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What is a BCI/BMI?

« “Asystem which takes a biosignal measured from a
person and predicts (in real time / on a single-trial
basis) some abstract aspect of the person's
cognitive state.”

— Abstract aspect of cognitive state: “type of imb movement
imagined”, “degree of surprisal”, “type of vowel imagined

— Biosignal: EEG, ECoG, MEG, ... (+ possibly non-brain data)
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Research Directions

Clinical: Communication and control devices for the
severely disabled

HCI: User-state monitoring, intelligent assistive systems
Entertainment: Computer game controllers

Neuroscience: Brain feedback experiments




Research Directions

* Neuroscience: also, decoding models of brain dynamics
(exploratory research)
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Summary

e Software environment for:

— Design & rapid prototyping of cognitive state
assessment (CSA) systems, both traditional and
unconstrained approaches

— Empirical performance assessment (offline/online)
— Real-time use, prototype deployment
— Large-scale batch analysis



BCILAB Specialty

State of the art

Largest collection of machine learning & signal processing
components in any open-source BCl package

— Many standard components (CSP, LDA, SVM, ...)

— Many modern components (SBL, SSA, AMICA, HKL, DPGMM, LR-
DAL, ...)

— Some novel components (OSR, RSSD, SSB, ...)

Modern framework

— Fully probabilistic

— Model inference from data corpora

— Neuroscience-informed features (e.g., anatomical priors)
— Processing of parallel streams (MoBI)



Long-Term Goals

* Probe landscape of possible approaches for real-
world CSA & assess future performance limits
— Replicating and re-purposing established BCl methods

— Exploring larger-scale data, computation and
complexity than usual

— Leveraging neuroscience knowledge and
infrastructure

— Focusing on unified and principled methods where
possible
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The Prediction Function

 Mathematical mapping

y =f(X); X= y=“left hand” (-1)
T e e T e “right hand” (+1)

* Functional form

e.g.,y = sign(@var(WX) + b)
* Unknown parameters

e.g., W, Db, ..



Functional Form

* Reflects the relationship between observation (data
segment X) and desired output (cognitive state
parametery)

 Based on some assumed generative mechanism
(forward model) or ad hoc

* Note: Functional form is the inverse mapping!



First Ingredient: Spatial Filter

 Linear inverse of volume conduction effect
X = AS (forward)
S = WX (inverse)

 Two example filters and forward projections:




Further Ingredients

* |[nverse mapping from source time courses to
latent cognitive state, e.g.:

y =0vec(WX) + b (linear)

y =0 vec(I(WX)TI) + b (nonlinear...)



Unknown Parameters...

* for most BCl questions and implementations, the
parameters leading to best accuracy (W,b, ...) are a
priori unknown

— Depend on hard-to-measure factors
(e.g., brain functional map)

— Depend on expensive-to-measure factors
(e.g., brain folding)

— Depend on highly variable factors
(e.g., sensor placement, subject state)

— Different for every person, task, montage, etc.



Unknown Parameters...

 Example per-channel parameters across four
subjects:

(image: Blankertz et al. 2007)



Model Calibration Today

* Modern standard approach: utilize data where both
the BCl input (e.g. EEG) and desired output (cognitive
state) is known and adapt BCl parameters using
machine learning techniques

machine learning!

Calibration recording(s)



* Large field with 100s of algorithms

Machine Learning Refresher

e Most methods conform to a common framework of a
training function and a prediction function

 Model parameters 0 capture the learned relationship

« Data X € RV*¥ and Labels / target values y € RV*P
N = #trials, F = #features, D = #output dims.

