
Rapid Development with the
BCILAB, SNAP and LSL Platforms

Christian A. Kothe

SCCN, INC, UCSD

Outline

1. Overall Experimentation Environment

2. The Lab Streaming Layer (LSL)

3. Simulation and Neuroscience Application
Platform (SNAP)

4. The BCILAB Toolbox
1. Toolbox Overview

2. Workflows and Concepts

3. In-Depth Walkthrough

4. Adding New Methods

5. Further Reading

1 Overall Experimentation
Environment

Goals

• Enable experiments involving acquisition of
multi-modal brain- and bio-signals from a
variety of sources, such as:

EEG and ExG Eye-Tracking
Full-Body Motion

Capture

Human Interface
Devices, System

State

Goals

• Enable experiments involving complex
scripting and multi-subject interactions

Goals

• Enable experiments depending on advanced
real-time analysis of acquired data

1. Pop-up
event

2. Perceived / or not

3. EEG Response

4. Differential Activation

5. Pattern Classification

6. Notifying In-App
Feedback

Disclaimer: Not tested yet for this experiment!

Goals

• Enable unhindered offline analysis of the data:

– Retain a complete record of experiment events,
meta-data

– All measures time-synchronized

– Well-organized file format

– Wide range of compatible analysis tools: EEGLAB,
MoBILAB, BCILAB, SIFT, …

Real-Time Components
Overview

• Lab Streaming Layer (LSL)
– Underlying distributed data acquisition, transport and

collection system

• Simulation and Neuroscience Application
Platform (SNAP)
– Scalable experiment scripting environment based on

Python and Panda3d

• Brain-Computer Interface Laboratory (BCILAB)
– Design, prototyping and testing environment for

brain-computer interfaces and other cognitive
monitoring tools

2 The Lab Streaming Layer

code.google.com/p/labstreaminglayer

Purpose

• Provide a simple and unified way to distribute
and access experiment time series and meta-data
from all acquisition devices (and other sources)

• Both in real time and for offline processing

• Handle networking, time synchronization, and
fault tolerance transparently for most client
applications

• Support a wide range of hardware out of the box
(‘batteries included’)

Overall Layout

Data Provider
 (e.g., BioSemi)

liblsl

Data Provider
 (e.g., EyeLink)

liblsl

Data Provider
(e.g., PhaseSpace)

liblsl

Data Consumer
(e.g., Viewer) liblsl

Data
Consumer/Provider

(e.g., BCILAB)

liblsl

Data Consumer
(e.g., Recorder)

liblsl
EEG

Mocap

LSL Core Library

• Cross-platform library (MacOS/Win/Linux,
32/64), open source (MIT license)

• Stable interfaces for C, C++, MATLAB, Python with
identical feature set

• Robust and clean implementation, stress-tested
for days

• Extensively documented, incl. 10s of examples
programs

• High throughput (>50KHz) and low latency
(<1ms); designed to scale up to large experiments

LSL API

• Applications interact with LSL
as “producers” or “consumers”

• Consumers create one or more
inlets and pull samples out

• Consumers can resolve existing data streams
on the network (e.g., by name or type)

• All can use a built-in synchronized clock

liblsl32.dll

LSL API

• Applications interact with LSL
as “producers” or “consumers”

• Producers create one or more
outlets and push samples in

• Consumers create one or more
inlets and pull samples out

• Consumers can resolve existing data streams
on the network (e.g., by name or type)

• All can use a built-in synchronized clock

liblsl32.dll

Outlets

Inlets

LSL API

• Applications interact with LSL
as “producers” or “consumers”

• Producers create one or more
outlets and push samples in

• Consumers create one or more
inlets and pull samples out

• Consumers can resolve existing data streams
on the network (e.g., by name or type)

• All can use a built-in synchronized clock

liblsl32.dll

Outlets

Inlets

Resolves

LSL API

• Applications interact with LSL
as “producers” or “consumers”

• Producers create one or more
outlets and push samples in

• Consumers create one or more
inlets and pull samples out

• Consumers can resolve existing data streams
on the network (e.g., by name or type)

