Scripting Prerequisites

Function Calling Syntax

Most functions take their arguments in the order in
which they are listed in the documentation

Some can alternatively called with all parameters
passed in as name-value pairs (using the same names
as in the help text, in CamelCase)

If in doubt, pass them in by name — less chance of
getting the order wrong, etc.

It is usually a bad idea to try to mix positional and
name-value arguments in one call —don’t do it unless
that’s the default way to call the function

Example:

bci train (mydata,myapproach)
bci train(‘Data’,mydata,’Approach’,myapproach)

Loading Data

* A data set (no matter what file format) is
loaded using the function io_loadset()

* |tis almost always enough pass in just the file
name, as in the example:

data = io_loadset(‘/somepath/somefile.xyz’)

Defining an Approach

Defining a new Approach

Defining an approach is the most complex area in scripting
because a data structure must be constructed

Since an approach is a particular instance of a BCl paradigm
(used with custom parameters), an approach definition
consists of:
— The name of the paradigm (e.g., CSP, WindowMeans)
— Optionally a list of arguments for the paradigm’s calibrate()
function

The default way to specify an approach is as a cell array
whose first element is the name of the paradigm and
whose remaining elements are arguments to its calibrate()
function

Example:

appr = {‘CSP’,‘SignalProcessing’, ..., ‘FeatureExtraction’,...};

Approach Parameters

 The parameters are a list of name-value pairs

* Important: The argument of an approach are
not passed in a long ‘flat’ list, but they are

organized in a hierarchy, i.e. some parameters
have named sub-parameters

e Example:

app = {‘CSP’,’'Prediction’, { ‘MachinelLearning’, ..}};

/ MachinelLearning is a sub-parameter of Prediction

Prediction is a “top-level” parameter

Approach Parameters

 Which parameter names a BCl paradigm exposes
is the business of the BCI paradigm

 However, practically all of them adhere to a
uniform scheme of 2 top-level parameter names:

— SignalProcessing is a top-level parameter that

determines the signal processing stages that shall be
used

— Prediction is a top-level parameter that governs how
the prediction function is being calibrated or applied

Swartz ; y

Center for
Computational

Correspondence With The GUI

* Thereisa 1:1 correspondence between the hierarchy of
parameters that are specified in scripts and the layout of the
parameter tree in the approach definition GUI

-} Review/edit approach o]
The SignalProcessing — Approach properties
parameter \ 52| 4 ||= =t =l
J E] Miscellaneous -
SignalProcessing
Sub-Parameter FilterQOrdering
. EQGRemaoval [
of Resampling —_— [=] Resampling v
(itself a sub-parameter ———> samplingRate 100
. . FilterLength 10
of SignalProcessing) Stopbandisight 1
TypeSelection I
MarkerInsertion I
=¥ ChannelSelection r
Sub-parameters Of_é — surfacelaplacian r
SignalProcessing —> Rereferencing r
ICA r

Default Values

e Each parameter has a default value (unless it makes
absolutely no sense), which can also be looked up in

the GUI

) Review/edit approach

— Approach properties

=101 %]

e[81 ||=] =5 =i

] Miscellaneous
[-] SignalProcessing
FilterOrdering
EOGRemoval
= Resampling
SamplingRate
FilterLength
StopbandWeight
TypeSelection
MarkerInsertion
ChannelSelection
surfacelaplacian
Rereferendng
ICA

— By default enabled

Default = 100

B
t

By default disabled

S wartz

Center for
Computational
euroscience

Parameter Help

* Each parameter has a help text, which is also visible

in the GUI panel (at the bottom)

Help text for the

—
22+ selected parameter

Type of regularization. Regularizes the robustness [flexibility of covariance estimates.
Auto iz analytical covariance shrinkage, shrinkage is shrinkage as selected via plambda,
and independence is feature independence, also selected via plambda.

