Rapid Development with the
BCILAB, SNAP and LSL Platforms

Christian A. Kothe
SCCN, INC, UCSD

Outline

1. Overall Experimentation Environment
2. The Lab Streaming Layer (LSL)

3. Simulation and Neuroscience Application
Platform (SNAP)

4. The BCILAB Toolbox
Toolbox Overview
Workflows and Concepts
In-Depth Walkthrough
Adding New Methods

5. Further Reading

W

1 Overall Experimentation
Environment

Goals

* Enable experiments involving acquisition of
multi-modal brain- and bio-signals from a
variety of sources, such as:

Human Interface
Eye-Tracking Devices, System
State

Full-Body Motion

EEG and ExG Capture

Goals

* Enable experiments involving complex
scripting and multi-subject interactions

Goals

Enable experiments depending on advanced
real-time analysis of acquired data

6! Notlfyln In-App

.*
“

ﬂ. 2. Perce%éd / or not

5

Disclaimer: Not tested yet for this experiment!

Goals

* Enable unhindered offline analysis of the data:

— Retain a complete record of experiment events,
meta-data

— All measures time-synchronized
— Well-organized file format

— Wide range of compatible analysis tools: EEGLAB,
MoBILAB, BCILAB, SIFT, ...

Real-Time Components
Overview

* Lab Streaming Layer (LSL)

— Underlying distributed data acquisition, transport and
collection system

* Simulation and Neuroscience Application
Platform (SNAP)

— Scalable experiment scripting environment based on
Python and Panda3d

* Brain-Computer Interface Laboratory (BCILAB)

— Design, prototyping and testing environment for
brain-computer interfaces and other cognitive
monitoring tools

2 The Lab Streaming Layer

code.google.com/p/labstreaminglayer

Purpose

* Provide a simple and unified way to distribute
and access experiment time series and meta-data
from all acquisition devices (and other sources)

* Both in real time and for offline processing

* Handle networking, time synchronization, and
fault tolerance transparently for most client
applications

e Support a wide range of hardware out of the box
(‘batteries included’)

Data Provider
(e.g., BioSemi)

liblsl

|

: Data Consumer
| liblsl (e.g., Viewer)
|

Data Provider
(e.g., Eyelink)

Data Consumer
(e.g., Recorder)

Data

Consumer/Provider
5. BCILAB)

Data Provider
(e.g., PhaseSpace)

LSL Core Library

Cross-platform library (MacOS/Win/Linux,
32/64), open source (MIT license)

Stable interfaces for C, C++, MATLAB, Python with
identical feature set

Robust and clean implementation, stress-tested
for days

Extensively documented, incl. 10s of examples
programs

High throughput (>50KHz) and low latency
(<1ms); designed to scale up to large experiments

LSL API

* Applications interact with LSL
as “producers” or “consumers”

libls132.dll

LSL API

* Applications interact with LSL
as “producers” or “consumers”

* Producers create one or more PEE
outlets and push samples in

liblsI32.dll

 Consumers create one or more
inlets and pull samples out

LSL API

Applications interact with LSL
as “producers” or “consumers”

Producers create one or more PEE
outlets and push samples in

libls|32.dll
Resolves

Consumers create one or more
inlets and pull samples out

Consumers can resolve existing data streams
on the network (e.g., by name or type)

LSL API

Applications interact with LSL
as “producers” or “consumers”

Producers create one or more PEE
outlets and push samples in

libls|32.dll
Resolves

Consumers create one or more
inlets and pull samples out

Consumers can resolve existing data streams
on the network (e.g., by name or type)

All can use a built-in synchronized clock

S wartz

Center for
Computational
Neuroscience

Examples Programs in MATLAB

—_
% instantiate the library

lib = 121 loadlib():

% make a new =tream outlet mi, type: EEG, 8 channels, 100H=)

!

info = 1lsl streaminfo(lib, 'BEicSemi
outlet = 151 outlet (info): .
- ~—— Data Provider
% =zend data into the outlet, =sample by =ample (B random numbers each)
while true

ocutlet.push sample (randm(8,1));

pause (0.01) :
end

J
—_
% instantiate the library
1lik = 1=1 loadlibk():
% try resolve an EEG =tream
result = {};
while isempty(result)
result = 121 resolve byprop(lib, 'type', "EEG'): end
create a new inlet from the first result > Data Consumer

S
inlet = 1s1 inlet({result{l}}:;

%2 get data from the inlet and print it
[vec,t=2] = inlet.pull sample();
fprintf(':.2f\t',vec); fprintf('%.5f'\n',ts):;

end

> ~
/, \
N\
Swartz

Center for
Computational
euroscience

Other Languages

#include ../ /.. .. fAnclude/1s1_cpp.h"
ginclude <stdlib. h=
using namespace 1s1;