• All can use a built-in synchronized clock

liblsl32.dll

Outlets

Inlets

Resolves

Clock

Examples Programs in MATLAB

Data Provider

Data Consumer

Other Languages

C++

Python

Misc API Features

• Attaching/receiving XML meta-data

• Handling data at chunk granularity

• Handling string-formatted streams (Events, …)

Time Synchronization

• Uses a protocol similar to NTP, achieves sub-
ms accuracy on a local network

• Time synchronization only applies to the
computers’ clocks

• Any uncertainty in when a sample was
measured (e.g., due to hardware buffers)
remains and cannot be fixed by the library

• In these cases trigger & sync cables can help…

Advanced Network Configuration

• Visibility between LSL applications is restricted to
a scope that can be set (in a .cfg file) to:
– Local machine

– Local router or VPN (default)

– Local “site”

– Local “organization”

– Global

– All clients that have a given group name

– A set of IPs/Hostnames

• Firewall restrictions (!) and router restrictions
apply

LSL Distribution

Available at code.google.com/p/labstreaminglayer

Included with the Distribution

• Core library, source, documentation, samples

• Generic recorder program to record all or a
subset of streams on the network

• Generic stream viewer programs (standalone
and for MATLAB)

• Open-source client programs for a range of
acquisition devices (EEG, MoCap, Sound,
Video, Eyetracking, Human Interface Devices)

• Available separately: plugins for BCILAB,
EEGLAB, MoBILAB

Currently Supported Hardware

• EEG: Biosemi, Cogionics, MINDO, BrainProducts,
g.USBamp, Emotiv, Micromed, MindMedia, OpenEEG,
TMSi, ANT Neuro ASALAB

• Eye Tracking: SR Research EyeLink, custom 2-camera
setup

• Motion Capture: PhaseSpace, OptiTrack, Kinect, AMTI
Force Plates

• Human-Interface Devices: Mice, Keyboards, Trackballs,
Game Controllers, Wiimote and Expansions

• Multimedia Devices: PC-compatible sound cards,
DirectShow-compatible video hardware

• Untested: ABM B-Alert, Enobio, Neuroscan Synamp,
EGI AmpServer, Mitsar EEG, CTF/VSM, Tobii, SMI
iViewX

Brief Usage Demo

XDF File Format

• Developed with Clemens Brunner (Graz Univ.)

• Independent of LSL, but supports full feature
set (and comes with importers for MATLAB,
EEGLAB, BCILAB, MoBILAB)

• Very simple (ca. 100 LoC parser) modern
container file format supporting:

– Any number of streams, time-synched

– Extensible meta-data per stream with core subset
specified online (code.google.com/p/xdf)

XDF Meta-Data Sample

• A portion of the Mocap meta-data specs:

3 The Simulation and Neuroscience
Application Platform (SNAP)

ftp://sccn.ucsd.edu/pub/SNAP

Purpose

• Allow to rapidly prototype game-like human-
computer interactions with significant
complexity

• Generalize and advance basic neuroscience
experiments towards practically relevant
applications

• Full source code, no license restrictions on
academic or commercial use and deployment

Approach

• Relies on Python as the scripting language and
leverages its packages

• Uses the Panda3d game engine for graphics,
audio, input, physics, GUI and low-level real-
time subsystems

• Adds a thin layer for experiment scripting

• Adds some extra low-level subsystems (LSL,
RPC, Pathfinding, …)

The Panda3d Engine

• Con:
– Relatively clean but dated core (’97) but still actively

developed, messy features at the outer fringes

– Limited support for in-engine editing

– no modern lighting/rendering model

• Pro:
– Complete game engine, formerly commercial (Disney),

now open source (MIT license) and maintained by CMU

– Written in C++ (fast) and scriptable via Python (convenient)

– Very comprehensive feature set for game/simulation
purposes (750k LOC)

– Remarkably good documentation (panda3d.org)

SNAP Architecture

Python and Packages
Python Win32 RPyC …

SNAP Components

Stimulus
Presentation

Event
Markers

Misc
Tools

UI
Tools

Task Prefabs …

User-Created
Experiment Modules

DAS … MBF LSE Flanker Speech

Panda3d
Audio Physics GUI Network Core … Graphics

Launcher
Application

Basic Scripting

Complex Scripting

• Example: earlier experiment prototype (MBF)

