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1  High-Level View 



BCI: Our Working Definition 

• “A system which takes a biosignal measured from a 

person and predicts (in real time / on a single-trial 

basis) some abstract aspect of the person's 
cognitive state.” 

 

BCI 

(inference/ 

estimation) 

Biosignal State Predictions 



Biosignals and other Inputs 

• Brain Signals: EEG, fNIRS, MEG, fMRI, ECoG, … 

• Peripheral Measures: ECG, EMG, EOG, GSR, 
Respiration, Gaze/Pupillometry, Motion Capture 

• Context Information: Program/System State, Vehicle 
Speed, ... 

 

Biosignal 

BCI 



BCI Estimates/Predictions 

• Any aspect of the physical brain state that can be 
recovered from observable signals 

• Tonic state: degree of “relaxation”, cognitive load,… 

• Phasic state: switching attention, type of imagined 
movement, … 

• Event-related state: surprised/not surprised, 
committed error, event noticed/not noticed, … 

 
State Predictions 

BCI 



2  Application Areas and 
Examples 



Communication and Control 
for the Severely Disabled 

• Severe Disabilities: Tetraplegia, Locked-in 
syndrome 

• Speller Programs, Wheelchairs, Robots, … 

P300 Speller KU Leuven Brain2Robot  
(Fraunhofer FIRST) 



Other Health Uses 

• Sleep Stage Recognition, Neurorehabilitation 

iBrain Takata et al., 2011 



Operator Monitoring 

• Braking Intent, Lane-Change Intent, 
Workload, Fatigue, Alertness, Attention, … 

Haufe et al., 2011 The MITRE Corp., 2011 



Entertainment, Social, etc. 

• Control by Thought, Mood 
Assessment/Display 

Jedi Game Prototype necomimi “neurowear” 



Neuroscience 

• Multivariate Pattern Analysis / Brain Imaging 

Kothe et al., 2011 



3  Basic Theoretical Principles 
and Framework 

? 

What happens in here? 



Component 1: Predictive 
Mapping 



Central Predictive Mapping 

• A BCI (with limited memory of the past) can 
be viewed as a mathematical function f: 

 

 

 

• The functional form is arbitrary, for example 
 

𝑦 =  sign(var(𝑾𝑿) +  𝑏) 

• The mapping involves free parameters, here 
W and b 

y = f(X);   X= y= “subj. excited” (+1)   
     “subj. not excited” (-1) 



Functional Form 

• Reflects the relationship between observation (data 
segment X) and desired output (cognitive state 
parameter y) 

• Based on some assumed generative mechanism 
(forward model) – or ad hoc 

 

 

 

 

• Note: Functional form is the inverse mapping! 



Functional Form 

• Reflects the relationship between observation (data 
segment X) and desired output (cognitive state 
parameter y) 

• Based on some assumed generative mechanism 
(forward model) – or ad hoc 

 

 

 

 

• Note: Functional form is the inverse mapping! 



Basic Ingredient: Spatial Filter 

• Linear inverse of volume conduction effect 
between sources S and channels X 
𝑿 =  𝑨𝑺   (forward) 
𝑺 =  𝑾𝑿 (inverse) 

 

 

W A=W-1 



Component 2: Signal Processing 



Role of Signal Processing 

• BCIs can also be constructed from Signal 
Processing blocks (digital filters): 

 

 

 

 

• This produces the same output as the following 
functional-style description (T is a temporal filter 
matrix), but is computationally less costly: 

FIR Band-pass 
(8-13 Hz) Squaring 

Moving 
Average 

Logarithm 

Running Variance 



Role of Signal Processing 

• BCIs can also be constructed from Signal 
Processing blocks (digital filters): 

 

 

 

 

• This produces the same output as the following 
functional-style description (T is a temporal filter 
matrix) : 

FIR Band-pass 
(8-13 Hz) Squaring 

Moving 
Average 

Logarithm 

Running Variance 

𝑓(𝑿)   ≔   𝑦 = log 𝑣𝑎𝑟(𝑿𝑻) 



Role of Signal Processing 

• Both frameworks are complementary, rather 
than contradictory, and are in practice often 
used in combination, e.g. to minimize 
computational costs 

 