"= This is an example of how a =imple data stream can be offered on ti
* The transmitted samples contain random numbers (and the szampling ri
san1e5).

int main(int argc, char® argv[]) {

/ make a new stream_info (128ch) and open an outlet with 1t
stream_info info("SimpleStream™,"EEG",128);
stream_outlet outlet(infol;

S/ send data forever
float sample[128];
while(true) {
/¢ generate random data
for (int c=0; c<128;c++)
sample[c] = (rand()%1500)/500.0-1.5;

S/ osend it
) outTet. push_sample(zample); F’\[t']()rl

. impaort sys; sys.path.append(’..') # make sure that pylis1 is found Cnote: in a
1 return O; import pylsl
import random
import time

(:+"+ £ first create a new stream info (here we set the name to BioSemi, the content-
& The Tast value would be the serial number of the device or some other more or
recover).

info = pylsl.stream_info(BioSemi’, "EEG',5,100,pyv]s]. cf_float3z, "dsffwerwer');

£ next make an outlet
outlet = pylsl.stream_outlet(info)

print{"now sending data...™)

while True:
¢ make a new random 3-channel =zample; this 1z converted into a pylsl.ve
mysample = pyls].vectorf([random.random),random. random) ,random. random
2 now send 1t and wait for a bit
outlet. push_samplelmysample)
time.sleep(0.01)

Misc APl Features

* Attaching/receiving XML meta-data

for (int k=0;E<3:k++)
info.desc() .append child("channel"™)
.append child walue ("name",channels[k])
.append child walue ("unit", "microvolts")
.append child walue ("type", "EEG");

 Handling data at chunk granularity

outlet.push chunk(randn(g,50));

[chunk, stamps] = inlet.pull chunk():;

 Handling string-formatted streams (Events, ...)

outlet.push sample({'test', "123"});

Time Synchronization

Uses a protocol similar to NTP, achieves sub-
ms accuracy on a local network

Time synchronization only applies to the
computers’ clocks

Any uncertainty in when a sample was
measured (e.g., due to hardware buffers)
remains and cannot be fixed by the library

In these cases trigger & sync cables can help...

omputational

eeeeee “Advanced Network Configuration

 Visibility between LSL applications is restricted to
a scope that can be set (in a .cfg file) to:
— Local machine
— Local router or VPN (default)
— Local “site”
— Local “organization”
— Global
— All clients that have a given group name
— A set of IPs/Hosthames

* Firewall restrictions (!) and router restrictions
apply

Swartz

Center for

utational

LSL Distribution

b
;

&« C | @ code.google.com/p/labstreaminglayer/

ﬁ labstreaminglayer

Distributed signal transport, time synchronization and collection system for research use

Project Home Downloads ~ Wiki Issues Source Administer

Summary People

Tip: Discuss and then document gach teammate's project duties

Project Information S ummary
g +1| Recommend this on Google
The lab streaming layer (L5L) is a system for the unified collection of measurement time series in research experiments and handles both the
Starred by 0 users networking, time-synchronization, {near-) real-time access as well as optionally the centralized collection, viewing and disk recording of the data.

Eroject feeds The LSL distribution consists of:

Code license

MIT License « The core transport library {liblsl) and its language wrappers (MATLAB. Python, C, C++). The library is general-purpose and cross-platform

— (Win/Linux/MacQ8S, 32/64) and forms the heart of the project.

Labels « A suite of tools built on top of the library. including the recording program, a viewer program, importers, and a set of data collection apps that

Academic, Interface, Lab, make data from a particular device available on the lab network (for example audio, EEG. or motion capture). The existing tools suite is

Library, Middleware, tailored to the needs of only a small number of labs and should not be considered as general (or production-quality) as the library itself.

Networking, Stream,

Research Streaming Layer API

- Members The libls! library provides the following abstractions for use by client programs:

christiankothe

3 committers » Stream Qutlets: for making time series data streams available on the lab network. The data is pushed sample-by-sample or chunk-by-chunk
into the outlet, and can consist of single- or multichannel data, regular or irregular sampling rate. with uniform value types (integers, floats,

;our role doubles, strings). Streams can have arbitrary XML meta-data (akin to a file header). By creating an outlet the stream is made visible to a

wrer

collection of computers (defined by the network settings/layout) where one can subscribe to it by creating an inlet.

Resolve functions: these allow to resolve streams that are present on the lab network according to content-based queries (for example. by
name, content-type, or queries on the meta-data). The senice discovery features do not depend on external services such as zeroconf and
are meant to drastically simplify the data collection network setup.

Stream Inlets: for receiving time series data from a connected outlet. Allows to retrieve samples from the provider (in-order, with reliable
transmission. optional type conversion and optional failure recovery). Besides the samples. the meta-data can be obtained (as XML blob or
alternatively through a small built-in DOM interface).

