, intelligent assistive systems
- Entertainment: Computer game controllers

- **Clinical**: Communication and control devices for the severely disabled
- HCI: User-state monitoring, intelligent assistive systems
- Entertainment: Computer game controllers
- Neuroscience: Brain feedback experiments

• Neuroscience: also, *decoding models* of brain dynamics (exploratory research)



How does a BCI work?

Mathematical mapping

$$y = f(X); \quad X = \frac{1}{2} \frac{1}$$

y= "left hand" (-1) "right hand" (+1)

• Functional form

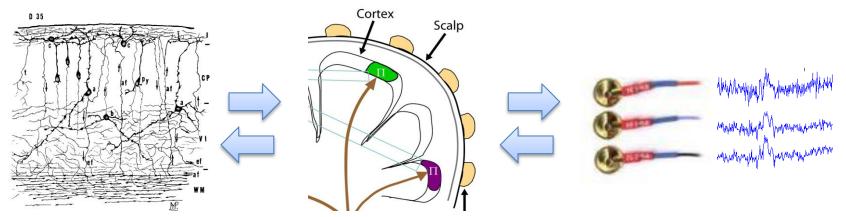
e.g., y = sign(var(WX) + b)

• Unknown parameters!

e.g., **W**, b, ...

Functional Form?

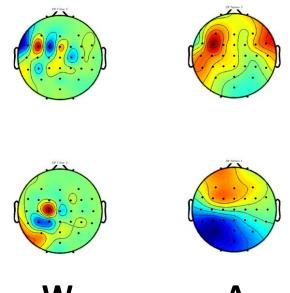
- Reflects the relationship between observation (data segment X) and desired output (cognitive state parameter y)
- Based on some assumed generative mechanism (forward model) or ad hoc



• Note: Functional form is the inverse mapping!

Basic Ingredient: Spatial Filter

- Linear inverse of volume conduction effect
 - X = AS (forward)
 - S = WX (inverse)
- Two examples filters and forward projections:



Further Ingredients

• Inverse mapping from source time courses to latent cognitive state, e.g.:

$$y = \theta \operatorname{vec}(WX) + b$$
 (linear)

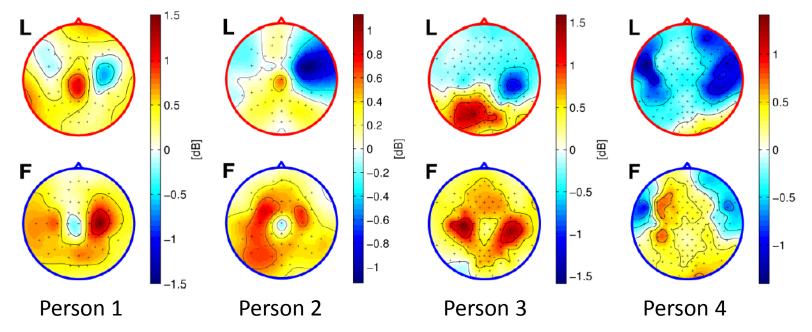
$$y = \theta \operatorname{vec}(|(WX)T|) + b$$
 (nonlinear...)

Unknown Parameters?

- for most BCI questions and implementations, the parameters leading to best accuracy (**W**,b, ...) are *a priori* unknown!
 - Depend on hard-to-measure factors (e.g., brain functional map)
 - Depend on expensive-to-measure factors (e.g., brain folding)
 - Depend on highly variable factors
 (e.g., sensor placement, subject state)
 - Different for every person, task, montage, etc.

Unknown Parameters?

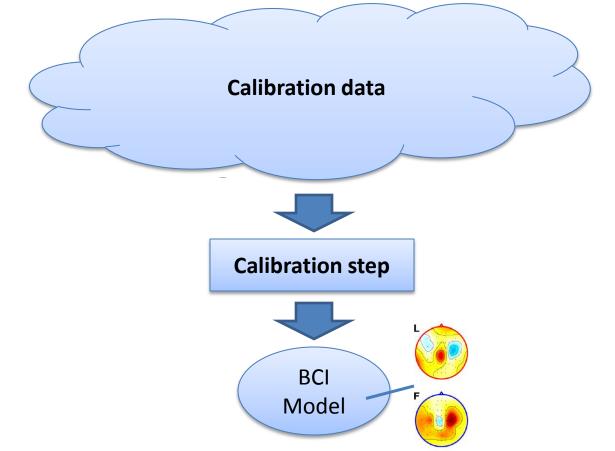
• Example per-channel parameters across four subjects:



(image: Blankertz et al. 2007)

Model Calibration

• Need *calibration / training data* to estimate parameters from, and a separate *calibration step*

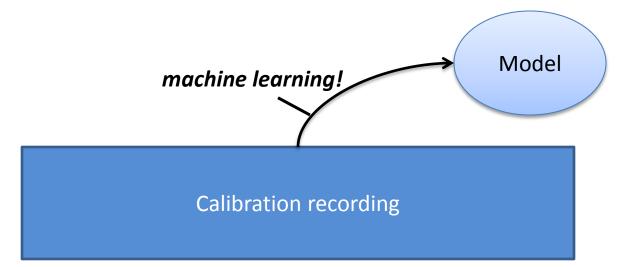


Model Calibration

 In theory many possibilities (e.g. MR scanner data + Beamforming)