EPOCNLLA
[=] Prediction
[=] FeatureExtraction
TimeWindows [-0.15-0.1;-0.1 -0.05;-0.0...
= MachineLearning
[=] Learner Ida
Lambda 1
Reqgularizer auto
WeightedBias r
WeightedCov r]
ConfigLayout SignalProcessing. Resampling, =
Regularizer

Help Cancel I oK

“=The SignalProcessing Parameter

* Has one named sub-parameter for every signal processing
plugin that can be used (these are found automatically)

 The name under which a given signal processing plugin
appears is up to the plugin — they declare this property at the
beginning of their code (you can look it up there)

a9z
a3
94
a5
94
a7
98 — if ~exp beginfun('filter') return; end
99

- -
- - n
S22 al=s0.

firpm, ilter

e o e o

100 — declare properties|('name', 'FIRFilter®, 'foll:

1011 ‘k\

Name of the sub-parameter as which
this plugin shows up in the approach
definition (below SignalProcessing)

omputational

euroscience

The SignalProcessing Parameter

* The plugins that are listed under SignalProcessing are
those in the directories:
— code/filters (file names beginning with flt_)
— code/dataset_editing (file names beginning with set)

* The value assigned to a sub-parameter (e.g.,
FIRFilter) that is presented by a function (e.g.,

flt_firm) is by default a cell array of arguments to
that function

 The arguments can be passed in any format accepted
by the function, but preferably they should again be
passed as name-value pairs to avoid confusion

Configuring Signal Processing
Stages

Example:

app={ ‘CSP’,’SignalProcessing’,
{‘FIRFilter’, { ‘Frequencies’, [7 8 14 15]}}}»

This example defines a CSP-based approach that uses a
particular Frequencies value in its FIR filter

The FIR filter is now also “enabled” if it was not before

Disabling Signal Processing
Stages

* Itis sometimes useful to disable a parameter that is enabled
by default: This can be written (by convention) as follows:

app={ ‘CSP’,’SignalProcessing’, { ‘Resampling’, []};

* Note that these are [] brackets — using {} accidentally would
still enable the filter, but passes an empty argument list to it!

Shortcuts for the Impatient

* BCILAB has the unhealthy habit of allowing short forms for
most things — | recommend to avoid them whenever possible,
but it helps recognizing them

 The most salient short-cut form is when a parameter that has
sub-parameters is not assigned a cell array of arguments (like
it should), but instead directly the value of the first sub-
argument

 Example:

app={‘CSP’,’SignalProcessing’, { ‘Resampling’,200}};

Y,

This number is assigned to the first
sub-argument of the resampling filter
(=the target sampling rate)

Shortcuts for the Impatient

BCILAB has the unhealthy habit of allowing short forms for
most things — | recommend to avoid them whenever possible,
but it helps recognizing them

The most salient short-cut form is when a parameter that has
sub-parameters is not assigned a cell array of arguments (like
it should), but instead directly the value of the first sub-
argument

Example:

app={‘CSP’,’SignalProcessing’, { ‘Resampling’,200}};

... is equivalent to:

app={ ‘CSP’,’SignalProcessing’, ...
{ ‘Resampling’, { ‘SamplingRate’, 200} }};

Multi-Option Parameters

* The last kind of parameter that deserves mention are multi-
option parameters, which consists of a selection argument (a

string) and for each possible value a different list of sub-
arguments

* An example are the different alternative variants supported
by the ICA filter: amica, infomax, etc., all of which have
algorithm-specific sub-arguments

* Below, the parameter named Variant is set to ‘fastica’, and the
Maxlterations sub-parameter of Variant for the fastica case is

[=] sUrtaceLapliacian I |
set to 1000 MeighbourCount 3
Rereferencing I
= ICA [v
MaxIterations 1,000
Approach symrm
MumICs
Monlinearity tanh

Multi-Option Parameters

In scripts, multi-option parameters are written just like the
overall approach definition: as a cell array whose first element
is the name of the selection followed by name-value pairs for
this case

Example:

..., ‘Variant’, { ‘fastica’, ‘MaxIterations’, 1000, ‘Approach’,’symm’ }

... is equivalent to setting what is shown here in the GUI:

|=] SUrTacELapIaaan v e
MeighbourCount g8
Rereferencing r
= ICA v
MaxIterations 1,000
Approach SYmm
MumICs
Monlinearity tanh

Other Paradigm Parameters

 The other parameters behave in exactly the
same ways

 Example:

— Machinelearning is a sub-parameter of Prediction,
it has a Learner sub-parameter

— Learner is a multi-option parameter with one case
for each machine learning plugin (e.g., ‘Ida’, ‘qda),

logreg’, ...)
— The sub-parameters of the respective case are

those that are exposed by the respective plugin
function (e.g., ml_traingda.m)

Configuring the Machine Learning

Stage

* Thus, the following is a valid way to configure
the machine learning function of a paradigm:

app={ ‘CSP’, ’"Prediction’, {‘Machinelearning’, ..
{ ‘\Learner’, { ‘gda’ ‘WeilghtedBias’, true}}}};

* |t corresponds to the foIIowmg GUI setting:

EpPOCNLLA
[=| Prediction
FeatureExtraction
[=] MachineLearning
= Learner
Lambda
Kappa
Regularizer
WeightedBias
WeightedCov

Configuring the Machine Learning
Stage

* Thus, the following is a valid way to configure
the machine learning function of a paradigm:

app={ ‘CSP’, ’"Prediction’, {‘Machinelearning’, ..
{ ‘\Learner’, { ‘gda’ ‘WeilghtedBias’, true}}}};

e Alternative shortcut form:

app={ ‘CSP’, ’"Prediction’, { ‘Machinelearning’, ..
{ ‘\Learner’, ‘gda’ } } };

p

Instead of at least {‘qda’}

Remaining Script Workflows

Calibrating (“Training”) a Model

* A new BCl model is created using a previously
loaded data set (the training set) and a
previously defined approach

e This is done using the function bci_train (the
equivalent of the “Train new model...” dialog)

e Example:

raw = 10 loadset (‘'imag.set’)

app = { ‘SpecCSP’, ... };

[loss,model, stats] = bci train(‘Data’,raw,’Approach’,app, ...
‘TargetMarkers’, {'s 1',’S 2"});

Calibrating a Model

 The bci_train function usually takes 3 inputs:
— The data (Data parameter)
— The approach (Approach parameter)

— The description of how event types map onto
class labels (TargetMarkers, same as in the GUI)

* The function returns three outputs:
— The overall loss estimate (e.g. error rate)
— The learned model

— Statistics about the model and training process,
including results of a cross-validation

Visualizing a Model

 Models are visualized using the function
bci_visualize

 Example:
bci_visualize(mymodel)

* This function can take extra arguments that
are passed on to the responsible drawing
function (but few drawing functions have
arguments)

Applying a Model to Test Data

* For offline application to test data, the
function bci_predict can be used — it applies
the BClI model to each trial in the data and
calculates loss statistics

e Example:

[outputs, loss,stats] = ...
bci predict (‘'Data’,mydata,’Model’,mymodel) ;

* Note: the first output are the model’s
predictions for each trial in the data

Annotating Data with
Continuous BC| Outputs

 The BCl output can be attached as an extra
channel (or multiple channels, each
representing the probability of class k) to a
data set, using the function bci_annotate

e Example:

newset = bcil annotate (‘Data’,mydata, Model’,mymodel)

Reading Real-Time Data

* Real-time data can be acquired from a device
and written into a named workspace variable
using the online reader plugins (run_read*
functions)

 Examples:

run readbiosemi (); # read from a BioSemi device

run readdataset (‘MatlabStream’, 'mystream’,’Dataset’,myset);

Sending Real-Time Outputs

* The outputs of a BCl model as applied to some
stream(s) can be calculated in the background
online and passed on to some destination —
this is done using the online writer plugins
(run_write®)

* These functions take usually the name of the

model to use and the name(s) of the stream(s)
to use

 Example:

run writevisualization (‘Model’, 'mymodel’, ...
"SourceStream’, "mystream’)

Performing Batch Analyses

Using bci_batchtrain, a single approach can be
efficiently applied to a list of data sets or file
names

Also multiple approaches can be applied to one
or more data sets in an automated manner

Can not just train models but also make
predictions and evaluate losses on test data sets

Example:

results = bci batchtrain('Data',mydatasets, ...
'Approaches', myapproaches, 'TargetMarkers',mymarkers) ;

Parameter Searches

It is possible to replace (practically) any value
in an approach definition by a so-called
“search range”, i.e. a list of possible values to
try automatically in a systematic manner

A search range is specified by writing the
expression search(valuel, value?, ..., valueN)

Multiple search parameters in one approach
lead to combinatorial grid search (slow!)