* Built-in clock: Allows to time-stamp the transmitted samples so that they can be mutually synchronized. See Time Synchronization.

Time Synchronization

Available at code.google.com/p/labstreaminglayer

Included with the Distribution

Core library, source, documentation, samples

Generic recorder program to record all or a
subset of streams on the network

Generic stream viewer programs (standalone
and for MATLAB)

Open-source client programs for a range of
acquisition devices (EEG, MoCap, Sound,
Video, Eyetracking, Human Interface Devices)

Available separately: plugins for BCILAB,
EEGLAB, MoBILAB

Currently Supported Hardware

 EEG: Biosemi, Cogionics, MINDO, BrainProducts,
g.USBamp, Emotiv, Micromed, MindMedia, OpenEEG,
TMSi, ANT Neuro ASALAB

* Eye Tracking: SR Research Eyelink, custom 2-camera
setup

* Motion Capture: PhaseSpace, OptiTrack, Kinect, AMTI
Force Plates

 Human-Interface Devices: Mice, Keyboards, Trackballs,
Game Controllers, Wiimote and Expansions

 Multimedia Devices: PC-compatible sound cards,
DirectShow-compatible video hardware

* Untested: ABM B-Alert, Enobio, Neuroscan Synamp,
EGI AmpServer, Mitsar EEG, CTF/VSM, Tobii, SMI
IViewX

SWaftZ

Center for
Computational

) Figure 1: 1SL:Stream ; =lolx]

Fle Edit View Insert Tools Desktop Window Help

EEE RN A REEIEE

MyStream
T

—Experiment Information

Reference Channels IEx' 1, EX2

Location File I Browse... |

Cap Design | BioSemi-ABC

| I I I |
208 2085 209 20956 210

EEG Channel Subset IaII

kit 1 14

Cap Circumference I 54
Resample to 512 Hz v

Recording Control

Stop C:\Recordings\CurrentStudy\exp¥enuntited. xdf

Position within Study

Storage Location

Record from Streams

BioSemi Experiment number 18 5

PhaseSpace
SMAP-Markers

Current experiment block

default

[Enable scripted actions

XDF File Format

* Developed with Clemens Brunner (Graz Univ.)

* Independent of LSL, but supports full feature
set (and comes with importers for MATLAB,
EEGLAB, BCILAB, MoBILAB)

* Very simple (ca. 100 LoC parser) modern
container file format supporting:
— Any number of streams, time-synched

— Extensible meta-data per stream with core subset
specified online (code.google.com/p/xdf)

/ A
SWartz 1 2 y

Center for
Computational

== XDF Meta-Data Sample

* A portion of the Mocap meta-data specs:

<channels=
zchannel=
<label=
amarker>
<ohject»
<typesx

<Rt
</ channel=
</channels>

cacquisitions
amanufacturers>
amode =
<zettings»
< settings=
<compensated_lag=

</facquisition=

wsetup=
<names

<hounds=
<7 11 ML

K

Y

f
<M AT mume
AN T ML

K

Y

HeOHH R R R H H H H

HOH K H

WO

specification of the channel Tlayout

information about a single channel (repeated for each)

Tabel of the channel

label of the marker that this channel refers to, 1f any

label of the object that this channel refers to, if any

type of data in this channel, can be an of the following values:
* PositionX, Position¥, PositionZ for euclidean position (strongly preferred unit: meters),
* Qrientationd, OrientationB, OrientationC, OrientationD for quaternion-based orientations,
* Confidence for confidence information (preferred unit: normalized)

measurement unit (e.g., meters)

information about the acquisition system
manufacturer of the system

model name of the system

settings of the acquisition system

amount of hardware/system lag that has been implicitly
compensated for in the stream's time stamps (in seconds)

information about the physical setup (e.g. room layout)
name of the setup

bounding box of the space/room (in the same coordinate system as all others)
=mallest possible position 1n the operating volume (for each axis)

largest possible position 1n the operating volume (for each axis)

3 The Simulation and Neuroscience
Application Platform (SNAP)

ftp://sccn.ucsd.edu/pub/SNAP

Purpose

* Allow to rapidly prototype game-like human-
computer interactions with significant
complexity

e Generalize and advance basic neuroscience

experiments towards practically relevant
applications

e Full source code, no license restrictions on
academic or commercial use and deployment

Approach

Relies on Python as the scripting language and
everages its packages

Uses the Panda3d game engine for graphics,
audio, input, physics, GUI and low-level real-
time subsystems

Adds a thin layer for experiment scripting

Adds some extra low-level subsystems (LSL,
RPC, Pathfinding, ...)

