

BCILAB

http://sccn.ucsd.edu/wiki/BCILAB

Summary

- Software environment for:
 - Design & rapid prototyping of cognitive monitoring systems
 - Offline testing, performance assessment
 - Simulated online testing
 - Real-time use, prototype deployment

Features

- Largest collection of machine learning and signal processing methods for BCI / CSA publicly available (open source)
- Currently ca. 130 algorithms:
 - conventional BCI components (CSP, LDA, logBP, Spec-CSP, SVMs, ...)
 - state-of-the-art approaches (DSLR, AMICA, HKL, DPGMM, ...)
 - new approaches (RSSD, OSR, ICSD, SSB, WPI, …)
 - fast/general backend solvers (DAL, glm-ie, CVX, ...)
- All fully integrated

BCILAB Components

Some Model Types Visualized

Framework

- Fully automated pipeline (artifact rejection, caching, filtering, parallelization, parameter search, cross-validation, cloud deployment)
- Fully probabilistic framework
- Neuroscience-aware features (anatomical constraints, source-level analysis, ...)
- Support for batch processing
- Support for corpus-scale analysis (multiple sessions, persons, etc.)

BCI Metaphor

 BCIs in BCILAB are acting as an oracle that consumes one or more biosignals and can respond to (predefined) queries about cognitive state

Online Data Flow

- A filter graph receives all input samples and produces pre-filtered data
- The prediction function may be queried on demand on the filter graph's outputs

Model Calibration

• **Problem**: optimal parameters for a BCI model depend on person, montage, task, etc.

Model Calibration

 Therefore infer model parameters from calibration / training data

Calibration: BCI Paradigms

- BCI paradigms are the coarsest plugin type in BCILAB and tie all parts of a BCI approach together
- They are seeds for new BCI designs and cornerstones of BCILAB usage

Evaluation: Offline

- Given calibration data
- Estimate model parameters (spatial filters, statistics)
- Apply the model to new data (online / single-trial)

Evaluation: Offline

- Evaluation of computational approaches on a single data set?
- can split data set repeatedly into training/test blocks systematically, a.k.a. *cross-validation*

Finding Best Parameters

- Can be done using cross-validation in a grid search (try all values of free parameters)
- Quite general (e.g. can search for best method)

Finding Best Parameters

- Can be done using cross-validation in a grid search (try all values of free parameters)
- Evaluation: Can be nested within an outer crossvalidation ("nested cross-validation")

Neat Feature

- All offline analysis can be executed in parallel on a cluster (or the cloud)
- Batch analysis, cross-validation, parameter search, methods comparisons

GUI Tour

 Alternative to scripting, for experimenters, psychologists, quick-and-dirty analysis

Integrated Help

Help Wiki

http://sccn.ucsd.edu/wiki/BCILAB

Loading data

📣 BCILAB 0	.9				
Data Source	Offline Analysis	Online Analysis	Settings	Help	
Load reco	rding(s)	Ctrl+L			
Load stud	Y				
Define ma	rker transform	Ctrl+D			
Workspace	e	•			

• Supports >20 common file formats

Offline Analysis

A BCILAB 0	.9		
Data Source	Offline Analysis Online Analys	is Setting	gs Help
	New approach	Ctrl+N	
	Modify approach	Ctrl+M	
	Review/edit approach	Ctrl+R	
	Save approach	Ctrl+S	
	Train new model	Ctrl+T	
	Apply model to data	Ctrl+A	
	Visualize model	Ctrl+V	
	Investigate results	Ctrl+I	
	Transform data by model	Ctrl+P	

Defining an Approach

• Some of these work best for oscillatory processes, others for ERP-like features, etc.

