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What is a BCI/BMI? 

• “A system which takes a biosignal measured from a 

person and predicts (in real time / on a single-trial 

basis) some abstract aspect of the person's 
cognitive state.” 

– Abstract aspect of cognitive state: “type of limb movement 
imagined”, “degree of surprisal”, “type of vowel imagined 

– Biosignal: EEG, ECoG, MEG, … (+ possibly non-brain data) 

BCI 

(inference/ 

estimation) 

Biosignal State Predictions 
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Research Directions 

• Clinical: Communication and control devices for the 
severely disabled 

• HCI: User-state monitoring, intelligent assistive systems 

• Entertainment: Computer game controllers 

• Neuroscience: Brain feedback experiments 



Research Directions 

• Neuroscience: also, decoding models of brain dynamics 
(exploratory research) 

 

 



BCILAB 

http://sccn.ucsd.edu/wiki/BCILAB 



Summary 

• Software environment for: 

– Design & rapid prototyping of cognitive state 
assessment (CSA) systems, both traditional and 
unconstrained approaches 

– Empirical performance assessment (offline/online) 

– Real-time use, prototype deployment 

– Large-scale batch analysis 



BCILAB Specialty 

• State of the art 
• Largest collection of machine learning & signal processing 

components in any open-source BCI package 
– Many standard components (CSP, LDA, SVM, …) 
– Many modern components (SBL, SSA, AMICA, HKL, DPGMM, LR-

DAL, …) 
– Some novel components (OSR, RSSD, SSB, …) 

• Modern framework 
– Fully probabilistic 
– Model inference from data corpora 
– Neuroscience-informed features (e.g., anatomical priors) 
– Processing of parallel streams (MoBI) 



Long-Term Goals 

• Probe landscape of possible approaches for real-
world CSA & assess future performance limits 

– Replicating and re-purposing established BCI methods 

– Exploring larger-scale data, computation and 
complexity than usual 

– Leveraging neuroscience knowledge and 
infrastructure 

– Focusing on unified and principled methods where 
possible 
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The Prediction Function 

• Mathematical mapping 
 
 

 
 

• Functional form 

e.g., 𝑦 =  sign(𝜽var(𝑾𝑿) +  𝑏) 

• Unknown parameters 

e.g., W, b, … 

y = f(X);   X= y= “left hand” (-1)   
     “right hand” (+1) 



Functional Form 

• Reflects the relationship between observation (data 
segment X) and desired output (cognitive state 
parameter y) 

• Based on some assumed generative mechanism 
(forward model) or ad hoc 

 

 

 

 

• Note: Functional form is the inverse mapping! 



First Ingredient: Spatial Filter 

• Linear inverse of volume conduction effect 
𝑿 =  𝑨𝑺   (forward) 
𝑺 =  𝑾𝑿 (inverse) 

• Two example filters and forward projections: 

 

W A 



Further Ingredients 

• Inverse mapping from source time courses to 
latent cognitive state, e.g.: 

 
𝑦 = 𝜽 vec(𝑾𝑿) +  𝑏 

 
𝑦 = 𝜽 vec( 𝑾𝑿 𝑻 ) +  𝑏 

 

 

(linear) 

(nonlinear…) 



Unknown Parameters… 

• for most BCI questions and implementations, the 
parameters leading to best accuracy (W,b, …) are a 
priori unknown 

– Depend on hard-to-measure factors  
(e.g., brain functional map) 

– Depend on expensive-to-measure factors  
(e.g., brain folding) 

– Depend on highly variable factors  
(e.g., sensor placement, subject state) 

– Different for every person, task, montage, etc. 



Unknown Parameters… 

• Example per-channel parameters across four 
subjects: 

Person 1                     Person 2                      Person 3                     Person 4 

(image: Blankertz et al. 2007) 



Model Calibration Today 

• Modern standard approach: utilize data where both 
the BCI input (e.g. EEG) and desired output (cognitive 
state) is known and adapt BCI parameters using 
machine learning techniques 

Model 

Calibration recording(s) 

machine learning! 



Machine Learning Refresher 

• Large field with 100s of algorithms 

• Most methods conform to a common framework of a 
training function and a prediction function 

• Model parameters 𝜽 capture the learned relationship 

• Data 𝑿 ∈ ℝ𝑁×𝐹 and Labels / target values 𝒚 ∈ ℝ𝑁×𝐷 
N = #trials, F = #features, D = #output dims. 