The Panda3d Engine

e Con:

— Relatively clean but dated core ('97) but still actively
developed, messy features at the outer fringes

— Limited support for in-engine editing
— no modern lighting/rendering model

* Pro:

— Complete game engine, formerly commercial (Disney),
now open source (MIT license) and maintained by CMU

— Written in C++ (fast) and scriptable via Python (convenient)

— Very comprehensive feature set for game/simulation
purposes (750k LOC)

— Remarkably good documentation (panda3d.org)

/ B\
S wartz

A SNAP Architecture

Launcher
Application
User-Created
Experiment Modules
DAS MBF LSE Flanker Speech

(.)

SNAP Components Stimulus Event Ul Task Prefabs Misc

Presentation || Markers || Tools Tools
_ J
(Panda3d A
Core Graphics Audio Physics GUI Network

_ J
r)

Python and Packages

Python RPyC || Win32

Y J

/ B\
S wartz

Center for
Computational

Basic Scripting

from framework.latentmodule import LatentModule
import random

class Main{LatentModule):
def dinit (self):
LatentModule. init (self)

self.num_trials = 5@
self.text probability = 8.5

def run(self):
self.marker(12)
self.write('This is a sample experiment. \nYou wi

LL be Lead through a few triaols in the fi
self.write('Press the spoce bar when you are ready. ', 'space’

4

for k in range(self.num _trials):
self.crosshair(3)

if random.random() < self.text probability:
self.marker({1)
self.write('4 text.',scale=8.5)

else:
self.marker(2)
self.picture(‘monkey. jpg',2,5cale=0.3)

self.sleep(2)

self.sound(‘nice bell.waov',volume=8.5)
self.write("You successfully completed the experiment.)

Complex Scripting

 Example: earlier experiment prototype (MBF)

Relationship to BCILAB and LSL

Natively sends event marker streams to LSL

Can be remotely controlled by the LSL
LabRecorder experiment control features (e.g.,
load/config/start/stop)

BCILAB can remotely control the value of any
set of module parameters online (for example,
the “task load level”)

Can also read/write any LSL stream manually
through the Python API

Benefits Summary

e Basic scripting is as simple as it can get

e Scales gracefully from basic to far more
complex experiments, both in terms of
features and performance

* |Integrates painlessly with LSL and BCILAB

Caveats

e Stimulus presentation not necessarily with same
hard timing guarantees as traditional
neuroscience applications

* Lacking rich authoring tools (e.g., dataflow
graphs) of some commercial software, instead
relies fully on scripting and external authoring
tools (3ds max, Eclipse)

* Live coding/debugging not yet as effortless as it
could be (requires a very disciplined workflow),
also fairly long loading/iteration times for
complex experiments (>1 minute)

Swartz :

Center for
Computational
euroscience

Brief Demo

4 The BCILAB Toolbox

http://sccn.ucsd.edu/wiki/BCILAB
ftp://scen.ucsd.edu/pub/bcilab

http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB

Software Environment For:

* Brain-Computer Interface Design (Cognitive
Monitoring)

* Methods Research:

— Design & rapid prototyping of new methods &
methods from literature

— Offline testing, performance evaluation & batch
comparison, visualizations

— Simulated online testing

* Rapid Prototyping:
— Real-time use and testing of BCls
— Prototype deployment

Facts & Figures

Developed since 2010 at SCCN, UCSD (primarily by me)

Precursor was the PhyPA toolbox (Kothe & Zander,
2006-'09)

Built on top of EEGLAB (Delorme & Makeig, 2004)

The largest open-source BCl toolbox by methods and
algorithms (100+) as of 2011

Offline and online processing both in MATLAB, same
code base, Win/Linux/MacOS, 32/64bit

Extensive documentation (hundreds of pages of help
text, manual, wiki, 400+ lecture slides online)

A1 ONR

Office of Naval Research

4.1 Toolbox Overview

Architectural Overview

Gamework)
GUI / Scripting Interfaces

Approach Online Offline . N
. ..)) Visualization
\ Definition Execution Evaluation j

@gins \

ngal Processing) m/lachine Learning) GCI Paradigms) (Devices)

ICA || SSA FIR LDA || QDA || DAL CSP || Spec-CSP TCP || OSC

lIR FFT GMM || SVM | . ERP || RSSD | .. BCI2000 | ...
o AN AN '\ _J
(.)
Infrastructure GUI cluster disk helper environment

generation || computing caching functions services

_ J
(Dependencies Driver A

CVX || BNT || EEGLAB || GUI utils || LIBSVM || GLMNET /0
- y,

Functional Overview:

Online Processing

* Supports BCI designs framed as a series of
Signal Processing Blocks or as a Prediction
Function, or a combination of both

/Filter Graph \
EEG : - .
‘ Control Signal / Cognitive State Estimate
bttty g
e - Filter » Filter Filter » N YT
EMG _ ’ (e.g., user’s “excitement” level)
R A (Filter