Quick Setup

📣 BCILAB 0.9			
Data Source Offline	Analysis Online Analysis	Settings Help	

🔸 Configure approach	
New sampling rate of the data	100
Epoch time window relative to the events Event/marker types for which epochs shall be extracted	[0.5 3.5] {'S 1' 'S 2'}
Frequency-domain selection	[7 30]
Number of CSP patterns (times two)	3
Machine learning function	lda 🗾
Help	Cancel Ok

Or Detailed Configuration

- Allows to edit all properties of the chosen approach
- Filter stages can be added and configured
- Feature extraction can be configured
- Machine learning components can be selected and configured

	🛃 R	eview/edit approach	_ 🗆 🗙
	- 4	spproach properties	
		Signal Processing	×
	E	SignalProcessing	
		FilterOrdering	
📣 BCI		Resampling	
Data S		SamplingRate	100
		ChannelSelection	
		Rereferencing	
		ICA	
		SurfaceLaplacian	
		FIRFilter	
		Projection	
		IIRFilter	
		Standardization	
		SparseReconstruction	
		EpochExtraction	V
		TimeWindow	[0.5 3.5]
		EventTypes	5 1[]
		BaselineRemoval	
2		WindowSelection	
0		SpectralTransform	
		 SpectralSelection 	V
		FrequencySpecification	[7 30]
	E	Feature Extraction	
	E	FeatureExtraction	
		PatternPairs	3
	E	PluginFunctions	
		FeatureAdaptor	para_csp::@csp_train
		FeatureExtractor	para_csp::@csp_predict
		FeatureAdaptorNeedsVoting	
		FeatureVisualizer	para_csp::@csp_visualize
	E	Machine Learning	
		- Machinel earning	<u> </u>
	() ()	Name) Description)	
		Help	Cancel OK

Model Calibration

Dat

	🥠 Calibrate a model			<u> </u>
	Selected approach	lastapproach ("Ima	agined Movement	s vi 🔻
	Calibration data source	lastdata ("imag.s	et")	*
сті	Parameter Search			
a So	Loss/Performance Metric	Automatically cho	sen	
_	Cross-validation folds	5		
	Spacing around test trials	5		
	Performance estimates			
	Compute performance est	imates		
	Cross-validation folds	10		
	Spacing around test trials	5		
	Computing resources			
	🔲 Run on a computer cluster	г		
	Node pool	(use d	current config)	
	Save model in workspace as		astmodel	
	Save stats in workspace as		aststats	
	Help	,	Cancel	ок