Example:

app={ ‘CSP’, "’ Prediction’, { ‘FeatureExtraction’, {
‘PatternPairs’,search(1,2,3)}}};

3 A Close Look at Components
@gins \

@gna/ Processing \ machine Learning \ @CI Paradigms \ (Devices)

ICA || SSA || FIR LDA || QDA || DAL CSP || Spec-CSP TCP || OSC

lIR FFT GMM || SVM | . ERP || RSSD | . BCI2000

\o G I\C J\C)

Component 1: Predictive
Mapping

Central Predictive Mapping

e A BCI (with limited memory of the past) can
be viewed as a mathematical function f:

vy =f(X); X= y= “subj. excited” (+1)
o s s “subj. not excited” (-1)
 The functional form is arbitrary, for example
y = sign(var(WX) + b)

* The mapping involves free parameters, here
W and b, and data from a sliding window X

Choice of a Functional Form

* Reflects the relationship between observation (data
segment X) and desired output (cognitive state
parametervy)

Choice of a Functional Form

* Reflects the relationship between observation (data
segment X) and desired output (cognitive state
parametery)

 Based on some assumed generative mechanism
(forward model) — or ad hoc

e Remember: Functional form is the inverse mapping!

Key Ingredient: Spatial Filter

* Linear inverse of volume conduction effect
between sources S and channels X
X = AS (forward)
S = WX (inverse)

W

Component 2: Signal Processing

Role of Signal Processing

* BCILAB allows to implemented BCls using a
network of digital signal processing blocks

EEG
Ay v

N«\,WA/WW WW"‘W‘W
N A T e

EMG

WMMW
AN AN A b A0 9T

(“filters”)

/FilterGraph \
Control Signal
- Filter » Filter Filter »W
”(Filter ’
_/

* Relevant filter classes: Spatial Filters, Temporal
Filters, Spectral Filters, Spatio-Temporal Filters,

Domain Transforms (e.g. DFT)

Role of Signal Processing

* Concrete Toy Example: Feed the amplitude of a brain
idle oscillation (e.g. 10 Hz alpha associated with
relaxation) from one EEG channel back to the
user/subject

FIR Band-pass
(8-13 Hz)

yi) =) bexi (1= 0)
k=0

Running Variance

A

!

=

yi(n) = x; (n)?

Squaring

=

Moving
Average

\
=

1 m
yi(n) = mz x; (n—k)
k=0

Square
Root or
Logarithm

yi(n) = logx; (n)

Component 3: Machine Learning

The Problem of
Unknown Parameters
* Processing depends on unknown parameters

(person-specific, task-specific, otherwise
variable) — e.g., per-sensor weights as below:

1
08
0.6

05 0.4
102

o 3 0 3
r— {02

0.5 o AU EY

7 x.\\ ~0.6

-1 el / B-os
y _1

-15

Blankertz et al. 2007

Reasons for
Parameter Uncertainty

* Folding of cortex differs between any two
persons

* Relevant functional map
differs across individuals

* Sensor locations differ
across recording sessions

* Brain dynamics are non-
stationary at all time
scales

Calibration Data

* Many possible kinds of data could be used

* Best known type of calibration data:
example data, i.e. examples of EEG of a
person being excited, not excited, etc.

* Collected in a special calibration recording
(before actual online use of the BCl)

\ “target markers” in BCILAB

Machine Learning In Practice

e Often, one trial segment (sample) is extracted for

every target marker in the calibration recording and
is used as training exemplar X,

* Its associated label y, can be deduced from the
target marker

B i P e T NP R B S e T
Mwm»Wwwvwﬂ — e

T e T e e A
/I\ S2 /[\ S1 T R1 T S1
e, N I
“\"‘P‘A'L"\”":“""‘ﬂ‘*'w’ﬂ""“a\d l\r‘ww'mwwi"m\WM““\"" M"‘f“"\uw““v"v“'\“*‘,m'\‘\\lw'\
’

