
Scripting Prerequisites

Function Calling Syntax

• Most functions take their arguments in the order in
which they are listed in the documentation

• Some can alternatively called with all parameters
passed in as name-value pairs (using the same names
as in the help text, in CamelCase)

• If in doubt, pass them in by name – less chance of
getting the order wrong, etc.

• It is usually a bad idea to try to mix positional and
name-value arguments in one call – don’t do it unless
that’s the default way to call the function

• Example:
bci_train(mydata,myapproach)

bci_train(‘Data’,mydata,’Approach’,myapproach)

Loading Data

• A data set (no matter what file format) is
loaded using the function io_loadset()

• It is almost always enough pass in just the file
name, as in the example:
data = io_loadset(‘/somepath/somefile.xyz’)

Defining an Approach

Defining a new Approach

• Defining an approach is the most complex area in scripting
because a data structure must be constructed

• Since an approach is a particular instance of a BCI paradigm
(used with custom parameters), an approach definition
consists of:
– The name of the paradigm (e.g., CSP, WindowMeans)
– Optionally a list of arguments for the paradigm’s calibrate()

function

• The default way to specify an approach is as a cell array
whose first element is the name of the paradigm and
whose remaining elements are arguments to its calibrate()
function

• Example:

appr = {‘CSP’,‘SignalProcessing’,...,‘FeatureExtraction’,...};

Approach Parameters

• The parameters are a list of name-value pairs

• Important: The argument of an approach are
not passed in a long ‘flat’ list, but they are
organized in a hierarchy, i.e. some parameters
have named sub-parameters

• Example:

app = {‘CSP’,’Prediction’,{‘MachineLearning’, …}};

MachineLearning is a sub-parameter of Prediction

Prediction is a “top-level” parameter

Approach Parameters

• Which parameter names a BCI paradigm exposes
is the business of the BCI paradigm

• However, practically all of them adhere to a
uniform scheme of 2 top-level parameter names:

– SignalProcessing is a top-level parameter that
determines the signal processing stages that shall be
used

– Prediction is a top-level parameter that governs how
the prediction function is being calibrated or applied

Correspondence With The GUI

• There is a 1:1 correspondence between the hierarchy of
parameters that are specified in scripts and the layout of the
parameter tree in the approach definition GUI

The SignalProcessing
parameter

Sub-parameters of
SignalProcessing

Sub-Parameter
of Resampling

(itself a sub-parameter
of SignalProcessing)

Default Values

• Each parameter has a default value (unless it makes
absolutely no sense), which can also be looked up in
the GUI

Default = 100

By default enabled

By default disabled

Parameter Help

• Each parameter has a help text, which is also visible
in the GUI panel (at the bottom)

Help text for the
selected parameter

The SignalProcessing Parameter

• Has one named sub-parameter for every signal processing
plugin that can be used (these are found automatically)

• The name under which a given signal processing plugin
appears is up to the plugin – they declare this property at the
beginning of their code (you can look it up there)

Name of the sub-parameter as which
this plugin shows up in the approach
definition (below SignalProcessing)

The SignalProcessing Parameter

• The plugins that are listed under SignalProcessing are
those in the directories:

– code/filters (file names beginning with flt_)

– code/dataset_editing (file names beginning with set_)

• The value assigned to a sub-parameter (e.g.,
FIRFilter) that is presented by a function (e.g.,
flt_fir.m) is by default a cell array of arguments to
that function

• The arguments can be passed in any format accepted
by the function, but preferably they should again be
passed as name-value pairs to avoid confusion

Configuring Signal Processing
Stages

• Example:

app={‘CSP’,’SignalProcessing’, ...

 {‘FIRFilter’,{‘Frequencies’,[7 8 14 15]}}};

• This example defines a CSP-based approach that uses a
particular Frequencies value in its FIR filter

• The FIR filter is now also “enabled” if it was not before

Disabling Signal Processing
Stages

• It is sometimes useful to disable a parameter that is enabled
by default: This can be written (by convention) as follows:

app={‘CSP’,’SignalProcessing’,{‘Resampling’,[]};

• Note that these are [] brackets – using {} accidentally would
still enable the filter, but passes an empty argument list to it!