Reviewing Results

	iew Results				
– Data	Summary				
Data	(Cultimar y				
	True	e positive rat	e : 0.90 +/-	0.14 (N=10)	-
	False	e positive rat	e : 0.10 +/-	0.14 (N=10)	
	True	e negative rat	e : 0.84 +/-	0.17 (N=10)	
	False	e negative rat	e : 0.16 +/-	0.17 (N=10)	
		Error rat	e : 0.14 +/-	0.14 (N=10)	
					-
– Data	Details				
	True positive rate	False positive rate	True negative r	False negative r	Error rate
1	True positive rate 0.8333	False positive rate 0.1667	True negative r 0.8750	False negative r 0.1250	Error rate 0.1429
1 2	True positive rate 0.8333 0.5714	False positive rate 0.1667 0.4286	True negative r 0.8750 0.7143	False negative r 0.1250 0.2857	Error rate 0.1429 0.3571
1 2 3	True positive rate 0.8333 0.5714 1	False positive rate 0.1667 0.4286 0	True negative r 0.8750 0.7143 0.7500	False negative r 0.1250 0.2857 0.2500	Error rate 0.1429 0.3571 0.1333
1 2 3 4	True positive rate 0.8333 0.5714 1 1	False positive rate 0.1667 0.4286 0 0	True negative r 0.8750 0.7143 0.7500 1	False negative r 0.1250 0.2857 0.2500 0	Error rate 0.1429 0.3571 0.1333 0
1 2 3 4 5	True positive rate 0.8333 0.5714 1 1 1	False positive rate 0.1667 0.4286 0 0 0	True negative r 0.8750 0.7143 0.7500 1 0.8571	False negative r 0.1250 0.2857 0.2500 0 0 0.1429	Error rate 0.1429 0.3571 0.1333 0 0.0667
1 2 3 4 5 6	True positive rate 0.8333 0.5714 1 1 1 0.8750	False positive rate 0.1667 0.4286 0 0 0 0 0 0.1250	True negative r 0.8750 0.7143 0.7500 1 0.8571 1	False negative r 0.1250 0.2857 0.2500 0 0.1429 0	Error rate 0.1429 0.3571 0.1333 0 0.0667 0.0714
1 2 3 4 5 6 7	True positive rate 0.8333 0.5714 1 1 0.8750 0.8000	False positive rate 0.1667 0.4286 0 0 0 0 0 0.1250 0.2000	True negative r 0.8750 0.7143 0.7500 1 0.8571 1 0.4444	False negative r 0.1250 0.2857 0.2500 0 0.1429 0 0.5556	Error rate 0.1429 0.3571 0.1333 0 0.0667 0.0714 0.4286
1 2 3 4 5 6 7 8	True positive rate 0.8333 0.5714 1 1 1 0.8750 0.8000 0.9000	False positive rate 0.1667 0.4286 0 0 0 0 0 0.1250 0.2000 0.1000	True negative r 0.8750 0.7143 0.7500 1 0.8571 1 0.4444 1	False negative r 0.1250 0.2857 0.2500 0 0.1429 0 0.5556 0	Error rate 0.1429 0.3571 0.1333 0 0.0667 0.0714 0.4286 0.0667
1 2 3 4 5 6 7 8 9	True positive rate 0.8333 0.5714 1 1 0.8750 0.8000 0.9000 1	False positive rate 0.1667 0.4286 0 0 0 0 0 0 0 2000 0.2000 0.1000	True negative r 0.8750 0.7143 0.7500 1 0.8571 1 0.4444 1 0.8333	False negative r 0.1250 0.2857 0.2500 0 0.1429 0 0.5556 0 0.1667	Error rate 0.1429 0.3571 0.1333 0 0.0667 0.0714 0.4286 0.0667 0.0714
1 2 3 4 5 6 7 8 9 10	True positive rate 0.8333 0.5714 1 1 0.8750 0.8000 0.9000 1 1	False positive rate 0.1667 0.4286 0 0 0 0 0.1250 0.2000 0.1000 0 0.1000	True negative r 0.8750 0.7143 0.7500 1 0.8571 1 0.4444 1 0.8333 0.9000	False negative r 0.1250 0.2857 0.2500 0 0.1429 0 0.5556 0 0.1667 0.1000	Error rate 0.1429 0.3571 0.1333 0 0.0667 0.0714 0.4286 0.0667 0.0714 0.0714 0.0667
1 2 3 4 5 6 7 8 9 9 10	True positive rate 0.8333 0.5714 1 1 1 0.8750 0.8000 0.9000 1 1	False positive rate 0.1667 0.4286 0 0 0 0 0 0.1250 0.2000 0.1000 0 0.1000 0 0	True negative r 0.8750 0.7143 0.7500 1 0.8571 1 0.4444 1 0.8333 0.9000	False negative r 0.1250 0.2857 0.2500 0 0.1429 0 0.5556 0 0.5556 0 0.1667 0.1000	Error rate 0.1429 0.3571 0.1333 0 0.0667 0.0714 0.4286 0.0667 0.0714 0.4286 0.0667 0.0714

Visualizing model properties

A BCILAB 0	.9			
Data Source	Offline Analysis Online Analys	is Setting	js Help	
	New approach	Ctrl+N		
	Modify approach	Ctrl+M		
	Review/edit approach	Ctrl+R		
	Save approach	Ctrl+S		
	Train new model	Ctrl+T		
	Apply model to data	Ctrl+A		
	Visualize model	Ctrl+V		
	Investigate results	Ctrl+I		
	Transform data by model	Ctrl+P		

Visualizing model properties

Applying Models Offline

A BCILAB 0	.9			
Data Source	Offline Analysis Online Analys	sis Setting	gs Help	
	New approach	Ctrl+N		
	Modify approach	Ctrl+M		
	Review/edit approach	Ctrl+R		
	Save approach	Ctrl+S		
	Train new model	Ctrl+T		
	Apply model to data	Ctrl+A		
	Visualize model	Ctrl+V		
	Investigate results	Ctrl+I		
	Transform data by model	Ctrl+P		