Relationship to BCILAB and LSL

• Natively sends event marker streams to LSL

• Can be remotely controlled by the LSL
LabRecorder experiment control features (e.g.,
load/config/start/stop)

• BCILAB can remotely control the value of any
set of module parameters online (for example,
the “task load level”)

• Can also read/write any LSL stream manually
through the Python API

Benefits Summary

• Basic scripting is as simple as it can get

• Scales gracefully from basic to far more
complex experiments, both in terms of
features and performance

• Integrates painlessly with LSL and BCILAB

Caveats

• Stimulus presentation not necessarily with same
hard timing guarantees as traditional
neuroscience applications

• Lacking rich authoring tools (e.g., dataflow
graphs) of some commercial software, instead
relies fully on scripting and external authoring
tools (3ds max, Eclipse)

• Live coding/debugging not yet as effortless as it
could be (requires a very disciplined workflow),
also fairly long loading/iteration times for
complex experiments (>1 minute)

Brief Demo

4 The BCILAB Toolbox

http://sccn.ucsd.edu/wiki/BCILAB
ftp://sccn.ucsd.edu/pub/bcilab

http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB

Software Environment For:

• Brain-Computer Interface Design (Cognitive
Monitoring)

• Methods Research:
– Design & rapid prototyping of new methods &

methods from literature

– Offline testing, performance evaluation & batch
comparison, visualizations

– Simulated online testing

• Rapid Prototyping:
– Real-time use and testing of BCIs

– Prototype deployment

Facts & Figures

• Developed since 2010 at SCCN, UCSD (primarily by me)

• Precursor was the PhyPA toolbox (Kothe & Zander,
2006-’09)

• Built on top of EEGLAB (Delorme & Makeig, 2004)

• The largest open-source BCI toolbox by methods and
algorithms (100+) as of 2011

• Offline and online processing both in MATLAB, same
code base, Win/Linux/MacOS, 32/64bit

• Extensive documentation (hundreds of pages of help
text, manual, wiki, 400+ lecture slides online)

4.1 Toolbox Overview

Architectural Overview

Dependencies
CVX BNT GUI utils

Driver
I/O

EEGLAB LIBSVM GLMNET …

Infrastructure
GUI

generation
cluster

computing
disk

caching
helper

functions
environment

services

Signal Processing Machine Learning BCI Paradigms Devices

Plugins

ICA SSA FIR

IIR FFT …

LDA QDA

GMM SVM …

DAL CSP Spec-CSP

ERP RSSD …

TCP

BCI2000 …

OSC

Framework

Approach
Definition

Offline
Evaluation

Visualization
Online

Execution

GUI / Scripting Interfaces

Functional Overview:
Online Processing

Filter Filter

Filter

Filter

Filter Graph
EEG

EMG

• Supports BCI designs framed as a series of
Signal Processing Blocks or as a Prediction
Function, or a combination of both

Control Signal / Cognitive State Estimate

(e.g., user’s “excitement” level)

Functional Overview:
Online Processing

Filter Filter

Filter

Filter

Filter Graph

Prediction Function

Extract
Features

EEG

EMG

Pre-
dict

tPred

• Supports BCI designs framed as a series of
Signal Processing Blocks or as a Prediction
Function, or a combination of both

Functional Overview:
Online Processing

Prediction Function

Extract
Features

EEG

Pre-
dict

tPred

• Supports BCI designs framed as a series of
Signal Processing Blocks or as a Prediction
Function, or a combination of both

Functional Overview: Calibration

Filter Filter

Filter

Filter

Filter Graph

Prediction Function

EEG

EMG

tPred

Learning
Function …

Extract

Features
Predict

BCI
model

Calibration Data Reminder

• Typical features of a calibration recording:

– continuous EEG (or other)

– multiple trials/blocks (capturing variation)

– randomized (eliminating confounds)

– event markers to encode cognitive state
conditions of interest, e.g., stimuli/responses
(called “target markers” in BCILAB)

“target markers” in BCILAB

Functional Overview: Evaluation

• Covers:

– Simulated online processing

– Cross-validation (shown below)

– Grid Search

– Nested Cross-Validation

 Training
 part

Test
part

Model

4.2 Workflows and Concepts

Pipeline Notion

• BCILAB is a framework that resembles a
processing pipeline: first configure everything,
then apply it to one or more data sets

• Configuration Inputs:

– Base BCI Paradigm to execute – “what to run?”