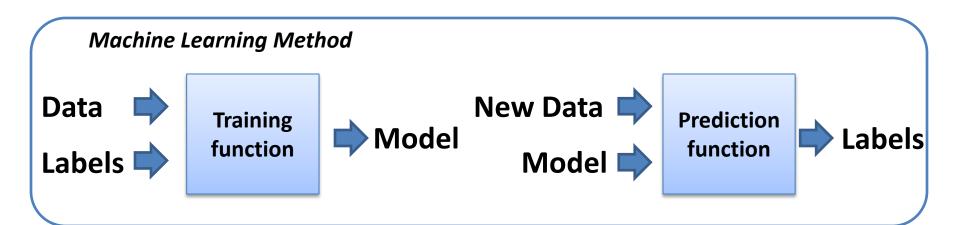
Model Calibration

- In theory many possibilities (e.g. MR scanner data + Beamforming)
- Modern standard approach: utilize data where both the BCI input (e.g. EEG) and desired output (cognitive state) is known and adapt BCI parameters using *machine learning* techniques



Machine Learning

- Large field with 100s of algorithms
- Most methods conform to a common framework of a *training function* and a *prediction function*
- Model parameters heta capture the learned relationship
- Data $X \in \mathbb{R}^{N \times F}$ and Labels / target values $y \in \mathbb{R}^{N \times D}$ N = #trials, F = #features, D = #output dims.

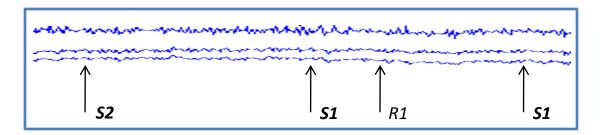


Required Calibration Recording

- Standard psychological experiment
 - continuous EEG (or other)
 - multiple trials/blocks (capturing variation)
 - randomized (eliminating confounds)

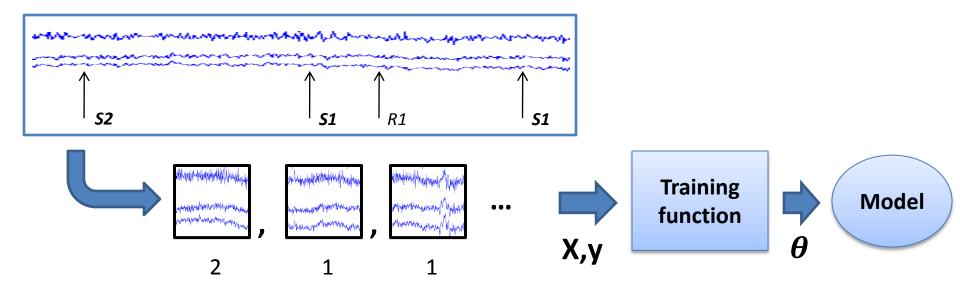
Required Calibration Recording

- Standard psychological experiment
 - continuous EEG (or other)
 - multiple trials/blocks (capturing variation)
 - randomized (eliminating confounds)
 - event markers to encode timing and type of cognitive state conditions of interest, e.g., stimuli/responses ("target markers" in BCILAB)



Using Machine Learning

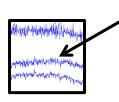
• Often, one trial segment (sample) is extracted for every target marker in the calibration recording (length depends on timing of related phenomena)



Detour: Feature Extraction

- **Caveat:** Off-the-shelf machine learning methods often do not work very well when applied to raw signal segments of the calibration recording
 - too high-dimensional (too many parameters to fit)
 - too complex structure to be captured (too much modeling freedom)
 - (but note: different story for custom methods)

1000s of degrees of freedom

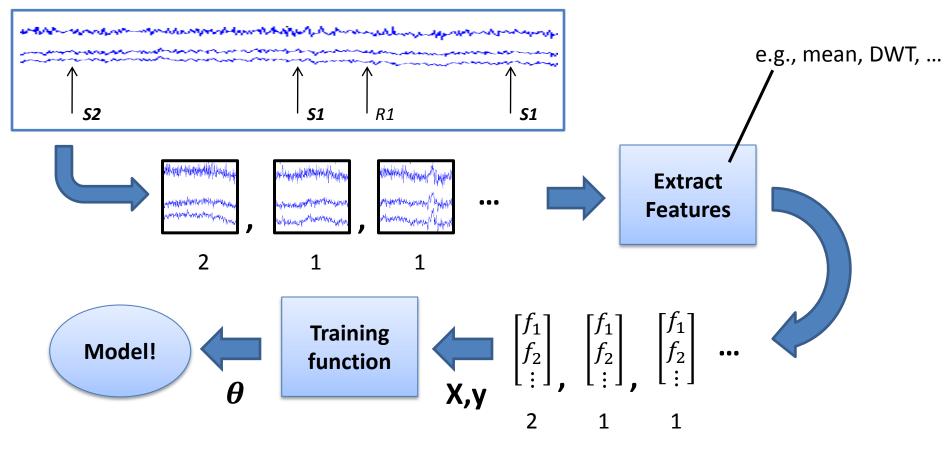


Detour: Feature Extraction

- Solution: Introduce additional mapping (called *"feature extraction")* from raw signal segments onto feature vectors
 - output is often of lower dimensionality
 - hopefully better distributed in the feature space (easy to handle for machine learning)

Using Machine Learning

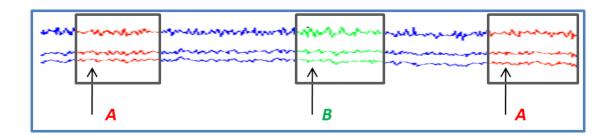
 Including feature extraction, the analysis process is as follows:



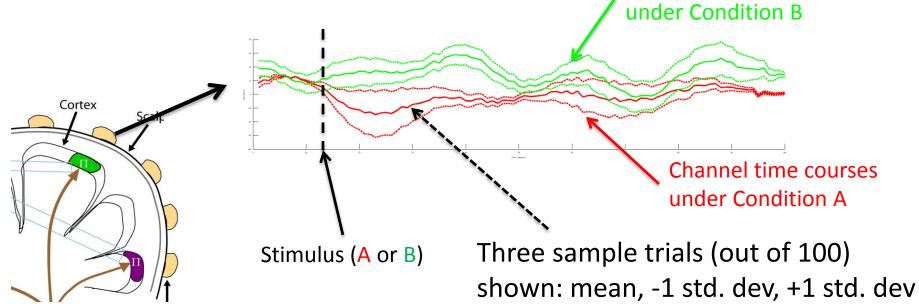
Two Major Analysis Pathways

Simple Case: ERP-like Patterns

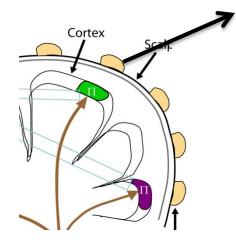
 Suppose a calibration recording with 100 stimuli of type A and 100 stimuli of type B

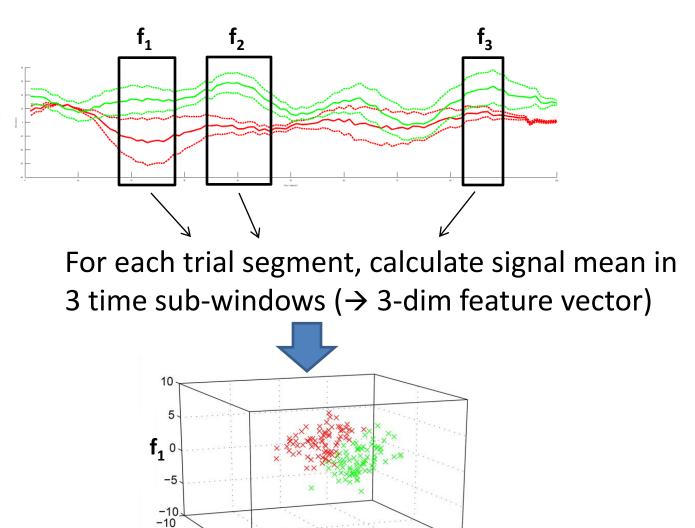


Resulting Segments



Extracting Key Features





2

T2

0

10

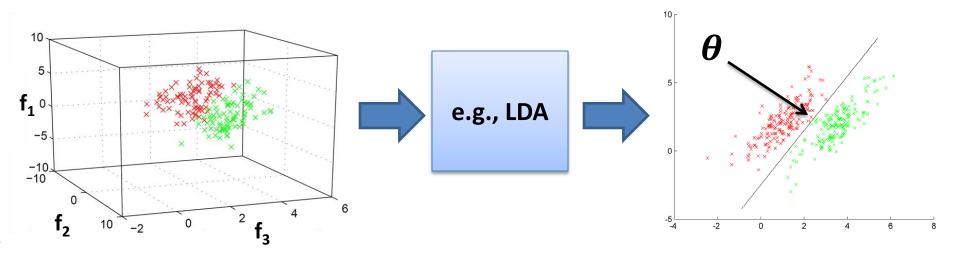
Τ2

-2

6

Using Machine Learning

• The feature vectors are passed on to a machine learning function (e.g., Linear Discriminant Analysis)



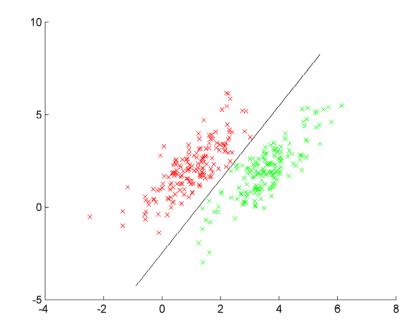
(Note: actually, this space has 3x #channels dimensions)

LDA In a Nutshell

• Given trial segments x_k (in vector form) in \mathcal{C}_1 and \mathcal{C}_2 ,

$$\boldsymbol{\mu}_i = \frac{1}{|\mathcal{C}_i|} \sum_{k \in \mathcal{C}_i} \boldsymbol{x}_k, \qquad \Sigma_i = \sum_{k \in \mathcal{C}_i} (\boldsymbol{x}_k - \boldsymbol{\mu}_i) (\boldsymbol{x}_k - \boldsymbol{\mu}_i)^{\mathsf{T}}$$

 $\boldsymbol{\theta} = (\Sigma_1 + \Sigma_2)^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1), \qquad \mathbf{b} = \boldsymbol{\theta}^{\mathsf{T}} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)/2$



LDA In a Nutshell

• Given trial segments x_k (in vector form) in \mathcal{C}_1 and \mathcal{C}_2 ,

$$\boldsymbol{\mu}_{i} = \frac{1}{|\mathcal{C}_{i}|} \sum_{k \in \mathcal{C}_{i}} \boldsymbol{x}_{k}, \qquad \boldsymbol{\Sigma}_{i} = \sum_{k \in \mathcal{C}_{i}} (\boldsymbol{x}_{k} - \boldsymbol{\mu}_{i}) (\boldsymbol{x}_{k} - \boldsymbol{\mu}_{i})^{\mathsf{T}}$$
$$\boldsymbol{\theta} = (\boldsymbol{\Sigma}_{1} + \boldsymbol{\Sigma}_{2})^{-1} (\boldsymbol{\mu}_{2} - \boldsymbol{\mu}_{1}), \qquad \mathbf{b} = \boldsymbol{\theta}^{\mathsf{T}} (\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{2})/2$$