Online Processing

• Select data source

📣 BCILAB 0	.91-workshop				
Data Source	Offline Analysis	Online Analysis	Settings	Help	
		Process data	within	•	
		Read input fr	om		BioSemi amplifier
		Write output	to		DataRiver stream
		Clear all onlin	e processir	ng	OSC
					Dataset

Online Processing

• Select output destination

📣 BCILAB 0	.91-workshop				
Data Source	Offline Analysis	Online Analysis	Settings	Help	
		Process data	within	►	
		Read input fr	om	•	
		Write output	to		File
		Clear all onlin	e processir	ng	OSC
		1			MATLAB visualization
					TCP

Sample real-time output

 Doing a parameter search and nested crossvalidation

```
%% --- train an alternative model with parameter search ---
% (over possible values for the number of pattern pairs, using CSP; note: this takes guite some time!)
% (the number of pattern pairs found optimal should be 3 in this case)
% load the data set (BCI2000 format)
traindata = io loadset('data:/tutorial/imag movements1/calib/DanielS001R01.dat');
% define approach
myapproach = {'CSP' ...
    'SignalProcessing', {'EpochExtraction', {'TimeWindow', [0 3.5], ...
                        'EventTypes', {'StimulusCode 2', 'StimulusCode 3'}}}, ...
    'FeatureExtraction', {'PatternPairs', search(1,2,3)}};
% learn model; here, using only a 5x outer cross-valination as it is otherwise too slow
[trainloss,lastmodel,laststats] = bci train({'data',traindata,'approach',myapproach, ...
    'eval scheme', {'chron', 5, 5}});
                                                        Search over different alternatives
% visualize results
bci visualize(lastmodel);
                                Also: Custom cross-validation scheme
```


• Running the model online

```
% load feedback session
testdata = io_loadset('data:/tutorial/imag_movements1/feedback/DanielS001R01.dat');
```

```
% play it back in real time
run_readdataset('Dataset',testdata);
```

```
% process data in real time using lastmodel, and visualize outputs run_writevisualization('Model',lastmodel, 'VisFunction','bar(y)');
```


• Running an advanced ERP analysis (with sparse classifier):

```
% define markers; here, two groups of markers are being defined; the first group represents class 1
% (correct responses), and the second group represents class 2 (incorrect responses).
mrks = {{'S101', 'S102'}, {'S201', 'S202'}};
% define ERP windows of interest; here, 7 consecutive windows of 50ms length each are being
% specified, starting from 250ms after the subject response
wnds = [0.25 \ 0.3; 0.3 \ 0.35; 0.35 \ 0.4; 0.4 \ 0.45; 0.45 \ 0.5; 0.5 \ 0.55; 0.55 \ 0.6];
% define load training data (BrainVision format)
traindata = io_loadset('data:/tutorial/flanker_task/12-08-001_ERN.vhdr');
% define approach
mvapproach = {'Windowmeans' ...
     SignalProcessing', {'EpochExtraction', {'TimeWindow', [0 0.8], 'EventTypes', mrks}, 'SpectralSelection', [0.1 15]}, ...
    'FeatureExtraction',{'TimeWindows',wnds}, ...
    'MachineLearning',{'Learner', {'logreg', [],'Variant','vb-ard'}}};
%learn model
[trainloss,lastmodel,laststats] = bci_train({'data',traindata,'approach',myapproach});
% visualize results
bci_visualize(lastmodel)
```


• Running a batch analysis for 3 modern approaches and 136 data sets (latest version only):

% define markers; here, two groups of markers are being defined; the first group represents class 1
% (correct responses), and the second group represents class 2 (incorrect responses).
mrks = {{'S101','S102'},{'S201','S202'}};
wnds = [0.25 0.3;0.3 0.35;0.35 0.4; 0.4 0.45;0.45 0.5;0.5 0.55;0.55 0.6];

% define approaches

```
approaches.wmeans_lda = {'Windowmeans' 'flt',{'events',mrks,'epoch',[0 0.8],'spectrum',[0.1 15]},'fex',{'wnds',wnds}};
approaches.wavelet_lars = {'Dataflow' 'flt',{'events',mrks,'epoch',[0 0.8],'spectrum',[0.1 15],'wavelet','on'},...
'ml',{'learner',{'logreg',[],'variant','lars'}};
approaches.dal = {'DAL_Lofreq','SignalProcessing',{'Resampling',60,'IIRFilter','off','FIRFilter',[0.1 0.5 18 21], ...
'EpochExtraction',{'EventTypes',mrks,'TimeWindow',[-0.2 0.65]}},'MachineLearning',{'Learner',{'dal',2.^(8:-0.125:1)}}};
```