A et L
O [P Wi, M‘.‘m;\ v\‘ e

b i atetagn, A

2 1 1

Machine Learning In Practice

e Often, one trial segment (sample) is extracted for

every target marker in the calibration recording and
is used as training exemplar X,

* Its associated label y, can be deduced from the
target marker

E T T

B i P e T NP R B S e T
Mwm»Wwwvwﬂ — e

TSZ TSI TR1 T51

it Hinal b, -

, i - .

h T P e Training
>w\W'I,W‘dl"h"‘“n‘“'n“m’ﬂw%\r.j \\i‘Mﬁ‘MMM"MWM“'\"" W\‘ﬁfﬁ'l"'W““q\’v\\“kvlh l\ ‘Mlm (X X] O
\""“r”""‘\"’”ﬂ""‘m’m’ﬁ\ " ’ o mr,l‘,.w”'.»rﬁ'\‘i\mmn\.ﬁ. ’ i, v‘.’\"‘-"",ﬂl"v\l et fu n Ct I o n

2 1 1 X,y

Component 4: Feature Extraction

Feature Extraction

e Caveat: Off-the-shelf machine learning methods
often do not work very well when applied to raw
signal segments of the calibration recording

— too high-dimensional (too many parameters to fit)

— too complex structure to be captured (too much
modeling freedom, requires domain-specific
assumptions)

1000s of degrees of freedom!

—

i runid o,

»-\wLW""'*‘"“*""'%’M‘M
o
et N

A Wiy m”“\z

Feature Extraction

* Typical Solution: Introduce additional mapping
(called “feature extraction”) from raw signal
segments onto feature vectors which extracts the key
features of a raw observation

— output is usually of lower dimensionality

— hopefully statistically “better” distributed (easier to
handle for machine learning)

Concrete Example Task

Flanker Task: The experiment consists of a sequence of
ca. 330 trials with inter-trial interval of 2s +/- 1.5s

At the beginning of each trial, an arrow is presented
centrally (pointing either left or right)

The arrow is flanked by congruent or incongruent
“flanker” arrows (preceding the center by a few ms):

CED€€

The subject is asked to press the left or right button,
according to the central arrow direction, and makes
frequent errors (ca. 25%)

Approach

e Calibration recording is band-pass filtered
between 0.5Hz and 15Hz

— 0.5Hz lower edge removes drifts

— 15Hz upper edge leaves enough room for sharp
ERP features

* Epochs are extracted for each trial and label is
set to A for incorrect trials and B for corrects

Actual Data

* Time courses for all trials super-imposed
(color-coded by class) — but here different task

-2 -15 -1 -05 0 05
time (C3)

Extracted Epochs

Cortex

|
|
1 | - | \\‘\ | \ \| | |

N —
\ . \ Channel time courses

N under Condition A

Response (AorB) Three sample trials (out of 100)
shown: mean, -1 std. dev, +1 std. dev

f, f, fs

Cortex

For each trial segment, calculate signal mean in
3 time sub-windows (= 3-dim feature vector)

Resulting Feature Space

* Plotting the 3-element feature vectors for all
error trials in red, and non-error trials in
green, we obtain two distributions in a 3d

space:

Note that across all channels this space has in fact 3 x #channels dimensions!

ML with Feature Extraction

* Including the feature extraction, the analysis process
is as follows:

R o
TR i pLEE oy A e e e e e e e
e A e

e e e e o e e e o e e R e R e Ay

T S2 T 51 T R1 T S1
‘ Fhietinad g, A'»L\W\wmwm ’Mﬂﬁw”r‘r,m“ﬂw Extract
e, St T ‘.’«fm‘“W*»«,.tm\-‘wI”;i\ ‘,*'m see Fe a t ures

L
U Wit N . o
S T W N i i }f“ Jof

1 1

2
. ARTANN;
(w4 T g [f] [1] [
0 X,y 1, L:1, L:

2 1 1

Machine Learning Continued

* The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

101

e.g., LDA » P
x Y okl

Machine Learning Continued

* The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

* ... which determines a parametric predictive mapping

e.g., LDA

101

Simple 2-class LDA In a Nutshell

* Given feature vectors x;, (in vector form) in C; and C,,

Hi = - z Xi) 2 = 2 (xp — 1) (xg —)’

|Ci £
€C; KEC;
0= (Z1+2)7 (2 —), b=0"(u; +mu;)/2

101
9\/ Y
Pl

0 | %iﬁggﬁ%ﬁ/

////

.,
‘e
‘e
.