- **Caveat**: θ often high-dimensional but only few trials available
- Can use a regularized estimator instead, here using shrinkage; instead of Σ_i, we use Σ̃_i above:

$$\tilde{\Sigma}_i = (1 - \lambda)\Sigma_i + \lambda I$$

LDA In a Nutshell

• Given trial segments x_k (in vector form) in \mathcal{C}_1 and \mathcal{C}_2 ,

$$\boldsymbol{\mu}_{i} = \frac{1}{|\mathcal{C}_{i}|} \sum_{k \in \mathcal{C}_{i}} \boldsymbol{x}_{k}, \qquad \boldsymbol{\Sigma}_{i} = \sum_{k \in \mathcal{C}_{i}} (\boldsymbol{x}_{k} - \boldsymbol{\mu}_{i}) (\boldsymbol{x}_{k} - \boldsymbol{\mu}_{i})^{\mathsf{T}}$$
$$\boldsymbol{\theta} = (\boldsymbol{\Sigma}_{1} + \boldsymbol{\Sigma}_{2})^{-1} (\boldsymbol{\mu}_{2} - \boldsymbol{\mu}_{1}), \qquad \mathbf{b} = \boldsymbol{\theta}^{\mathsf{T}} (\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{2})/2$$

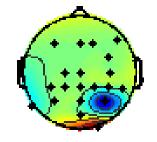
• Corresponding prediction function is linear in X:

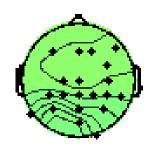
$$y = sign(\theta vec(X) - b)$$

Linear Weights Visualized

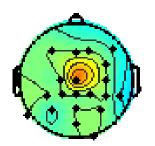
• Color-coded linear weights topographies, 22 channels, 6 time windows, data from ERP task

Window1 (0.25s to 0.3s) Window2 (0.3s to 0.35s) Window3 (0.35s to 0.4s)



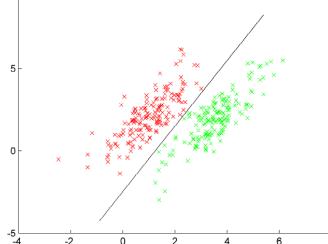


Window4 (0.4s to 0.45s) Window5 (0.45s to 0.5s) Window6 (0.5s to 0.55s)



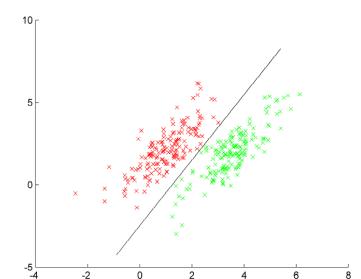
Does it Make Sense?

- Source activation S can be recovered from sensor measurements by a linear mapping if (linear) volume conduction is invertible (S = WX)
- Assuming a jointly Gaussian noise process and a noise distribution that is independent of the condition (A/B), LDA recovers the optimal linear mapping



Does it Make Sense?

- Linear classifiers like LDA can operate implicitly on source ERPs, but:
 - EEG variation is often *not* Gaussian
 - Data variation *can* depend significantly on condition
 - For limited data samples, LDA is not necessarily optimal
 - Does not yield directly interpretable results

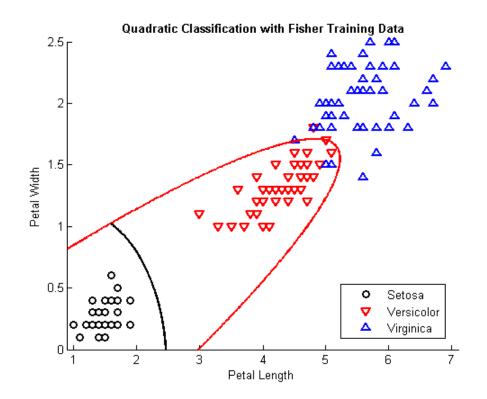


Does it Make Sense?

- Linear classifiers like LDA can operate implicitly on source ERPs, but:
 - EEG variation is often *not* Gaussian
 - Data variation can depend significantly on condition
 - For limited data samples, LDA is not necessarily optimal
 - Does not yield directly interpretable results
- Also in the linear framework:
 - Using the full source activation segments instead of their mean features
 - Using source wavelet features

Digression: Alternatives

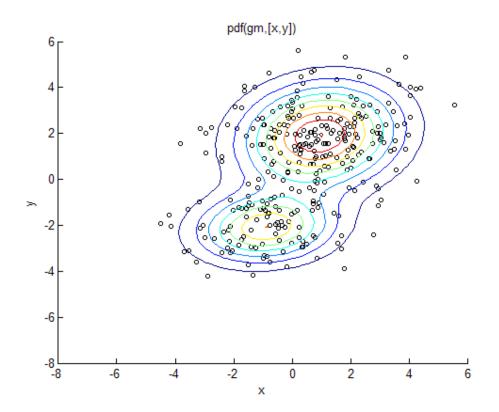
• Omitting the assumption of condition-independent noise yields Quadratic Discriminant Analysis (QDA)



(image: The Mathworks)

Digression: Alternatives

• Fitting multiple Gaussians for each condition instead of one yields Gaussian Mixture Models



(image: The Mathworks)

Complex Case

- Nonlinear operation in play, on *source* signals
- Due to, e.g., shift indeterminacy of source waveforms (no precise time-locking / jitter / high-frequency time course / ...)
- Oscillatory processes: e.g., determining the amplitude of source oscillations

$$S = W^*X$$
 $F = abs(DFT(S))$ $y = \theta^*F - b$

 Nonlinear and discards phase information (If done on channels, source spectral properties cannot be recovered)