– Custom parameters for the paradigm

– Evaluation Scheme – “how to run it?”
(e.g., what type of cross-validation)

– Definition of the dataset annotations (mapping
between event marker strings and class labels)

Pipeline Processes

• Curate: bring the input data into standard form

• Design: define the computational approach

• Train: invoke all steps necessary for training
(calibrating) a BCI and estimates performance

• Predict/Evaluate: apply a BCI to some data offline

• Visualize: visualize BCI model internals

• Run Online: apply a BCI online / incrementally

• Batch Analysis: perform a series of processing
steps, optionally in parallel

A Note on Data Curation

• Up-front conversion of data set and file format
into uniform representation:

– Continuous data – unfiltered

– Correct channel labels/locations

– Correct event types, latencies, etc

– Other common meta-data about raw recordings

• Usually done in a first pass before any BCILAB
function is touched

Plugin Concepts: Filters

• Filters can operate on continuous signals…

• … or on segmented (“epoched”) signals:

Continuous-Data
Filters

Epoched-Data
Filters

Plugin Concepts: Filters

• Static (“stateless”) filters:
EEG = flt_selchans(EEG,{‘C3’,’C4’,’Cz’})

• Dynamic (“stateful”) filters:
[EEG,State] = flt_resample(EEG,200,State)

• Epoched filters:
EEG = flt_fourier(EEG)

Plugin Concepts: Filters

• Caveat: filters have lazy evaluation behavior,
i.e. they do not evaluate unless forced:

EEG = flt_fourier(EEG)
>> EEG =

 head: @flt_fourier

 parts: {[1x1 struct]}

 codehash: '356d73563c38107c63a33762cc7789ba'

Not what you
wanted!

Plugin Concepts: Filters

• Caveat: filters have lazy evaluation behavior,
i.e. they do not evaluate unless forced:

EEG = exp_eval(flt_fourier(EEG))

The right way

Plugin Concept:
Machine Learning

• Machine learning functions come in pairs:

M = ml_trainlda(X,y)

p = ml_predictlda(Xnew,M)

Machine Learning Method

Training
function

Prediction
function

Data

Labels
Model Labels

New Data

Model

Plugin Concepts: Paradigms

• BCI paradigms are the coarsest plugin type in BCILAB
and tie all parts of a BCI approach together (signal
processing, feature extraction, machine learning, …)

• They are invoked by the offline/online framework

Calibration recording(s)

Calibrate

Filter Graph
Pre-

dict

BCI Model

Data Representations

Filter Graph
Pre-

dict

BCI Model

Probability Distributions

𝑓1
𝑓2
⋮

Feature Vectors

Symbolic Expression

@flt_fir { mydata, [0.5 1], ‘highpass’ }

head parts

Data Representations
Signal Bundle

.streams

… (meta-data)

Signal 1

Signal 2

Signal n

…

Signal

.data

.event

.srate 200Hz
.xmin 0.0s

.chanlocs

.dipfit

… (meta-data)

S2 S1 R1

4.3 In-Depth Walkthrough

GUI/Script Walkthrough

ERP Sample Task

• Flanker Task: The experiment consists of a sequence of
ca. 330 trials with inter-trial interval of 2s +/- 1.5s

• In each trial, an arrow is presented centrally (pointing
either left or right)

• The arrow is flanked by congruent or incongruent
“flanker” arrows (preceding the center by a few ms):

• The subject is asked to press the left or right button,
according to the central arrow direction, and makes
frequent errors (ca. 25%)

Time-Domain / ERP Baseline

• Traditional linear classifier for event-locked
brain responses, usually using LDA