(&P Resulting Predictive Mapping and
Model

* LDA produces parameters of a linear mapping
y=0x—0>b

* For classification, the mapping is actually non-
linear:

y = sign(0x — b)

* The learned model with its person-specific

parameters here consists of (8, b); generally it
could include adapted signal-processing
parameters, feature-extraction parameters, etc.

Spatial Filters Visualized

« Topographically mapped, the following filters
emerge: Windaw? (0.25s to 0.3s) Window2 (0.3s to 0.355) Window3 (0.35s to 0.4s)

Windowd (0.455 to 0.55) Windowi (0.55 to 0.555)

Note: This method (and its close relative using
“shrinkage LDA” in particular) yield state-of-the-art
Performance on ERPs.

Even More About
Calibration Data

Model Calibration

* Can use calibration / training data to estimate
parameters from, and a separate calibration step

Calibration data

e

Calibration step

'
BCI |

Prior Knowledge

* Prior knowledge is neuroscientific, such as:

— Anatomical atlases
(e.g. Talairach, LONI)

— Functional atlases
(if available)

Prior Knowledge

* Prior knowledge is neuroscientific, such as:

— Anatomical atlases
(e.g. Talairach, LONI)

— Functional atlases
(if available)

— Timing information
(e.g. neural latencies,
reaction times)

Prior Knowledge

* Prior knowledge is neuroscientific, such as:

— Anatomical atlases
(e.g. Talairach, LONI)

— Functional atlases
(if available)

— Timing information
(e.g. neural latencies,
reaction times)

— Frequency bands of
oscillatory processes
(alpha, beta, thets, ...)

Center for
Computational
euroscience

Calibration Data

Example/calibration data is used to calculate

optimal parameters of a BCI, and is extremely
Important

Nk o0 L .|
G T

m
o
[0
<
LI I

45 46 47 48 49 50

The Ideal Calibration Data

e Collected with the same/similar measurement
apparatus as used for online runs

— otherwise extra transformations and uncertainty
incurred

* Comprises multiple independent realizations /
repetitions / trials (to quantify variability)

— one-shot learning (one exemplar) is much harder

The Ideal Calibration Data

* Collected under conditions that are as close to
those of the online runs as possible (i.e., drawn
from the same statistical distribution)

— Same person is preferable

— Same sensor arrangement is preferable

— Same session is preferable

— Task parameters (stress level, ...) should be similar

* Obviously a cost/benefit tradeoff:

— Would trade off some performance for being able to
reuse one recording for multiple sessions and persons

The Ideal Calibration Data

 |f there is a systematic bias (e.g., different
session), data should cover multiple
realizations (e.g., multiple sessions) to capture
variability

e A plain EEG recording is “unlabeled” (no
knowledge about the association between raw
observed signal and the cognitive state
variable of interest)

* Labeled data (person is “surprised” / “not
surprised”) is far more useful than unlabeled

Center for
Computational

2 The Ideal Calibration Data

* Labels are assigned per realization (e.g., per
trial) and index the output that the BCl shall
produce for this class of data

Summary

* The required data to calibrate a BCl resembles
data produced by controlled psychological
experiments

Zander et al., 2010

Summary

* Features
— continuous EEG (or other)
— multiple trials/blocks (capturing variation)
— randomized (eliminating confounds)

— event markers to encode cognitive state
conditions of interest, e.g., stimuli/responses
(called “target markers” in BCILAB)

* Can also be used for offline performance tests

B e i P e T NP ST PP S it Ry

A Further Reading

These and Futher Slides:

ftp://sccn.ucsd.edu/pub/bcilab/

ftp://sccn.ucsd.edu/pub/bcilab/lectures/
ftp://sccn.ucsd.edu/pub/bcilab/lectures/

BCl Papers Worth Reading

B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Mueller, "Single-trial
analysis and classification of ERP components - A tutorial”, Neurolmage,
vol. 56, no. 2, pp. 814-825, May 2011.