Shortcuts for the Impatient

• BCILAB has the unhealthy habit of allowing short forms for
most things – I recommend to avoid them whenever possible,
but it helps recognizing them

• The most salient short-cut form is when a parameter that has
sub-parameters is not assigned a cell array of arguments (like
it should), but instead directly the value of the first sub-
argument

• Example:

app={‘CSP’,’SignalProcessing’,{‘Resampling’,200}};

• … is equivalent to:

app={‘CSP’,’SignalProcessing’,...

 {‘Resampling’,{‘SamplingRate’,200}}};

This number is assigned to the first
sub-argument of the resampling filter

(=the target sampling rate)

Shortcuts for the Impatient

• BCILAB has the unhealthy habit of allowing short forms for
most things – I recommend to avoid them whenever possible,
but it helps recognizing them

• The most salient short-cut form is when a parameter that has
sub-parameters is not assigned a cell array of arguments (like
it should), but instead directly the value of the first sub-
argument

• Example:

app={‘CSP’,’SignalProcessing’,{‘Resampling’,200}};

• … is equivalent to:

app={‘CSP’,’SignalProcessing’,...

 {‘Resampling’,{‘SamplingRate’,200}}};

Multi-Option Parameters

• The last kind of parameter that deserves mention are multi-
option parameters, which consists of a selection argument (a
string) and for each possible value a different list of sub-
arguments

• An example are the different alternative variants supported
by the ICA filter: amica, infomax, etc., all of which have
algorithm-specific sub-arguments

• Below, the parameter named Variant is set to ‘fastica’, and the
MaxIterations sub-parameter of Variant for the fastica case is
set to 1000

Multi-Option Parameters

• In scripts, multi-option parameters are written just like the
overall approach definition: as a cell array whose first element
is the name of the selection followed by name-value pairs for
this case

• Example:

…,‘Variant’,{‘fastica’,‘MaxIterations’,1000,‘Approach’,’symm’}

• … is equivalent to setting what is shown here in the GUI:

Other Paradigm Parameters

• The other parameters behave in exactly the
same ways

• Example:
– MachineLearning is a sub-parameter of Prediction,

it has a Learner sub-parameter

– Learner is a multi-option parameter with one case
for each machine learning plugin (e.g., ‘lda’, ’qda’,
’logreg’, …)

– The sub-parameters of the respective case are
those that are exposed by the respective plugin
function (e.g., ml_trainqda.m)

Configuring the Machine Learning
Stage

• Thus, the following is a valid way to configure
the machine learning function of a paradigm:

app={‘CSP’, ’Prediction’,{‘MachineLearning’, …

 {‘Learner’,{‘qda’ ‘WeightedBias’,true}}}};

• It corresponds to the following GUI setting:

Configuring the Machine Learning
Stage

• Thus, the following is a valid way to configure
the machine learning function of a paradigm:

app={‘CSP’, ’Prediction’,{‘MachineLearning’, …

 {‘Learner’,{‘qda’ ‘WeightedBias’,true}}}};

• Alternative shortcut form:

app={‘CSP’, ’Prediction’,{‘MachineLearning’, …

 {‘Learner’,‘qda’}}};

Instead of at least {‘qda’}

Remaining Script Workflows

Calibrating (“Training”) a Model

• A new BCI model is created using a previously
loaded data set (the training set) and a
previously defined approach

• This is done using the function bci_train (the
equivalent of the “Train new model…” dialog)

• Example:

raw = io_loadset(‘imag.set’)

app = {‘SpecCSP’, ... };

[loss,model,stats] = bci_train(‘Data’,raw,’Approach’,app, ...

 ‘TargetMarkers’,{‘S 1’,’S 2’});

Calibrating a Model

• The bci_train function usually takes 3 inputs:

– The data (Data parameter)

– The approach (Approach parameter)

– The description of how event types map onto
class labels (TargetMarkers, same as in the GUI)

• The function returns three outputs:

– The overall loss estimate (e.g. error rate)

– The learned model

– Statistics about the model and training process,
including results of a cross-validation

Visualizing a Model

• Models are visualized using the function
bci_visualize

• Example:
bci_visualize(mymodel)

• This function can take extra arguments that
are passed on to the responsible drawing
function (but few drawing functions have
arguments)

Applying a Model to Test Data

• For offline application to test data, the
function bci_predict can be used – it applies
the BCI model to each trial in the data and
calculates loss statistics

• Example:

[outputs,loss,stats] = ...