G/lachine Learning Method

Data »

Labels »
\

Training
function

E) Model

New Data »
Model )

Prediction
function




Desired Calibration Recording

e Standard psychological experiment
— continuous EEG (or other)
— multiple trials/blocks (capturing variation)
— randomized (eliminating confounds)




Desired Calibration Recording

e Standard psychological experiment
— continuous EEG (or other)
— multiple trials/blocks (capturing variation)
— randomized (eliminating confounds)

— often event markers to encode timing and type of
cognitive state conditions of interest, e.g.,
stimuli/responses (“target markers” in BCILAB)




Using Machine Learning

e Often, one trial segment (sample) is extracted for
every target marker in the calibration recording
(length depends on timing of related phenomena)
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Detour: Feature Extraction

e Caveat: Off-the-shelf machine learning methods
often do not work very well when applied to raw
signal segments of the calibration recording

— too high-dimensional (too many parameters to fit)

— too complex structure to be captured (too much
modeling freedom)

1000s of degrees of freedom
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Detour: Feature Extraction

e Solution: Introduce additional mapping (called
“feature extraction”) from raw signal segments onto
feature vectors

— output is often of lower dimensionality

— hopefully statistically “better” distributed (easier to
handle for machine learning)



ML with Feature Extraction

* Including feature extraction, the analysis process is
as follows:
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Two Major BCI Analysis Pathways



. Simple Case: ERP-like Patterns

e Suppose a calibration recording with 100 stimuli of
type A and 100 stimuli of type B




Cortex

" \ Channel time courses
> under Condition A

Stimulus (A or B) Three sample trials (out of 100)
~ a t shown: mean, -1 std. dev, +1 std. dev



f, f, fs

For each trial segment, calculate signal mean in
3 time sub-windows (= 3-dim feature vector)




Using Machine Learning

* The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

101

e.g., LDA

(Note: actually, this space has
3x #channels dimensions)



LDA In a Nutshell

* Given trial segments x;, (in vector form) in C; and C,,

1
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LDA In a Nutshell

* Given trial segments x;, (in vector form) in C; and C,,

1
|€| z Xk » Zi — z (xk _l’l’i)(xk _”i)T

kecC; kecC;

0=C,+2Z) "(u,— 1), b=0"(u +uny)/2

Hi =

* Caveat: X;often high-dimensional but only few trials available

* Can use aregularized estimator instead, here using shrinkage;
instead of X;, we use X; above:

ii — (1 —A)Zi + Al



LDA In a Nutshell

* Given trial segments x;, (in vector form) in C; and C,,

1
Hi = |€.|zxk' Zi= Z(xk_ﬂi)(xk_”i)T
l

kecC; kecC;

0=C,+2Z) "(u,— 1), b=0"(u +uny)/2

* Corresponding prediction function is linear in X:

y = sign(0 vec(X) — b)



Linear Weights Visualized

* Color-coded linear weights topographies, 22
channels, 3 time windows, data from ERP task

Windowl ([0.29sto 0.3s)  Windowl (0.5s to 0.352)  Window3 (0,355 ta 0.45)




How good is it?

* Source activation S can be recovered from sensor
measurements by a linear mapping if (linear) volume
conduction is invertible (S = WX)



How good is it?

* Source activation S can be recovered from sensor
measurements by a linear mapping if (linear) volume
conduction is invertible (S = WX)

* Assuming a jointly Gaussian noise process and a
noise distribution that is independent of the
condition (A/B), LDA recovers the optimal linear

mapping
e Shrinkage LDA on these features yields state-of-the-
art ERP performance!



How good is it?

e Linear classifiers like LDA can operate implicitly on source
ERPs, but:

— EEG variation is often not Gaussian

— Data variability can depend significantly on condition

— For limited data samples, LDA is not necessarily optimal
— Does not yield directly interpretable results

10r

‘Lm
N
=
N
1N
oy
o]



2. Complex Case

Nonlinear operation in play, on source signals

Due to, e.g., shift indeterminacy of source waveforms
(no precise time-locking / jitter / high-frequency time course / ...)

Oscillatory processes: e.g., determining the amplitude of
source oscillations

S = W*X F = abs(DFT(S)) y=0*F—b



2. Complex Case

Nonlinear operation in play, on source signals

Due to, e.g., shift indeterminacy of source waveforms
(no precise time-locking / jitter / high-frequency time course / ...)