 
Machine Learning Method 

Training 
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Prediction 
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Desired Calibration Recording 

• Standard psychological experiment 

– continuous EEG (or other) 

– multiple trials/blocks (capturing variation) 

– randomized (eliminating confounds) 

– often event markers to encode timing and type of 
cognitive state conditions of interest, e.g., 
stimuli/responses (“target markers” in BCILAB) 

 

S2 S1 R1 S1 



Using Machine Learning 

• Often, one trial segment (sample) is extracted for 
every target marker in the calibration recording 
(length depends on timing of related phenomena) 

S2 S1 R1 S1 

2 1 1 

, , 
… Training 

function 
Model 

X,y 𝜽 



Detour: Feature Extraction 

• Caveat: Off-the-shelf machine learning methods 
often do not work very well when applied to raw 
signal segments of the calibration recording 

– too high-dimensional (too many parameters to fit) 

– too complex structure to be captured (too much 
modeling freedom) 

1000s of degrees of freedom 



Detour: Feature Extraction 

• Solution: Introduce additional mapping (called 
“feature extraction”) from raw signal segments onto 
feature vectors 

– output is often of lower dimensionality 

– hopefully statistically “better” distributed (easier to 
handle for machine learning) 

 



• Including feature extraction, the analysis process is 
as follows: 

ML with Feature Extraction 

S2 S1 R1 S1 

2 1 1 

, , 
… 

Training 
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X,y 

Extract 
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𝑓1
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𝑓1
𝑓2
⋮

 

, , 

2 1 1 

… 

𝜽 

e.g., mean, DWT, … 



Two Major BCI Analysis Pathways 



1. Simple Case: ERP-like Patterns 

• Suppose a calibration recording with 100 stimuli of 
type A and 100 stimuli of type B 

 



Resulting Segments 
Channel time courses  
under Condition B 

Channel time courses  
under Condition A 

Three sample trials (out of 100)  
shown: mean, -1 std. dev, +1 std. dev  

Stimulus (A or B) 



Extracting Key Features 

For each trial segment, calculate signal mean in  
3 time sub-windows ( 3-dim feature vector) 

f1 f2 f3 

f1 

f2 f3 



Using Machine Learning 

• The feature vectors are passed on to a machine 
learning function (e.g., Linear Discriminant Analysis) 

f1 

f2 f3 

e.g., LDA 

𝜽 

(Note: actually, this space has 
3x #channels dimensions) 



LDA In a Nutshell 

• Given trial segments 𝒙𝑘  (in vector form) in 𝒞1 and 𝒞2, 

𝝁𝑖 = 
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

,   Σ𝑖 =  𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

 

 
𝜽 = Σ1 + Σ2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2 

 

• Caveat: θ often high-dimensional but only few trials available 

• Can use a regularized estimator instead, here using shrinkage; 
instead of Σ𝑖, we use Σ 𝑖 above: 

 
Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰 

 

 

𝜽 
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LDA In a Nutshell 

• Given trial segments 𝒙𝑘  (in vector form) in 𝒞1 and 𝒞2, 

𝝁𝑖 = 
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

,   Σ𝑖 =  𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

 

 
𝜽 = Σ1 + Σ2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2 

 

• Ca 

• veat: θ often high-dimensional but only few trials available 

• Corresponding prediction function is linear in X: 

 
y = sign(𝜽 vec 𝑿  − 𝑏) 

 

 



Linear Weights Visualized 

• Color-coded linear weights topographies, 22 
channels, 3 time windows, data from ERP task 



How good is it? 

• Source activation S can be recovered from sensor 
measurements by a linear mapping if (linear) volume 
conduction is invertible (𝑺 =  𝑾𝑿) 

 



How good is it? 

• Source activation S can be recovered from sensor 
measurements by a linear mapping if (linear) volume 
conduction is invertible (𝑺 =  𝑾𝑿) 

• Assuming a jointly Gaussian noise process and a 
noise distribution that is independent of the 
condition (A/B), LDA recovers the optimal linear 
mapping 

• Shrinkage LDA on these features yields state-of-the-
art ERP performance! 

 



How good is it? 

• Linear classifiers like LDA can operate implicitly on source 
ERPs, but: 

– EEG variation is often not Gaussian 

– Data variability can depend significantly on condition 

– For limited data samples, LDA is not necessarily optimal 

– Does not yield directly interpretable results 

 



2. Complex Case 

• Nonlinear operation in play, on source signals 

• Due to, e.g., shift indeterminacy of source waveforms 
(no precise time-locking / jitter / high-frequency time course / …) 

• Oscillatory processes: e.g., determining the amplitude of 
source oscillations 

 

S = W*X                         F = abs(DFT(S))                     y = θ*F – b 

 



2. Complex Case 

• Nonlinear operation in play, on source signals 

• Due to, e.g., shift indeterminacy of source waveforms 
(no precise time-locking / jitter / high-frequency time course / …) 

• Oscillatory processes: e.g., determining the amplitude of 
source oscillations 

 

S = W*X                         F = abs(DFT(S))                     y = θ*F – b 

 

• Nonlinear and discards phase information 
(If done on channels, source spectral properties cannot be 

recovered) 

nonlinear 



Latent Variable Viewpoint 
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Latent Variable Viewpoint 

• How to learn W? 
– “top-down” (using X & y) – gradient descent / NN backprop, … 

– “bottom-up” (using only X) – ICA, dictionary learning, … 

– both? – possibly supervised ICA, Bayesian inference, … 

– via direct observations (MR image, FW model) – Beamforming, … 

– using additional constraints (e.g., Gaussian signals) – CSP, DAL, … 

 

. 