% run a batch analysis... results = bci_batchtrain('Datasets','/data/projects/grainne/ERN/*.vhdr','Approaches',approaches,'RetainExistingResults',true);

Plugin Authoring: FFT Filter

```
function signal = flt_fft(varargin)
% Apply an FFT to each epoch of an epoched signal (Example).
% Signal = flt_fft(Signal, LogPower)
%
% This is example code to transform a signal into the power domain, or log-power domain. A
% fully-featured version of this is flt_fourier.
%
% In:
%
             Epoched data set to be processed
    Signal :
%
%
    LogPower : whether to take the logarithm of the power (instead of the raw power) (default: false)
%
% Out:
%
    Signal : processed data set
%
%
                                 Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
%
                                 2011-01-19
if ~exp_beginfun('filter') return; end
% requires epoched data, works best on spatially filtered data
declare_properties('name','EpochedFFT', 'depends','set_makepos', 'follows',{'flt_project','flt_window'}, 'independent_channels',true);
% declare arguments
arg_define(varargin,...
    arg_norep({'signal','Signal'}), ...
    arg({'do_logpower', 'LogPower'}, false, [], 'Compute log-power. Taking the logarithm of the power in each frequency band is easier to
% apply FFT and cut mirror half of the resulting samples
tmp = fft(signal.data,[],2);
tmp = tmp(:,1:signal.pnts/2,:);
% take signal power or log(power)
if do_logpower
    signal.data = log(abs(tmp));
else
    signal.data = abs(tmp);
end
exp_endfun;
```


Kernel SVMs (via SVMperf)

arg_define([O 3],varargin, ...

arg_norep('trials'), ...

arg_norep('targets'), ...

arg({'cost', 'Cost'}, search(2.^(-5:2:15)), [], 'Regularization parameter. Reasonable range: 2.^(-5:2:15), greater is stronger. By default, it is average arg({'ptype', 'Type'}, 'classification', {'classification', 'regression', 'ranking'}, 'Type of problem to solve.', 'cat', 'Core Parameters'), ...

arg({'kernel', 'Kernel'}, 'rbf', {'linear', 'rbf', 'poly', 'sigmoid', 'user'}, 'Kernel type. Linear, or Non-linear kernel types: Radial Basis Functions (gene arg({'g', 'RBFScale', 'gamma'}, search(2.^(-16:2:4)), [], 'Scaling parameter of the RBF kernel. Should match the size of structures in the data; A reasonal arg({'d', 'PolyDegree'}, uint32(3), [], 'Degree for the polynomial kernel.', 'cat', 'Core Parameters'), ...

arg({'etube', 'EpsilonTube', 'tube'}, 0.1, [], 'Epsilon tube width for regression.', 'cat', 'Core Parameters'), ...

arg({'rbalance','CostBalance','balance'}, 1, [], 'Relative cost of per-class errors. The factor by which training errors on positive examples outweight

arg({'s','SigmoidPolyScale'}, 1, [], 'Scale of sigmoid/polynomial kernel.','cat','Miscellaneous'), ...

arg({'r', 'SigmoidPolyBias'}, 1, [], 'Bias of sigmoid/polynomial kernel.', 'cat', 'Miscellaneous'), ...

arg({'u','UserParameter'}, '1', [], 'User-defined kernel parameter.','cat','Miscellaneous','type','char','shape','row'),

arg({'bias','Bias'}, false, [], 'Include a bias term. Only implemented for linear kernel.','cat','Miscellaneous'), ...

arg({'scaling','Scaling'}, 'std', {'none','center','std','minmax','whiten'}, 'Pre-scaling of the data. For the regulariation to work best, the features : arg({'clean','CleanUp'}, false, [], 'Remove inconsistent training examples.','cat','Miscellaneous'), ...