Oscillatory processes: e.g., determining the amplitude of
source oscillations

S = W*X F = abs(DFT(S)) y = 0*F—b
4

nonlinear
Nonlinear and discards phase information

(If done on channels, source spectral properties cannot be
recovered)



Latent Variable Viewpoint

Channel Source Spectral Output



Latent Variable Viewpoint

e How to learn W?
— “top-down” (using X & y) — gradient descent / NN backprop, ...
— “bottom-up” (using only X) — ICA, dictionary learning, ...
— both? — possibly supervised ICA, Bayesian inference, ...

— via direct observations (MR image, FW model) — Beamforming, ...

— using additional constraints (e.g., Gaussian signals) — CSP, DAL, ...




Supervised Estimation

e Common Spatial Patterns

— Most popular algorithm in BCl field for oscillatory
processes

— Assumption: Gaussian-distributed Signal, variance features
(thus all structure captured by signal covariance)

— Signal usually pre-filtered to known frequency band
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(a) before CSP filtering (b) after CSP filtering
X, S, (image: Blankertz 2009)



Supervised Estimation

e Common Spatial Patterns
Given signal covariance matrix X; under condition i,
find the simultaneous diagonalizer V of ¥; and %,
V'Z,V=A
Vi,V =A,,
(with A; diagonal) such that A{ + A, = I. This yields a generalized
eigenvalue problem of the form

ViZV=D AV (E, +Z,)V=I

The k smallest and largest eigenvalues in D correspond to
directions in V (spatial filters) that yield smallest (largest) variance
in class 1 and simultaneously largest (smallest) variance in class 2.



Supervised Estimation

* Produces well-adapted filters (left) and occasionally

Complete CSP functional form:
y = sign(B@log(var(WX)) + b)



Supervised Estimation

* Produces well-adapted filters (left) and occasionally

Complete CSP functional form:
y = sign(B@log(var(WX)) + b)

Usually learned
via LDA



Outline

e Background
— What is a BCI
— What is BCILAB

* Theory

— Overview

— ERP approaches

— Oscillatory approaches
* Practice

— Toolbox overview
— GUI & scripts walkthrough



BCILAB Components
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BCl Paradigms?

* BCl paradigms are the coarsest plugin type in BCILAB
and tie all parts of a BCl approach together (signal
processing, feature extraction, machine learning, ...)

* They often generalize well to new BCI designs

" BCI Model )
Filter Graph
Calibrate ‘ =4 =4 Pre-
P dict
\ "/

Calibration recording(s)




Evaluating Models

* Given calibration data
— Estimate model parameters (spatial filters, statistics)
— Apply the model to new data (online / single-trial)

e Optionally: compare outputs with known state, compute
loss statistics for the model / approach (e.g., mis-
classification rate)

Calibration recording Future data...




Evaluating Models

e Evaluation of computational approaches on a single data
set?

— Can not test on the training data (always on separate data)

— Instead can split data set repeatedly into training/test
blocks systematically, a.k.a. cross-validation

Training

part




Resolving Free Parameters

e Can be done using cross-validation in a grid search (try all
values of free parameters)

e Caveat: Resulting “optimal” numbers are non-reportable

(cherry-picked!)
Best
Model

For all param. values... ’
Training




Resolving Free Parameters

e Can be done using cross-validation in a grid search (try all
values of free parameters)

e Caveat: Resulting “optimal” numbers are non-reportable
(cherry-picked!)

* But may test resulting best model on separate data

Best
Model

For all param. values...
: Future data...
) 77
Traini T
raining é est



Resolving Free Parameters

Can be done using cross-validation in a grid search (try all
values of free parameters)

Caveat: Resulting “optimal” numbers are non-reportable
(cherry-picked!)

But may test resulting best model on separate data

Or run grid search within an outer cross-validation (“nested
cross-validation”)

Best
Model

For all param. values...
) -
Training Test
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Current Research

 More structural prior knowledge L e e —

— E.g., smoothness/coupling, structured
sparsity, kernels, dictionaries, per-trial gt

parameters (e.g. ,“outlyingness”, shift) L A A -

* Quantitative prior knowledge

— Structure atlases (Talairach, LONI, ...) can

supply information about the a priori

relevance of a brain process

* Empirical prior knowledge

— Data collected from other subjects can be
co-registered/aligned and yield empirical
prior distributions
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