Filter Filter 

Filter 

Filter 

Filter Graph 

Prediction Function 

EEG 

EMG 

tPred 

y = f(X) 



Component 3: Machine Learning 



The Problem of  
Unknown Parameters 

• Processing depends on unknown parameters 
(person-specific, task-specific, otherwise 
variable) – e.g., per-sensor weights as below: 

 

Blankertz et al. 2007 



Reasons for  
Parameter Uncertainty 

• Folding of cortex differs between any two 
persons (even identical twins) 

• Relevant functional map 
differs across individuals 

• Sensor locations differ 
across recording sessions 

• Brain dynamics are non- 
stationary at all time  
scales 



Solution: Calibration 

• Calibration / training data can be used to estimate 
parameters, during a separate calibration step 

 

      Calibration data 

BCI 
Model 

Calibration step 



Calibration Data 

• Many possible kinds of data could be used 

• Best known type of calibration data:  
example data, i.e. examples of EEG of a 
person being excited, not excited, etc.  

• Collected in a special calibration recording 
(before actual online use of the BCI) 



Calibration Recording 

• Similar to standard psychological experiments: 

– continuous EEG (or other) 

– multiple trials/blocks (capturing variation) 

– randomized (eliminating confounds) 

– event markers to encode cognitive state 
conditions of interest, e.g., stimuli/responses 
(called “target markers” in BCILAB) 

• Can also be used for offline performance tests 



Big Picture 

Filter Filter 

Filter 

Filter 

Filter Graph 

Prediction Function 

EEG 

EMG 

y = f(X) 

tPred 

Learning 
Function …

 



Machine Learning Framework 

• Large field with 100s of algorithms 

• Most methods conform to a common framework of a 
training function and a prediction function 

 

 

 

 

 

 

Machine Learning Method (Supervised) 

Training 
function 

Data 

Labels 
Model 



Machine Learning Framework 

• Large field with 100s of algorithms 

• Most methods conform to a common framework of a 
training function and a prediction function 

 

 

 

 

 

• Intermediate model parameters capture the learned 
relationship 

 

Machine Learning Method (Supervised) 

Training 
function 

Prediction 
function 

Data 

Labels 
Model Labels 

New Data 

Model 
 



Using Machine Learning 

• Often, one trial segment (sample) is extracted for 
every target marker in the calibration recording and 
is used as training exemplar Xk 

• Its associated label yk can be deduced from the 
target marker 

S2 S1 R1 S1 

2 1 1 

, , 
… 



Using Machine Learning 

• The training function computes a parameter (here 𝜽) 
of the prediction function such that the performance 
on the given example data is optimal 

S2 S1 R1 S1 

2 1 1 

, , 
… Training 

function 
Model 

X,y 𝜽 



Detour: Feature Extraction 

• Caveat: Off-the-shelf machine learning methods 
often do not work very well when applied to raw 
signal segments of the calibration recording 

– too high-dimensional (too many parameters to fit) 

– too complex structure to be captured (too much 
modeling freedom) 

1000s of degrees of freedom! 



Detour: Feature Extraction 

• Solution: Introduce additional mapping (called 
“feature extraction”) from raw signal segments onto 
feature vectors 

– output is often of lower dimensionality 

– hopefully statistically “better” distributed (easier to 
handle for machine learning) 

 



Example for Feature Extraction 

• Task: A person is presented with a sequence of 
300 images (one ever 2 seconds). Half of the 
images are exciting, the other half are not. 
One channel of EEG (at Cz location) is recorded. 

• Question: How to design a BCI that can 
determine whether a person is shown an exciting 
or a non-exciting image? 

• Approach: For each trial k, cut out an epoch Xk of 
1s length, extract a short vector of features fk, 
and assign a label yk in {E,NE}. Use machine 
learning to find an optimal statistical mapping 
from fk onto yk. 