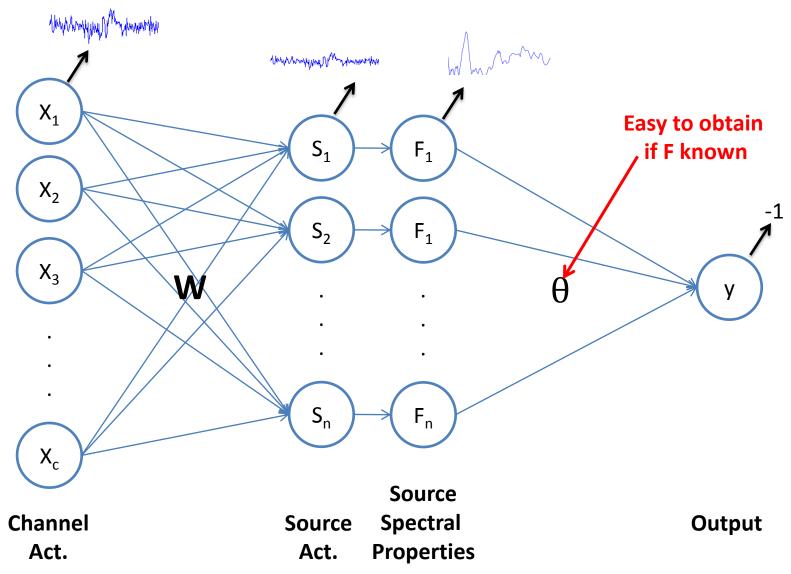
Complex Case

- Nonlinear operation in play, on *source* signals
- Due to, e.g., shift indeterminacy of source waveforms (no precise time-locking / jitter / high-frequency time course / ...)
- Oscillatory processes: e.g., determining the amplitude of source oscillations

S = W*X F =
$$abs(DFT(S))$$
 y = θ *F - b
nonlinear

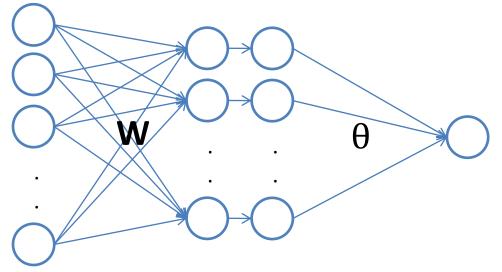
 Nonlinear and discards phase information (If done on channels, source spectral properties cannot be recovered)

Latent Variable Viewpoint



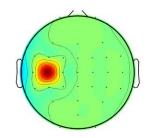
Latent Variable Viewpoint

- How to learn W?
 - "top-down" (using X & y) gradient descent / NN backprop, ...
 - "bottom-up" (using only X) ICA, dictionary learning, ...
 - both? possibly supervised ICA, Bayesian inference, …
 - via direct observations (MR image, FW model) Beamforming, ...
 - using additional constraints (e.g., Gaussian signals) CSP, DAL, ...

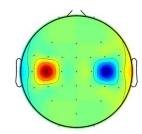


Fixed Filters

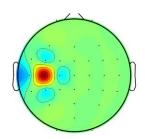
- Simple a priori filters (of historical interest)
 - raw channels, common average ref.



- bipolar derivations



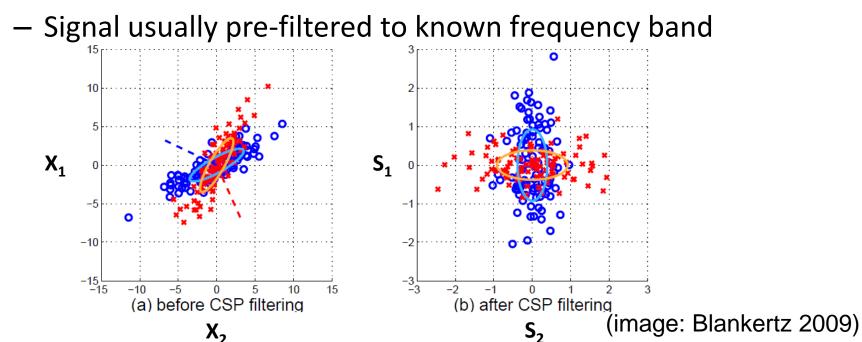
- surface Laplacian



Unsupervised Bottom-Up

- ICA, AMICA
 - unsupervised: need to make sure that filters recover the *desired* sources
 - yields localizable sources: enables interpretability, enables cortical coregistration, can link to anatomical / functional data (more later)
 - slow: problematic between calibration & online use
 - possible enhancements: supervised? overcomplete?

- Common Spatial Patterns
 - Most popular algorithm in BCI field
 - Assumption: Gaussian Signal, variance features, orthogonal sources (thus all structure captured by signal covariance)



Common Spatial Patterns

Given signal covariance matrix Σ_i under condition i, find the simultaneous diagonalizer V of Σ_1 and Σ_2

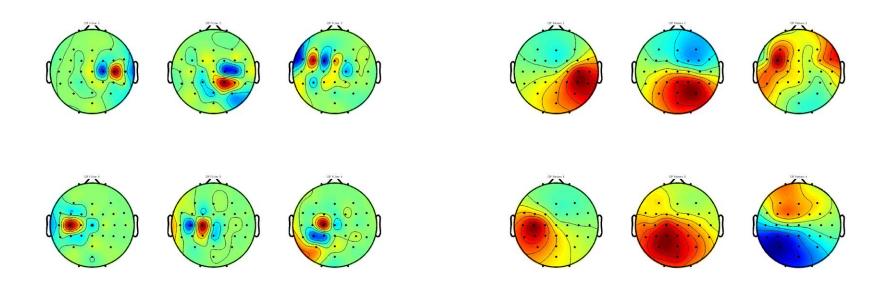
$$V^{\mathsf{T}} \boldsymbol{\Sigma}_1 V = \boldsymbol{\Lambda}_1, \\ V^{\mathsf{T}} \boldsymbol{\Sigma}_2 V = \boldsymbol{\Lambda}_2,$$