Functional Overview:
Online Processing

* Supports BCI designs framed as a series of
Signal Processing Blocks or as a Prediction
Function, or a combination of both

EEG
ittt g

WA A e
"”MWWW”W\W

A gty Ao 40

tPred

|~
N\
W

W

NN

/FilterGraph \
» Filter » Filter Filter »ﬁ
(Filter ’

J

Extract
Features »

g

Prediction Function

Pre-
dict

J

Functional Overview:
Online Processing

* Supports BCI designs framed as a series of
Signal Processing Blocks or as a Prediction
Function, or a combination of both

AR AT Aty Pt S K B W Sl g e P Pl AeA AN AN bt MW b ctimssepc ooty g R iy s gt
e A R A kA . AP e b AR g P e AL P e A i oA i A A e] .
B e e A VANV NSl WSS
A e e e gt A e st AL oo At B AU o Nt i et e W g et
T e L T o e ey S i

Prediction Function

Extract Pre-
Features » dict

N\ J

SWaI’tZ

Center for
Computational
euroscience

unctional Overview: Calibrati

EEG
A b-riprthAbig et

At
Juateviruvi s

EMG.

SR o

Learning
Function

tPred

Filter Graph
Filter » Filter » Filter
Filter ’

on

BCI

model

Prediction Function

Extract
Features

* Predict

Calibration Data Reminder

* Typical features of a calibration recording:
— continuous EEG (or other)
— multiple trials/blocks (capturing variation)
— randomized (eliminating confounds)

— event markers to encode cognitive state
conditions of interest, e.g., stimuli/responses
(called “target markers” in BCILAB)

“target markers” in BCILAB

Functional Overview: Evaluation

* Covers:
— Simulated online processing
— Cross-validation (shown below)
— Grid Search
— Nested Cross-Validation

Training
part

4.2 Workflows and Concepts

Pipeline Notion

 BCILAB is a framework that resembles a
processing pipeline: first configure everything,
then apply it to one or more data sets

* Configuration Inputs:
— Base BCl Paradigm to execute — “what to run?”
— Custom parameters for the paradigm

— Evaluation Scheme — “how to run it?”
(e.g., what type of cross-validation)

— Definition of the dataset annotations (mapping
between event marker strings and class labels)

Pipeline Processes

Curate: bring the input data into standard form
Design: define the computational approach

Train: invoke all steps necessary for training
(calibrating) a BCl and estimates performance

Predict/Evaluate: apply a BCl to some data offline
Visualize: visualize BCl model internals
Run Online: apply a BCl online / incrementally

Batch Analysis: perform a series of processing
steps, optionally in parallel

A Note on Data Curation

* Up-front conversion of data set and file format
into uniform representation:

— Continuous data — unfiltered

— Correct channel labels/locations

— Correct event types, latencies, etc

— Other common meta-data about raw recordings

e Usually done in a first pass before any BCILAB
function is touched

Plugin Concepts: Filters

* Filters can operate on continuous signals...

m)
A O »
P g

Continuous-Data
Filters

A AP AR N An A
"‘r‘,,\-’l‘\‘.r ‘\"‘NI"‘ A w'.r;,vr V\""J \
\/ "d{\‘_.’ﬂ__j e ea
YR Y W W R VY]

e ...oronsegmented (“epoched”) signals:

ity

iy oy ety
L LY P i YY)
vy i [,

il

Epoched-Data
Filters

ko Mk
U e iy
ittt A 1 A
Aalinl) VIR AR

Plugin Concepts: Filters

e Static (“stateless”) filters:
EEG = flt selchans (EEG,{‘'C3’,'C4’,'Cz’})

* Dynamic (“stateful”) filters:
[EEG,State] = flt resample (EEG,200,State)

* Epoched filters:
EEG = flt fourier (EEG)

Plugin Concepts: Filters

* Caveat: filters have lazy evaluation behavior,
i.e. they do not evaluate unless forced:

EEG = flt fourier (EEG) Not what you
>> EEG = wanted!

head: @flt_fourier
parts: {[1x1 struct]}
codehash: '356d73563¢c38107c63a33762cc7789ba’

Plugin Concepts: Filters

e Caveat: filters have lazy evaluation behavior,
i.e. they do not evaluate unless forced:

EEG = exp eval (flt fourier (EEG))

N

The right way

Plugin Concept:
Machine Learning

* Machine learning functions come in pairs:

@achine Learning Method)
Data » Training »Model New Data » Prediction » Labels
Labels » function Model » function

\ J

M = ml trainlda(X,y)

ml predictlda (Xnew, M)

O
I

* BCI paradigms are the coarsest plugin type in BCILAB

Plugin Concepts: Paradigms

and tie all parts of a BCl approach together (signal
processing, feature extraction, machine learning, ...)