Example:  
Features of an ERP Peak 

• A supposed characteristic peak in a time 
window (relative to an event) could be 
characterized by three parameters: 

 Latency  
 H

e
igh

t 
 

         Width        



Resulting Feature Space 

• Plotting the 3-element feature vectors for all 
exciting trials in red, and non-exciting trials in 
green, we obtain two distributions in a 3d 
space: 



• Including the feature extraction, the analysis process 
is as follows: 

ML with Feature Extraction 

S2 S1 R1 S1 

2 1 1 

, , 
… 

Training 
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Using Machine Learning 

• The feature vectors are passed on to a machine 
learning function (e.g., Linear Discriminant Analysis) 

f1 

f2 f3 

e.g., LDA 



Using Machine Learning 

• The feature vectors are passed on to a machine 
learning function (e.g., Linear Discriminant Analysis) 

• … which determines a parametric predictive mapping 

f1 

f2 f3 

e.g., LDA 

𝜽 



LDA In a Nutshell 

• Given feature vectors 𝒙𝑘  (in vector form) in 𝒞1 and 𝒞2, 
 

𝝁𝑖 = 
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

,   𝜮𝑖 =  𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

 

 
𝜽 = 𝜮1 + 𝜮2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2 

 

• Caveat: θ often high-dimensional but only few trials available 

• Can use a regularized estimator instead, here using shrinkage; 
instead of Σ𝑖, we use Σ 𝑖 above: 

 
Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰 

 

 

𝜽 

b 



Resulting Predictive Map 

• LDA generates parameters of a linear mapping 

 
y = 𝜽𝒙 − 𝑏 

 

• For classification, the mapping is actually non-
linear:  

y = sign(𝜽𝒙 − 𝑏) 

 



LDA Assumptions 

• Gaussian noise distribution for each class of 
trials 

• Noise covariance is independent of class (i.e., 
identical for both groups of trials) 

• Optimal in the limit of infinite data 

• Note: LDA can also be generalized to multiple 
classes 

 



4  Analyzing ERP-like Processes 

(properly) 



Experimental Task 

• Flanker Task: The experiment consists of a 
sequence of ca. 330 trials with inter-trial interval 
of 2s +/- 1.5s 

• At the beginning of each trial, an arrow is 
presented centrally (pointing either left or right) 

• The arrow is flanked by congruent or incongruent 
“flanker” arrows (coming slightly earlier): 
 
 

• The subject is asked to press the left/right button, 
according to the central arrow, and makes 
frequent errors (25%) 



Consideration 

• The peak ERP features discussed so far were 
chosen for a single channel of EEG 

• Problem: with multiple channels all channels 
measure almost the same signal properties, 
thus little information gain to expect 

• Solution: Learn a spatial filter and use 
multiple channels to computationally focus on 
source processes of interest, then extract 
source signal features 

 



Consideration 

• This can be done automatically by a linear 
classifier when applied to multiple channels 

• Works only for source-signal features that are 
a linear transform of channel-signal features 

• The classifier must produce the same solution 
under rotation and scaling (not all do, but e.g., 
LDA does) 

 



Approach 

• Calibration recording is band-pass filtered 
between 0.5Hz and 15Hz 

– lower edge removes drifts 

– upper edge cuts off high-frequency noise 

• Epochs are extracted for each trial and label is 
set to A for incorrect trials and B for corrects 



Approach 

• Calibration recording is band-pass filtered 
between 0.5Hz and 15Hz 

– lower edge removes drifts 

– upper edge cuts off high-frequency noise 

• Epochs are extracted for each trial and label is 
set to A for incorrect trials and B for corrects 



Actual Data 

• Time courses for all trials super-imposed 
(color-coded by class) – but here different task 



Extracted Epochs 
Channel time courses  
under Condition B 

Channel time courses  
under Condition A 

Response (A or B) 



Extracting Linear Features 

For each trial segment, calculate signal mean in  
3 time sub-windows ( 3-dim feature vector) 

f1 f2 f3 

f1 

f2 f3 



Problem with LDA 

• Multi-channel features are usually too high-
dimensional for LDA to handle with few trials! 

Game over? 



Problem with LDA 

• Multi-channel features are usually too high-
dimensional for LDA to handle with few trials! 

• There is a simple generalization to LDA called 
shrinkage LDA that can handle such feature 
spaces 

• Many alternative methods for  
high-dimensional data exist (e.g.,  
Support Vector Machines,  
Regularized Logistic Regression) 



Problem with LDA 

• Multi-channel features are usually too high-
dimensional for LDA to handle with few trials! 