F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
BCl designs: unified theory and new algorithms,” IEEE Transactions on
Biomedical Engineering, vol. 58, no. 2, pp. 355-362, Feb. 2011.

R. Tomioka and K.-R. Mueller, A regularized discriminative framework for
EEG analysis with application to brain-computer interface", Neurolmage,
vol. 49, no. 1, pp. 415-432, 2010.

B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Mueller, and G. Curio, "The
non-invasive Berlin brain-computer interface: Fast acquisition of effective
performance in untrained subjects", Neurolmage, vol. 37, no. 2, pp. 539-

550, Aug. 2007.

M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, "Beamforming
in noninvasive brain-computer interfaces”, IEEE Trans. Biomed. Eng., vol.
56, no. 4, pp. 1209-1219, Apr. 2009.

BCl Surveys

e A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, "A
survey of signal processing algorithms in brain-computer

interfaces based on electrical brain signals", J. Neural Eng.,
vol. 4, no. 2, pp. R32—-R57, Jun. 2007.

* F Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B.
Arnaldi, "A review of classification algorithms for EEG-
based brain-computer interfaces", J. Neural Eng., vol. 4, no.
2, pp. R1-R13, Jun. 2007.

e S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang,
K. Kreutz-Delgado, "Evolving Signal Processing for Brain—
Computer Interfaces”, Proc. IEEE, vol. 100, pp. 1567-1584,
2012.

Interesting Technical Papers

D.P. Wipf and S. Nagarajan, “A Unified Bayesian Framework
for MEG/EEG Source Imaging,” Neurolmage, vol. 44, no. 3,
February 2009.

S. Haufe, R. Tomioka, and G. Nolte, “Modeling sparse
connectivity between underlying brain sources for
EEG/MEG,” Biomedical Engineering, no. c, pp. 1-10, 2010.

S. Boyd, N. Parikh, E. Chu, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers,” Information Systems

Journal, vol. 3, no. 1, pp. 1-122, 2010.

P. Zhao and B. Yu, “On Model Selection Consistency of
Lasso,” Journal of Machine Learning Research, vol. 7 pp.
2541-2563, 2006.

Technical Papers, ct'd

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng, “Multimodal
Deep Learning,” in Proceedings of the 28th International
Conference on Machine Learning, 2011.

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying
natural images from human brain activity,” Nature, vol. 452, no.
7185, pp. 352-355, Mar. 2008.

O. Jensen et al., “Using brain-computer interfaces and brain-state
dependent stimulation as tools in cognitive neuroscience,” Frontiers
in Psychology, vol. 2, p. 100, 2011.

D.-H. Kim, N. Lu, R. Ma,. Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M.
Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L.
Xu, M. Li, H.-J. Cung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.
G. Omenetto, Y Huang, T. Coleman, J. A. Rogers, “Epidermal
electronics,” Science vol. 333, no. 6044, 838-843, 2011.

Researchers to Watch

Klaus-Robert Mueller et al. (TU Berlin) — one of the leading
BCI groups
http://www.bbci.de/publications.html

Marcel van Gerven et al. (Donders) — BCl and Neuroscience
with a Bayesian approach
https://sites.google.com/a/distrep.org/distrep/publications

Ryota Tomioka (U Tokyo) — known for some technical
achievements

http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka

Karl Friston et al. (UC London) — working on relevant
underpinnings for neuroimaging (outside BClI)
http://www.fil.ion.ucl.ac.uk/Research/publications.html

Leading Statisticians and Machine Learners: Michael I. Jordan,
Andrew Ng, Lawrence Carin, Zoubin Ghahramani, Francis
Bach, Geoffrey Hinton, Ruslan Salakhutdinov, Yeh Whye Teh,
David Blei, ...

http://www.bbci.de/publications.html
http://www.bbci.de/publications.html
https://sites.google.com/a/distrep.org/distrep/publications
https://sites.google.com/a/distrep.org/distrep/publications
https://sites.google.com/a/distrep.org/distrep/publications
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.fil.ion.ucl.ac.uk/Research/publications.html