* They are invoked by the offline/online framework

Calibrate

)

Calibration recording(s)

(BCI Model

~

Filter Graph

EN

i

&

Pre-
dict

)

l

Data Representations

(BCI Model) f
1
Filter C;aph » Pre- [f2]
P dict D 1 2 '
\ /) Probability Distributions Feature Vectors
Gymbolic Expression R
eflt fir { mydata, [0.5 1], ‘highpass’ }

head arts
_ P Y,

Data Representations

.data

.event

.srate
.Xmin

.chanlocs

ﬁg"a' W

@gnal Bundle

.Streams S|gna| 1

Signal 2

Signal n

\ (meta-data)

Dataset Collection

Bundle 1

Bundle 2

Bundle n

4.3 In-Depth Walkthrough

Swartz

Center for
Computational
euroscience

eiings Help
] calibrate a model —|[x
Process data wilhin »
FRarael input from, » Selected approach astapproach ("Spectrally Weighted CSP... =
. g Wrte output to » -
)] Review/edit approach Calibration data source lastdata (“imag.vhdr") -
| Clear ail aniine processing
Approach properties Target markers
[E] & =] Parameter Search
Cova g = :
BurstCleaning | IR Less/Performance Metric Automarically chosen -
< FIRFiner - ihcllahicodamacl hinal
s [5753)] Figure 2 _ (=[] pon folds | s
Hode bandpad .
e panaee Ele Edr view [nsen oo Deskiop Window Help testwials [5
Passbanceipple NEdS kI SRAmDEL- a8 e
StopbandRipple
dardz nce estimates
3 EpachEraction
TimeWindow 0535 gﬁ‘i,. tion folds 5
moval 4 i 5 5
dowselection € ftestuials [©
CanerenceTranstarm
EpachedfFT Spec-CSP Faser 1 Spac-CSP Patiem 2 Spac-CS® Pattern 3
SpearaTransform 004 o4 005
Specratelection . dbsrs
el P N R
EpocnPCa] ! J R o “ode pool (use current config)
WavelesTransform o £ a0 E a o E) n
& Precicrion

L T

FeatureExtraction - 2& space as Iastmods!
Panempairs 2t 114
Farametart 35, £
Paramster

space as aststats
SpectralPrier o> =
Masnerations Spec-CSP Palem B Spac-CSP Paflem 5 Spec-CSF Patern 4 _Cancel | Ok
& WachinsLearning 008 005 P
& Leamer da A F Uﬁ
Lambda Il f ulb\ AN ¢ i,
Requianzer amo [, o o v
Wainheariise o w0 w w0 ER
Frequencies
Fraquency specification of the fiter. For a law/high.|
; in Hz and for a e, 1 || [
] ; L in (=il foss_funcrien,
. 0,

Help

— - 0.)

BT T | 12, FixadPointSubse thel
57 = STacknark = NIp_rewrTte(siacknors, '11°,1,"12',2
158 - Toss_rescaling = hip_rewrite(loss_rescaling,'s1ack',1, nargin’,2); -
| I |

mil_trainswmpert Ln 144 col 1

epoch = [-0.2 0.8];

wnds = [0.25 0.3;0.3 0.35;0.35 0.4y 0.4 0.45;0.45 0.5:;0.5 0.55;0.55 0.6];

apps.wmeans_lda = {'Windowmeans' 'SignalProcessing’, {'IIRFilcer’',{[0.1 0.5], 'highpass"'}, ...
'EpochExtraction’',epoch, 'SpectralSelection', [0.1 15]}, 'Prediction’', {'FeatureExtraction’, {'wnd=s",wnds}}};
apps.wmeans_vblogreg = {'F

wlowmeans' 'SignalProcessing', {'

lter',{[0.1 0.5], "highpass"}, ...
EpochExtraction',epoch, 'Spectralielection’, [0.1 15]}, 'Prediction', {'FeatureExtraction',{'wnds",wnds},
'Mach

', {'Learner’,{'logreg', [1, 'variant’, 'vb-iter'}}}};
RP','SignalFrocessing’

¢ 1 'EpochExtraction',epoch},

L P'Cg'il:
apps.raw _glc = {'DataflowSimplified' 'SignalProcessing',{'IIRFilter’',{[0.1 0.5],'highpass'},
'EpochExtraction', epoch, 'SpectralSelection', [0.1 15]F, ...

apps.wavelet _glc = {'DataflowSimplified' 'SignalProcessing’,{’'
'EpochExtraction’',epoch, ' SpectralSeleccion', [0.1 15], 'wavelet','on'},
'Prediction', {'Ma

nelearn

glc', "shape',[256 HaMN]}}}}:

results = bcl batchtrain('Data','/data:/gr

TargetMarkers', {{"

1','102'},{"5201"