(with Λ_i diagonal) such that $\Lambda_1 + \Lambda_2 = I$. This yields a generalized eigenvalue problem of the form

$$V^{\mathsf{T}} \boldsymbol{\Sigma}_1 V = \boldsymbol{D} \wedge V^{\mathsf{T}} (\boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2) V = \boldsymbol{I}$$

The k smallest and largest eigenvalues in **D** correspond to directions in **V** (spatial filters) that yield smallest (largest) variance in class 1 and simultaneously largest (smallest) variance in class 2.

• Produces well-adapted filters (left) and occasionally roughly dipolar filter inverses (right)



- Many variations of CSP:
 - Filter-Bank CSP (FBCSP): multiple bands/windows
 - Diagonal Loading CSP (DLCSP): cov. shrinkage
 - Composite CSP (CCSP): covariance prior
 - Tikhonov-regularized CSP (TRCSP): filter shrinkage
 - ...
- Complete CSP functional form:

$$y = \operatorname{sign}(\boldsymbol{\theta} \log(\operatorname{var}(\boldsymbol{W}\boldsymbol{X})) + b)$$

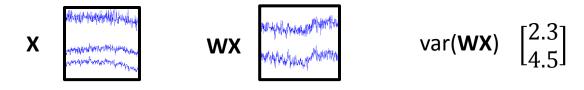
Usually learned

/ia | D4

• Consideration: Given a zero-mean trial $X \in \mathbb{R}^{C \times T}$ with covariance $\Sigma \in \mathbb{R}^{C \times C}$, spatial filters $W \in \mathbb{R}^{S \times C}$, linear weights $\theta \in \mathbb{R}^{S}$ and bias b

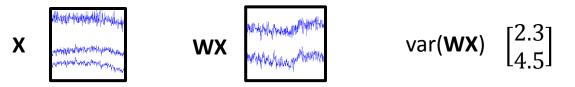
- Consideration: Given a zero-mean trial $X \in \mathbb{R}^{C \times T}$ with covariance $\Sigma \in \mathbb{R}^{C \times C}$, spatial filters $W \in \mathbb{R}^{S \times C}$, linear weights $\theta \in \mathbb{R}^{S}$ and bias b
- Omitting the log from CSP, we have:

$$y = b + \theta \operatorname{var}(WX)$$



- Consideration: Given a zero-mean trial $X \in \mathbb{R}^{C \times T}$ with covariance $\Sigma \in \mathbb{R}^{C \times C}$, spatial filters $W \in \mathbb{R}^{S \times C}$, linear weights $\theta \in \mathbb{R}^{S}$ and bias b
- Omitting the log from CSP, we have:

$$y = b + \theta \operatorname{var}(WX)$$



• Rewriting in terms of individual spatial filters W_k :

$$y = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \operatorname{var}(\boldsymbol{W}_{k}\boldsymbol{X})$$

 The variance term can be expressed using the covariance matrix Σ of segment X:

$$y = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \operatorname{var}(\boldsymbol{W}_{k}\boldsymbol{X}) = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \left(\boldsymbol{W}_{k}\boldsymbol{\Sigma}\boldsymbol{W}_{k}^{\mathsf{T}}\right)$$

 The variance term can be expressed using the covariance matrix Σ of segment X:

$$y = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \operatorname{var}(\boldsymbol{W}_{k}\boldsymbol{X}) = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \left(\boldsymbol{W}_{k}\boldsymbol{\Sigma}\boldsymbol{W}_{k}^{\mathsf{T}}\right)$$

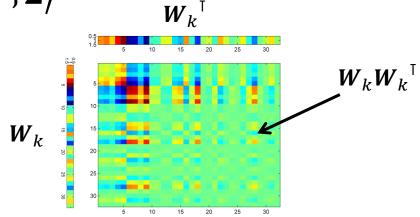
• And $W_k \Sigma W_k^{\mathsf{T}}$ can be replaced by the inner product between two matrices $\langle W_k W_k^{\mathsf{T}}, \Sigma \rangle$

 The variance term can be expressed using the covariance matrix Σ of segment X:

$$y = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \operatorname{var}(\boldsymbol{W}_{k}\boldsymbol{X}) = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \left(\boldsymbol{W}_{k}\boldsymbol{\Sigma}\boldsymbol{W}_{k}^{\mathsf{T}}\right)$$

• And $W_k \Sigma W_k^{T}$ can be replaced by the inner product between two matrices $\langle W_k W_k^{T}, \Sigma \rangle$

$$b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \left\langle \boldsymbol{W}_{k} \boldsymbol{W}_{k}^{\mathsf{T}}, \boldsymbol{\Sigma} \right\rangle$$



 The variance term can be expressed using the covariance matrix Σ of segment X:

$$y = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \operatorname{var}(\boldsymbol{W}_{k}\boldsymbol{X}) = b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \left(\boldsymbol{W}_{k}\boldsymbol{\Sigma}\boldsymbol{W}_{k}^{\mathsf{T}}\right)$$

• And $W_k \Sigma W_k^{\mathsf{T}}$ can be replaced by the inner product between two matrices $\langle W_k W_k^{\mathsf{T}}, \Sigma \rangle$, and regrouped:

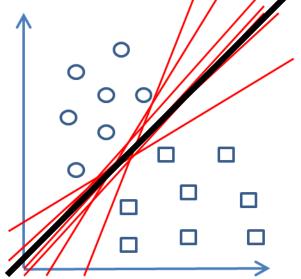
$$b + \sum_{k=1}^{S} \boldsymbol{\theta}_{k} \langle \boldsymbol{W}_{k} \boldsymbol{W}_{k}^{\mathsf{T}}, \boldsymbol{\Sigma} \rangle = b + \left(\sum_{k=1}^{S} \boldsymbol{\theta}_{k} \boldsymbol{W}_{k} \boldsymbol{W}_{k}^{\mathsf{T}}, \boldsymbol{\Sigma} \right)$$
$$= b + \langle \boldsymbol{\Theta}, \boldsymbol{\Sigma} \rangle$$

• Thus this form is linear in the *covariance matrix* of X:

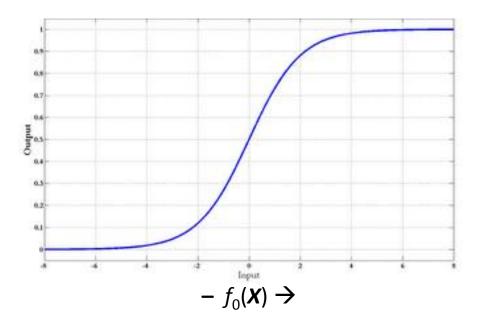
$$y = b + \langle \boldsymbol{\Theta}, \boldsymbol{\Sigma} \rangle = \boldsymbol{b} + \widetilde{\boldsymbol{\Theta}} \operatorname{vec}(\boldsymbol{\Sigma})$$

- Could again learn $\tilde{\theta}$ using a simple linear method (e.g., LDA), but *very* high-dimensional (#parameters= C^{2^2})
- Need a method suitable for large-scale problems

- Discriminative learning approaches like Support Vector Machines (SVMs) and Generalized Linear Models (GLMs) are well-adapted to high-dimensional / large-scale problems
- These directly optimize the parameters $\boldsymbol{\theta}$ given the data



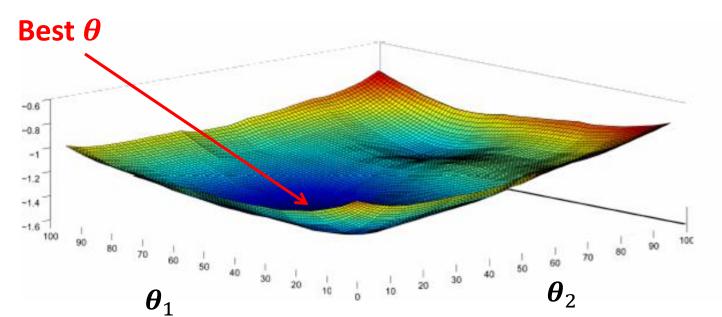
• Logistic Regression is a GLM that maps onto binary outputs via a logistic "link function" $q_{\theta}(Y = y|X) = \frac{1}{1 + e^{-yf_{\theta}(X)}}, (y \in \{-1, +1\})$



- Logistic Regression is a GLM that maps onto binary outputs via a logistic "link function" $q_{\theta}(Y = y|X) = \frac{1}{1 + e^{-yf_{\theta}(X)}}, (y \in \{-1, +1\})$
- ... and linear function $f_{\theta}(X)$ $f_{\theta}(X) = \theta X + b$

 Trick: *θ* can be obtained via off-the-shelf convex optimization methods (such as CVX) by solving the problem

$$\min_{\theta} \log \left(1 + e^{-y f_{\theta}(X)} \right)$$



 For large problems, solution is still prone to over-fitting – need to plug in *additional assumptions*

$$\min_{\boldsymbol{\theta}} \log(1 + e^{-yf_{\boldsymbol{\theta}}(\boldsymbol{X})}) + \lambda \Omega(\boldsymbol{\theta})$$

- Many choices for regularization term $\boldsymbol{\Omega}$
 - $-\Omega(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_2$ encourages small weights

 $-\Omega(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_1 = |\boldsymbol{\theta}_1| + |\boldsymbol{\theta}_2| + \cdots \text{ encourages sparsity}$

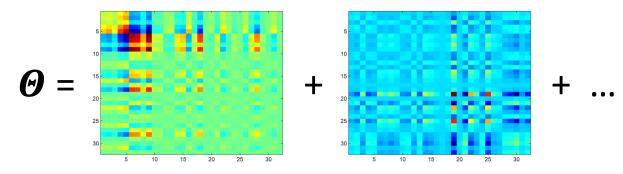
- can also get sparsity on groups of weights
- combinations thereof, ...

Large-Scale Learning Applied

• In the previous supervised oscillatory model $y = b + \langle \Theta, \Sigma \rangle$, the matrix-shaped Θ allows for a special matrix norm regularization: $rank(\Theta)$

$$\min_{\boldsymbol{\Theta}} \log(1 + e^{-yf_{\boldsymbol{\Theta}}(\boldsymbol{X})}) + \lambda \sum_{k=1}^{\prime} \sigma_{k}(\boldsymbol{\Theta})$$

This encourages a low-rank structure in Θ, i.e.

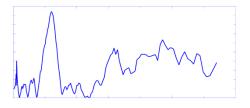


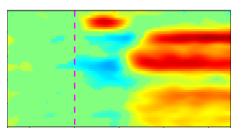
Back to ICA

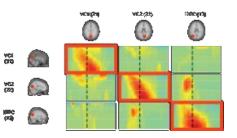
- ICA can learn spatial filters W explicitly, yields meaningful source activations S
- Can use any spectral measure on trial segments of S to extract oscillatory structure
- Can learn relationship between oscillatory structure and cognitive state using simple or complex approaches...