. 

. 

. 

. 

. 

W . 
. 
. 

θ 



Supervised Estimation 

• Common Spatial Patterns 

– Most popular algorithm in BCI field for oscillatory 
processes 

– Assumption: Gaussian-distributed Signal, variance features  
(thus all structure captured by signal covariance) 

– Signal usually pre-filtered to known frequency band 

 

 

(image: Blankertz 2009) 

X1 

X2 

S1 

S2 



Supervised Estimation 

• Common Spatial Patterns 
Given signal covariance matrix 𝜮𝑖  under condition i, 
find the simultaneous diagonalizer V of 𝜮1 and 𝜮2 

𝑽⊺𝜮1𝑽 = 𝜦1, 
𝑽⊺𝜮2𝑽 = 𝜦2,  

(with 𝜦𝑖 diagonal) such that 𝜦𝟏 + 𝜦𝟐 = 𝑰. This yields a generalized 
eigenvalue problem of the form 
 

𝑽⊺𝜮1𝑽 = 𝑫  ⋀  𝑽⊺ 𝜮1 + 𝜮2 𝑽 = 𝑰 
 
The k smallest and largest eigenvalues in D correspond to 
directions in V (spatial filters) that yield smallest (largest) variance 
in class 1 and simultaneously largest (smallest) variance in class 2. 



Supervised Estimation 

• Produces well-adapted filters (left) and occasionally 
roughly dipolar filter inverses (right) 
 
 
 

 

 

 
Complete CSP functional form: 

𝑦 =  sign(𝜽log (var 𝑾𝑿 ) +  𝑏) 



Supervised Estimation 

• Produces well-adapted filters (left) and occasionally 
roughly dipolar filter inverses (right) 
 
 
 

 

 

 
Complete CSP functional form: 

𝑦 =  sign(𝜽log (var 𝑾𝑿 ) +  𝑏) 

Usually learned  
via LDA 
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BCILAB Components 

Dependencies 
CVX BNT GUI utils 

Driver  
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BCI Paradigms? 

• BCI paradigms are the coarsest plugin type in BCILAB 
and tie all parts of a BCI approach together (signal 
processing, feature extraction, machine learning, …) 

• They often generalize well to new BCI designs 
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Evaluating Models 

• Given calibration data 

– Estimate model parameters (spatial filters, statistics) 

– Apply the model to new data (online / single-trial) 

• Optionally: compare outputs with known state, compute 
loss statistics for the model / approach (e.g., mis-
classification rate) 

Model 

Calibration recording Future data… 



Evaluating Models 

• Evaluation of computational approaches on a single data 
set? 

– Can not test on the training data (always on separate data) 

– Instead can split data set repeatedly into training/test 
blocks systematically, a.k.a. cross-validation 

               Training  
                   part 

Test 
part 

Model 



Resolving Free Parameters 

• Can be done using cross-validation in a grid search (try all 
values of free parameters) 

• Caveat: Resulting “optimal” numbers are non-reportable 
(cherry-picked!) 

Best 
Model 

Training Test 

For all param. values… 



Resolving Free Parameters 

• Can be done using cross-validation in a grid search (try all 
values of free parameters) 

• Caveat: Resulting “optimal” numbers are non-reportable 
(cherry-picked!) 

• But may test resulting best model on separate data  
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Model 

Training Test 

For all param. values… 
Future data… 



Resolving Free Parameters 

• Can be done using cross-validation in a grid search (try all 
values of free parameters) 

• Caveat: Resulting “optimal” numbers are non-reportable 
(cherry-picked!) 

• But may test resulting best model on separate data  

• Or run grid search within an outer cross-validation (“nested 
cross-validation”) 

Test 
part 

Best 
Model 

Training Test 

For all param. values… 



GUIs & Scripting Walkthrough 



Current Research 

• More structural prior knowledge 
– E.g., smoothness/coupling, structured 

sparsity, kernels, dictionaries, per-trial 
parameters (e.g. ,“outlyingness”, shift) 

 

• Quantitative prior knowledge 
– Structure atlases (Talairach, LONI, …) can 

supply information about the a priori 
relevance of a brain process 

 

• Empirical prior knowledge 
– Data collected from other subjects can be 

co-registered/aligned and yield empirical 
prior distributions 



Thanks! 
Questions? 