• There is a simple generalization to LDA called 
shrinkage LDA that can handle such feature 
spaces 

• Many alternative methods for  
high-dimensional data exist (e.g.,  
Support Vector Machines,  
Regularized Logistic Regression) 



Resulting Spatial Filters 

• Topographically mapped, the following filters 
emerge: 



A Note on Interpretability 

• Spatial filters are not very interpretable 

• When  the classifier is applied to localizable 
features (e.g., on independent components), 
the weights assigned by it are also localized 

• Example: 



How Good is This Approach? 

• Source activation S can be recovered from sensor 
measurements by a linear mapping if (linear) volume 
conduction is invertible (𝑺 =  𝑾𝑿) 

• Assuming a jointly Gaussian noise process and a 
noise distribution that is independent of the 
condition (A/B), LDA recovers the optimal linear 
mapping 

• Shrinkage LDA on these features yields state-of-the-
art ERP performance! (although the assumptions are 
not entirely true) 

 



5  Analyzing Oscillatory Processes 



Oscillatory Processes 

• Best example: cortical idle rhythms, e.g. 
occipital alpha, motor cortex alpha+beta 

 

 

Malmivuo and Plonsey, 1995 



Sample Experimental Task 

• The experiment consists of 160 trials (pause at ½ the 
experiment). Each trial begins with a letter (either L or R) 
displayed for 3s. The subject is instructed to 
subsequently imagine either a left-hand or a right-hand 
movement. Each trial ends with a blank screen displayed 
for 3.5s. 



Motor Cortex ERD/ERS 

• Event-Related Synchronization / Desynchronization: 
attentuation of motoric idle rhythms in response to an event 

• Average spectrogram for left-hand movement imagination in 
red + average spectrogram for right-hand movement 
imagination in green (160 trials each, stimulus at t=0) 

time (s)  

Freq
u

e
n

cy (h
z) 

 

(channels filtered by surface Laplacian) 



The Problem In Oscillatory BCIs 

• Calculating the power or amplitude of an 
oscillation requires a squaring of the signal 

• This is after spatial filtering, i.e. the spatial 
filter must be adapted such that the squared 
signal (or its variance) is maximally 
informative 

• If multiple source amplitudes are involved, 
they need to be weighted by another learned 
linear mapping (after squaring) 



Common Spatial Patterns 

• Most popular algorithm in BCI field for 
learning spatial filters for oscillatory processes 

• Assumptions:  

– Frequency band and time window are known 

– band-passed signal is jointly Gaussian within the 
time window 

– Source activity constellation differs between two 
classes 

 

 



Common Spatial Patterns 

• Below: Different EEG signals for a single left-hand 
epoch vs. a single right-hand epoch (band-passed to 
7-30 Hz) 

• Signal activation is scatter-plotted for channels C3 
and C4: 

Blankertz 2009 

C3 

C4 



C3 

C4 

S1 

S2 

Common Spatial Patterns 

• Goal: Design spatial filters (i.e., linear transforms) such 
that the signal’s variance along the filtered direction is 
maximal for one condition while minimal for the other 

• Ideally find multiple filters with that property 

 

Blankertz 2009 



One Way to Compute It 

• Geometric Approach: An intuitive approach is a three-
step procedure:  

1. Determine a whitening transform U for the average of 
both covariance matrices (blue) using PCA 

2. Apply it to one of the point clouds and calculate its 
principal components P (green) 

3. The spatial filter operation W is to first whiten by U and 
then transform by P-1, i.e. 𝑾 = 𝑷−1𝑼 so then 𝑺 =  𝑾𝑿 

Dornhege, 2004 

1. 2. 3. 



• Produces well-adapted filters (left) and occasionally 
roughly dipolar filter inverses (right) 

• Note that typically only filters for the k top and k 
bottom eigenvalues are retained 
 
 
 

 

 

 

Resulting Spatial Filters 

W W-1 



CSP Prediction Function 

• The CSP Prediction function amounts to: 

– Spatial filtering 

– Log-variance calculation 

– Application of a linear (or non-linear) classifier 

 
𝑦 =  sign(𝜽log (var 𝑾𝑿 ) +  𝑏) 

 



Putting it all Together 

• A CSP-based BCI typically operates on a band-
pass filtered signal 

• Choice of the frequency band is not trivial 

• The online window length does not need to 
correspond to the training window length 