ERP Sample Task

Flanker Task: The experiment consists of a sequence of
ca. 330 trials with inter-trial interval of 2s +/- 1.5s

In each trial, an arrow is presented centrally (pointing
either left or right)

The arrow is flanked by congruent or incongruent
“flanker” arrows (preceding the center by a few ms):

CED€€

The subject is asked to press the left or right button,
according to the central arrow direction, and makes
frequent errors (ca. 25%)

Swartz ; y

Center for
Computational

== Time-Domain / ERP Baseline

Windowed Means DAL-ERP

Filter Pattern

Time course

ol el

-2
0 100 200 300 400 500 600
Time (ms)

Ov__./\/*

0 100 200 300 400 500 600
Time (ms)

o-»-/\/\/\/\’\

Windowl (0255 to 0.3s) Window [0.35 to 0.35s) Window3 (0.35s to 0.4s)

&) e

YWindowd (0.4s to 0.45s) WindowS (0.455 to 0.55) Windowd (0.55 to 0.555)

YWindow? (0,555 to 0.65)

<

ié,;)] R X
* Traditional linear classifier for event-locked e State-of-the-art approach, no hand-tuned
brain responses, usually using LDA parameters
 Time windows manually assigned * Uses rank-regularized logistic or linear
 Examples: error recognition, surprise regression

Note: some theory-focused slides available at
ftp://sccn.ucsd.edu/pub/bcilab/lectures/05%20ERP%20Processing.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08%200ptimization-based%20Approaches.pdf

(*image: Tomioka et al., 2010)

ftp://sccn.ucsd.edu/pub/bcilab/lectures/05 ERP Processing.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/05 ERP Processing.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/05 ERP Processing.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08 Optimization-based Approaches.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08 Optimization-based Approaches.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08 Optimization-based Approaches.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08 Optimization-based Approaches.pdf

“Oscillatory-Process Sample Task

* The experiment consists of 160 trials (pause at % the
experiment) . Each trial begins with a letter (either L or R)
displayed for 3s. The subject is instructed to
subsequently imagine either a left-hand or a right-hand

movement. Each trial ends with a blank screen displayed
for 3.5s.

Swartz : y

Center for
Computational

0.04
0.0z
0

0.0s

0

Oscillatory Processes Baseline

Common Spatial Patterns Family

Spec-CSP Pattern 1

0.04

Spec-CSP Pattern 2

0.05

Spec-CSP Pattern 3

ooz
a

Spec-CSP Pattern B

0

Spec-CSP Pattern 5

Spec-CSP Pattern 4

Aat

0.o0s

o

i

0.04
0.0z
1]

o

] 20

40

0 20

40

1] 20

40

e Filter-Bank CSP (FBCSP): multiple bands
e Diagonal Loading CSP (DLCSP): cov.

shrinkage

« Composite CSP (CCSP): covariance prior
* Tikhonov-regularized CSP (TRCSP): filter

shrinkage
* Spectrally weighted CSP (Spec-CSP): learning

spectral filters from the data
ftp://sccn.ucsd.edu/pub/bcilab/lectures/07%200scillatory%20Processes.pdf

alpha components

-0.39

1:0=

DAL-OSC

1:0=1.05

beta components

2:0=-0.60

State-of-the-art approach, no hand-tuned
parameters

Also uses rank-regularized logistic or linear
regression

Single-step approach, jointly optimal

(*image: Tomioka et al., 2010)

ftp://sccn.ucsd.edu/pub/bcilab/lectures/07 Oscillatory Processes.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/07 Oscillatory Processes.pdf

Swartz E

Center for
Computational

New Methods

Regularized Spatio-Spectral Dynamics Multi-subject Overcomplete Spectral Regression

* Applicable to slowly-changing operator state * Long-term stationary oscillations
and background activity as well as event- Canintegrate information from a corpus of
related transients data (across persons)

* RSSDis a pioneering method for learning « Examples: fatigue, alertness, sleep stages

full source-level time/frequency structure « Ppresented at EMBC’11

* Examples: cognitive load, attention shifts « Related method presented at ABCI'11

* Presented at ICON’11; methods and data
papers in preparation

4.4 Adding New Methods

- ‘\
SWartZ I

Center for
Computational

Adding New Methods

arg_define([0 3],varargin,
arg_norep('trials'),
arg_ncrep('tarq~t° 1,

arg({'cost',’ t'}, search(Z A(-5:2: 15)), [], 'Regulariz at10n paramwtwr Eeasonable range: Z.hf—5:2:15ﬁ, greater 1is stro ger. By default, it is average
arg({ ' ptype', 'Type'l, "1ass1f1_at1 n', {'classification','r 4rcss1 n', 'ranking'}, 'Type of problem to solve.','cat' [Farameters'), ...
arg({'kernel’, 'Kernel'}, 'rbf', {'Tinear','rbf', poly' ,'s1qmn1 ", 'user }, 'Kernel type. Linear, or MNon- 11ncar I~rn~1 typ s: Radial Basis Functions | e