Some Spectral Measures

- Band-power
 - Band-pass (e.g., FIR, IIR, ...) + (log-)variance
- Fourier spectrum
 - Windowed DFT/FFT (e.g., Hann)
 - Welch method
 - Multi-taper method
- Time/Frequency representations
 - Short-Time Fourier Transform (STFT)
 - Continuous Wavelet Transform (CWT)
 - Discrete wavelet transform (DWT)
- Coherence, Effective Connectivity, ...

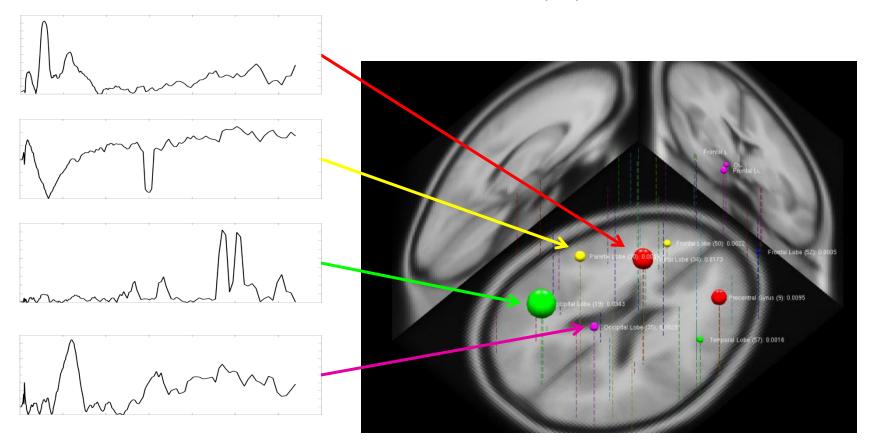






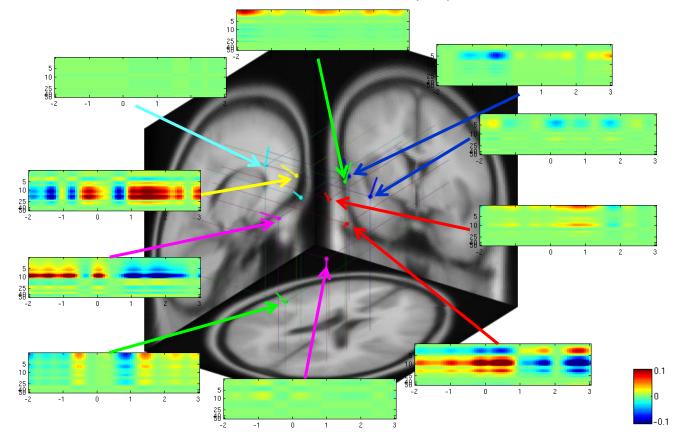
Source-Space Modeling

 If IC sources are localized using, e.g., dipole fitting or NFT, parameters (θ) have a location



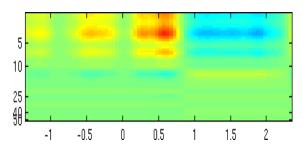
Source-Space Modeling

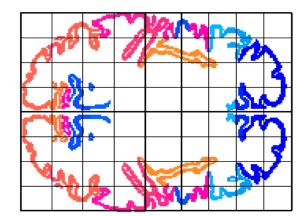
If IC sources are localized using, e.g., dipole fitting or NFT, parameters (θ) have a location

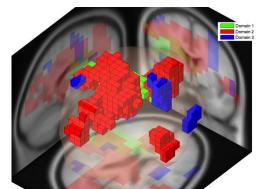


Source-Space Modeling

- Structural prior knowledge
 - can be introduced as side assumptions in the model (e.g. smoothness, sparsity, group sparsity, low rank, ...)

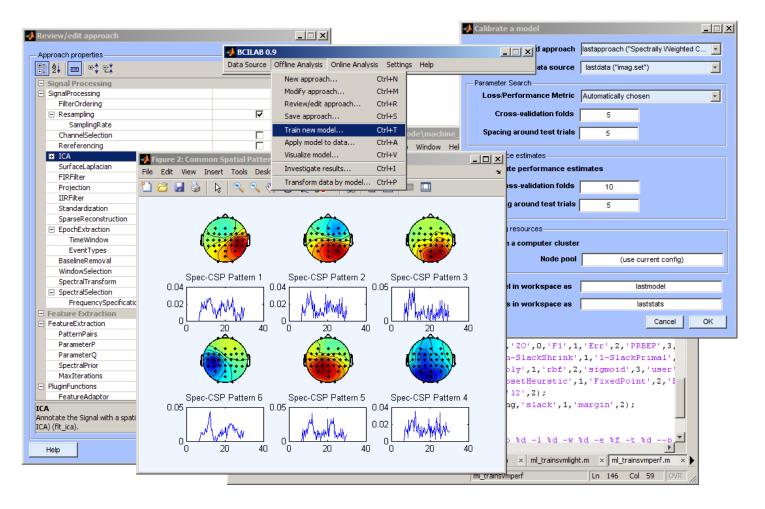






- Quantitative prior knowledge
 - Structure atlases (Talairach, LONI, ...)
 can supply information about the *a* priori relevance of a brain process
 - Can adapt the per-parameter penalty
- Empirical data
 - Data collected from other subjects can be co-registered/aligned and yield empirical prior distributions

Next: BCILAB Practicum



http://sccn.ucsd.edu/wiki/BCILAB

Thanks! Questions?