 Filter Graph 

FIR Bandpass  
(7-30Hz) 

tPred 

𝑦 =  sign(𝜽log (var 𝑾𝑿 ) +  𝑏) 

Prediction Function 



Alternatives to CSP 

• Dozens of extensions (Spec-CSP, FBCSP, TRCSP, 
…) 

Lotte et al., 2010 

Some Regularized CSP Variants Spectrally Weighted CSP (Spec-CSP) 



Alternatives to CSP 

• Other ways to calculate spatial filters:  
ICA, Beamforming, Stationary Subspace 
Analysis, Dictionary Learning, … 

• “Second-order trick”: using a linear classifier 
applied to the covariance matrix of the data 
epoch, but requires large-scale machine 
learning methods 

• Some types of neural networks / graphical 
models 

 



6  Evaluating Results 



Overall Evaluation Strategies 

• When given calibration data and test data… 

• Estimate model parameters (spatial filters, statistics) 

• Apply the model to new data (online / single-trial) 

• Measure prediction performance or loss (e.g., mis-
classification rate or mean-square error) 

Model 

Calibration data Future data… 

Compute Loss 



Overall Evaluation Strategies 

• What if there is no second data set? 

• split one data set repeatedly into training/test blocks 
systematically, a.k.a. cross-validation 

• Each trial is used for testing once 

• Time series data: Prefer block-wise cross-validation 
over randomized 

                        Training  
                           part 

Test 
part 

Model 



Overall Evaluation Strategies 

• Consideration: Since neighboring trials are more 
closely related than training and future online data, 
leave a margin of several trials/seconds between 
training and test 

• Standard splitting schemes: 5x, 10x 

                        Training  
                           part 

Test 
part 

Model 



Overall Evaluation Strategies 

• Parameter search can be done using cross-validation 
in a grid search (try all values of free parameters) 

• Quite general (e.g. can search for best method) 

Best 
Model 

Training Test 

For all param. values… 



Overall Evaluation Strategies 

• Parameter search can be done using cross-validation 
in a grid search (try all values of free parameters) 

• Quite general (e.g. can search for best method) 

• However: Cannot directly report “best performance” 
estimates (=cherry-picked) 
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Training Test 
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Overall Evaluation Strategies 

• Parameter search can be done using cross-validation 
in a grid search (try all values of free parameters) 

• Quite general (e.g. can search for best method) 

• However: Cannot directly report “best performance” 
estimates (=cherry-picked), except on future data 

Best 
Model 

Training Test 

For all param. values… 
Future data… 



Overall Evaluation Strategies 

• Parameter search can be done using cross-validation 
in a grid search (try all values of free parameters) 

• Alternatively: Parameter search can be nested within 
an outer cross-validation (“nested cross-validation”) 

Test 
part 

Best 
Model 

Training Test 

For all param. values… 



7  Further Reading 
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Researchers to Watch 

• Klaus-Robert Mueller et al. (TU Berlin) – one of the leading 
BCI groups 
http://www.bbci.de/publications.html 

• Marcel van Gerven et al. (Donders) – BCI and Neuroscience 
with a Bayesian approach 
https://sites.google.com/a/distrep.org/distrep/publications 

• Ryota Tomioka (U Tokyo) – known for some technical 
achievements 
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka 

• Karl Friston et al. (UC London) – working on relevant 
underpinnings for neuroimaging (outside BCI) 
http://www.fil.ion.ucl.ac.uk/Research/publications.html 

• Leading Statisticians and Machine Learners: Michael I. Jordan, 
Andrew Ng, Lawrence Carin, Zoubin Ghahramani, Francis 
Bach, Geoffrey Hinton, Ruslan Salakhutdinov, Yeh Whye Teh, 
David Blei, … 

http://www.bbci.de/publications.html
http://www.bbci.de/publications.html
https://sites.google.com/a/distrep.org/distrep/publications
https://sites.google.com/a/distrep.org/distrep/publications
https://sites.google.com/a/distrep.org/distrep/publications
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.fil.ion.ucl.ac.uk/Research/publications.html


Extended version of this lecture: 

See Additional Materials 



Thanks! 

Questions? 