]
of the RBF kernel. Should match the size of structures in the data; A reason
cat','Core Farameters'), .

jon.', 'cat','Co Paramneters'), .

errors. The factor by which training errors on positive examples outweight

arg({'g','PBFg ale','ganmna'}, search(2. A(16 2:43, [1, 'sc a11n4 param~t~
arg({'d", 'PolyDegree'}, uint32(3), [J, Dwgrc: for the polynomial kernel.

argi{’ Htuhz', EpsilonTube', ' tube'}, O. 1, 1, Ep°11 i tube width for regr
arg({'rhalance','CostBalance','balance'}, 1, [], 'Relative cost of per-cla

w

arg({'s','Sig 0idPolyScale'}, 1, [1, 'Scale of sigmoid/polynomial kernel.','cat', 'Miscellaneocus'),

arg({'r', 'SignoidPolyBias'}, 1, [1, 'Bias of sigmoid/polynomnial terne1.','cat','Mis- 1laneous'), ...

arg({'u','UserParameter'}, 'l', [1, 'User-defined kernel parameter. cat', 'Miscellanen 't3p~' 'char', 'shape', 'row'),

arg({'bias','Bias'}, false, [], 'Include a hias tern. 0n1y 1mp1~m~nt ad for Tinear k 2 cat' M19“¢11an~-u° 1, .

arg({'scaling','Scaling'}, 'std', {'none','center','std','mimmax', whiten'}, Pr~—°-a11n4 nf th~ data. For the regulariation to work hest, the features
arg({'clean', ' Cleanllp'}, false, [], 'Remove inconsistent training examples.','cat', 'Miscellansous'),

arg({'epsi','Epsilon','eps'}, 0.1, [1, 'Tolerated solution accuracy.','cat','Misce11aneous'),

arg({'verbose', 'Verbose'}, false, [], 'Show diagnostic output.','cat', 'Miscellanesous'));

1f 1s_search{cost)
cost = 1; end

if dis_search(g)
g=0.3; end

% find the class Tahels
classes = unique(targets);
if length(classes) = 2
% in this case we use the voter
nodel = ml_trainvote(trials,targets,'lvl’' ,@nl_trainsvnlight,@l_predictsvmlight,varargin{:});
else
% scale the data
sc_info = hlp_findscaling(trials,scaling);
trials = hlp_applyscaling(trials,sc_info);

% remap target labels to -1,+1
targets(targets==classes(1l)) = -1;
targets(targets==classes(2)) +13

% rewrite sme string args to numbers
ptype = hlp_rewrite(ptype, 'classification','c', egress1nn','r','ranking','p'); Y%#ok<*NODEF>
kernel = hlp_rewrite(kernel, ' Tinear',0, poly’ ,1 rbf',2, "signoid' ,3, 'user' ,4);

% build the arguments
args = sprintf('-z %s -c %f -v ¥d -w ¥f -7 ¥f, -b ¥d -1 %¥d -e ¥f -t ¥d -d ¥d -g ¥F -5 %F -r ¥f -u ¥s',
ptype,cost,verbose,etube, rbalance,bias,clean,epsi,kernel,d,g,s,r,ul;

% run the command
nodel = svnlearn(trials,targets,args);
model.sc_info = sc_info;
nodel.classes = classes;
end

5 Further Reading

Documentation Resources

Presentations: ftp://sccn.ucsd.edu/pub/bcilab/presentations/

Lecture: ftp://sccn.ucsd.edu/pub/bcilab/lectures/

Manuals: ftp://sccn.ucsd.edu/pub/bcilab/manuals/
Wiki: http://sccn.ucsd.edu/wiki/BCILAB

Function References: bcilab-1.xx/build/docs/index.html
Release Notes: bcilab-1.xx/RELEASE NOTES.TXT

Talk Videos:
https://www.youtube.com/watch?v=w8Z3b aftco (part 1)
https://www.youtube.com/watch?v=YUBOvxNmm2w (part 2)

ftp://sccn.ucsd.edu/pub/bcilab/presentations/
ftp://sccn.ucsd.edu/pub/bcilab/presentations/
ftp://sccn.ucsd.edu/pub/bcilab/lectures/
ftp://sccn.ucsd.edu/pub/bcilab/lectures/
ftp://sccn.ucsd.edu/pub/bcilab/manuals/
ftp://sccn.ucsd.edu/pub/bcilab/manuals/
http://sccn.ucsd.edu/wiki/BCILAB
https://www.youtube.com/watch?v=w8Z3b_aftco
https://www.youtube.com/watch?v=YUB0vxNmm2w

Thanks!

Questions?