arg({'epsi','Epsilon','eps'}, 0.1, [], 'Tolerated solution accuracy.','cat','Miscellaneous'), ...

arg({'verbose', 'Verbose'}, false, [], 'Show diagnostic output.', 'cat', 'Miscellaneous'));

if is_search(cost)

cost = 1; end
if is_search(q)

q = 0.3; end

% find the class labels

classes = unique(targets); if length(classes) > 2 % in this case we use the voter model = ml_trainvote(trials,targets,'1v1',@ml_trainsvmlight,@ml_predictsvmlight,varargin{:}); else % scale the data

scale the data
sc_info = hlp_findscaling(trials,scaling);
trials = hlp_applyscaling(trials,sc_info);

% remap target labels to -1,+1

```
targets(targets==classes(1)) = -1;
targets(targets==classes(2)) = +1;
```

```
% rewrite sme string args to numbers
```

ptype = hlp_rewrite(ptype,'classification','c','regression','r','ranking','p'); %#ok<*NODEF>
kernel = hlp_rewrite(kernel,'linear',0,'poly',1,'rbf',2,'sigmoid',3,'user',4);

% build the arguments

args = sprintf('-z %s -c %f -v %d -w %f -j %f, -b %d -i %d -e %f -t %d -d %d -g %f -s %f -r %f -u %s', ... ptype,cost,verbose,etube,rbalance,bias,clean,epsi,kernel,d,g,s,r,u);

% run the command

```
model = svmlearn(trials,targets,args);
model.sc_info = sc_info;
model.classes = classes;
```


Complete CSP Paradigm

```
classdef ParadigmCSP < ParadigmDataflowSimplified</pre>
```

methods

```
function defaults = preprocessing defaults(self)
        defaults = {'FIRFilter', {'Frequencies', [6 8 28 32], 'Type', 'minimum-phase'}, 'EpochExtraction', [0.5 3.5], 'Resampling', 10'
   end
   function [model,needsvoting] = feature adapt(self,varargin)
        arg define (varargin, ...
            arg norep('signal'), ...
            arg({'patterns', 'PatternPairs'},3,[], 'Number of CSP patterns' (times two).', 'cat', 'Feature Extraction', 'type', 'expres:
        if signal.nbchan < patterns</pre>
            error('CSP requires at least as many channels as you request output patterns. Please reduce the number of pattern pa:
        for k=1:2
            trials{k} = exp eval(set picktrials(signal, 'rank', k), 1);
            covar{k} = cov(reshape(trials{k}.data,size(trials{k}.data,1),[])');
            covar{k}(~isfinite(covar{k})) = 0;
        end
        [V,D] = eig(covar{1}, covar{1}+covar{2});
       model.filters = V(:,[1:patterns end-patterns+1:end]);
       P = inv(V);
       model.patterns = P([1:patterns end-patterns+1:end],:);
       model.chanlocs = signal.chanlocs;
       needsvoting = true;
   end
   function features = feature_extract(self, signal, featuremodel)
        features = zeros(size(signal.data,3),size(featuremodel.filters,2));
        for t=1:size(signal.data,3)
            features(t,:) = log(var(signal.data(:,:,t)'*featuremodel.filters)); end
   end
   function layout = dialog layout defaults(self)
        layout = {'flt.srate','flt.epoch','flt.fir.fspec','flt.fir.ftype',[],'pred.fad.patterns',[],'pred.ml.learner'};
   end
end
```

Ongoing: Source-Space Modeling

- Structural prior knowledge
 - can be introduced as side assumptions in the model (e.g. smoothness, sparsity, group sparsity, low rank, ...)

- Quantitative prior knowledge
 - Structure atlases (Talairach, LONI, ...)
 can supply information about the *a* priori relevance of a brain process
 - Can adapt the per-parameter penalty
- Empirical data
 - Data collected from other subjects can be co-registered/aligned and yield empirical prior distributions

Upcoming

- Next big toolbox release
- Online motion capture etc. processing via MOBILAB
- Effective connectivity integration via SIFT
- New methods in the pipeline (wave propagation imaging, alignment learning)

Thanks! Questions?