• Time windows manually assigned

• Examples: error recognition, surprise

• State-of-the-art approach, no hand-tuned
parameters

• Uses rank-regularized logistic or linear
regression

DAL-ERP Windowed Means

(*image: Tomioka et al., 2010)

(*)

Note: some theory-focused slides available at
ftp://sccn.ucsd.edu/pub/bcilab/lectures/05%20ERP%20Processing.pdf

ftp://sccn.ucsd.edu/pub/bcilab/lectures/08%20Optimization-based%20Approaches.pdf

ftp://sccn.ucsd.edu/pub/bcilab/lectures/05 ERP Processing.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/05 ERP Processing.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/05 ERP Processing.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08 Optimization-based Approaches.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08 Optimization-based Approaches.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08 Optimization-based Approaches.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/08 Optimization-based Approaches.pdf

Oscillatory-Process Sample Task

• The experiment consists of 160 trials (pause at ½ the
experiment) . Each trial begins with a letter (either L or R)
displayed for 3s. The subject is instructed to
subsequently imagine either a left-hand or a right-hand
movement. Each trial ends with a blank screen displayed
for 3.5s.

Oscillatory Processes Baseline

• State-of-the-art approach, no hand-tuned
parameters

• Also uses rank-regularized logistic or linear
regression

• Single-step approach, jointly optimal

DAL-OSC Common Spatial Patterns Family

• Filter-Bank CSP (FBCSP): multiple bands

• Diagonal Loading CSP (DLCSP): cov.
shrinkage

• Composite CSP (CCSP): covariance prior

• Tikhonov-regularized CSP (TRCSP): filter
shrinkage

• Spectrally weighted CSP (Spec-CSP): learning
spectral filters from the data

(*image: Tomioka et al., 2010)

(*)

ftp://sccn.ucsd.edu/pub/bcilab/lectures/07%20Oscillatory%20Processes.pdf

ftp://sccn.ucsd.edu/pub/bcilab/lectures/07 Oscillatory Processes.pdf
ftp://sccn.ucsd.edu/pub/bcilab/lectures/07 Oscillatory Processes.pdf

New Methods

• Applicable to slowly-changing operator state
and background activity as well as event-
related transients

• RSSD is a pioneering method for learning
full source-level time/frequency structure

• Examples: cognitive load, attention shifts

• Presented at ICON’11; methods and data
papers in preparation

Regularized Spatio-Spectral Dynamics Multi-subject Overcomplete Spectral Regression

• Long-term stationary oscillations

• Can integrate information from a corpus of
data (across persons)

• Examples: fatigue, alertness, sleep stages

• Presented at EMBC’11

• Related method presented at ABCI’11

4.4 Adding New Methods

Adding New Methods

5 Further Reading

Documentation Resources

• Presentations: ftp://sccn.ucsd.edu/pub/bcilab/presentations/

• Lecture: ftp://sccn.ucsd.edu/pub/bcilab/lectures/

• Manuals: ftp://sccn.ucsd.edu/pub/bcilab/manuals/

• Wiki: http://sccn.ucsd.edu/wiki/BCILAB

• Function References: bcilab-1.xx/build/docs/index.html

• Release Notes: bcilab-1.xx/RELEASE NOTES.TXT

• Talk Videos:
https://www.youtube.com/watch?v=w8Z3b_aftco (part 1)
https://www.youtube.com/watch?v=YUB0vxNmm2w (part 2)

ftp://sccn.ucsd.edu/pub/bcilab/presentations/
ftp://sccn.ucsd.edu/pub/bcilab/presentations/
ftp://sccn.ucsd.edu/pub/bcilab/lectures/
ftp://sccn.ucsd.edu/pub/bcilab/lectures/
ftp://sccn.ucsd.edu/pub/bcilab/manuals/
ftp://sccn.ucsd.edu/pub/bcilab/manuals/
http://sccn.ucsd.edu/wiki/BCILAB
https://www.youtube.com/watch?v=w8Z3b_aftco
https://www.youtube.com/watch?v=YUB0vxNmm2w

Thanks!

Questions?