 bci_predict(‘Data’,mydata,’Model’,mymodel);

• Note: the first output are the model’s
predictions for each trial in the data

Annotating Data with
Continuous BCI Outputs

• The BCI output can be attached as an extra
channel (or multiple channels, each
representing the probability of class k) to a
data set, using the function bci_annotate

• Example:

newset = bci_annotate(‘Data’,mydata,’Model’,mymodel)

Reading Real-Time Data

• Real-time data can be acquired from a device
and written into a named workspace variable
using the online reader plugins (run_read*
functions)

• Examples:

run_readbiosemi(); # read from a BioSemi device

run_readdataset(‘MatlabStream’,’mystream’,’Dataset’,myset);

Sending Real-Time Outputs

• The outputs of a BCI model as applied to some
stream(s) can be calculated in the background
online and passed on to some destination –
this is done using the online writer plugins
(run_write*)

• These functions take usually the name of the
model to use and the name(s) of the stream(s)
to use

• Example:

run_writevisualization(‘Model’,’mymodel’, ...

 ’SourceStream’,’mystream’)

Performing Batch Analyses

• Using bci_batchtrain, a single approach can be
efficiently applied to a list of data sets or file
names

• Also multiple approaches can be applied to one
or more data sets in an automated manner

• Can not just train models but also make
predictions and evaluate losses on test data sets

• Example:

results = bci_batchtrain('Data',mydatasets, ...

 'Approaches',myapproaches,'TargetMarkers',mymarkers);

Parameter Searches

• It is possible to replace (practically) any value
in an approach definition by a so-called
“search range”, i.e. a list of possible values to
try automatically in a systematic manner

• A search range is specified by writing the
expression search(value1, value2, …, valueN)

• Multiple search parameters in one approach
lead to combinatorial grid search (slow!)

• Example:

app={‘CSP’,’Prediction’,{‘FeatureExtraction’,{ ...

 ‘PatternPairs’,search(1,2,3)}}};

3 A Close Look at Components

Signal Processing Machine Learning BCI Paradigms Devices

Plugins

ICA SSA FIR

IIR FFT …

LDA QDA

GMM SVM …

DAL CSP Spec-CSP

ERP RSSD …

TCP

BCI2000 …

OSC

Component 1: Predictive
Mapping

Central Predictive Mapping

• A BCI (with limited memory of the past) can
be viewed as a mathematical function f:

• The functional form is arbitrary, for example

𝑦 = sign(var(𝑾𝑿) + 𝑏)

• The mapping involves free parameters, here
W and b, and data from a sliding window X

y = f(X); X= y= “subj. excited” (+1)
 “subj. not excited” (-1)

Choice of a Functional Form

• Reflects the relationship between observation (data
segment X) and desired output (cognitive state
parameter y)

• Based on some assumed generative mechanism
(forward model) – or ad hoc

• Note: Functional form is the inverse mapping!

Choice of a Functional Form

• Reflects the relationship between observation (data
segment X) and desired output (cognitive state
parameter y)

• Based on some assumed generative mechanism
(forward model) – or ad hoc

• Remember: Functional form is the inverse mapping!

Key Ingredient: Spatial Filter

• Linear inverse of volume conduction effect
between sources S and channels X
𝑿 = 𝑨𝑺 (forward)
𝑺 = 𝑾𝑿 (inverse)

W A=W-1

Component 2: Signal Processing

Role of Signal Processing

• BCILAB allows to implemented BCIs using a
network of digital signal processing blocks
(“filters”)

• Relevant filter classes: Spatial Filters, Temporal
Filters, Spectral Filters, Spatio-Temporal Filters,
Domain Transforms (e.g. DFT)

Filter Filter

Filter

Filter

Filter Graph
EEG

EMG

Control Signal

Role of Signal Processing

• Concrete Toy Example: Feed the amplitude of a brain
idle oscillation (e.g. 10 Hz alpha associated with
relaxation) from one EEG channel back to the
user/subject

• This produces the same output as the following
functional-style description (T is a temporal filter
matrix), but is computationally less costly:

FIR Band-pass
(8-13 Hz) Squaring

Moving
Average

Square
Root or

Logarithm

Running Variance

𝑦𝑖(𝑛) = 𝑏𝑘𝑥𝑖 (𝑛 − 𝑡)

𝑚

𝑘=0

 𝑦𝑖(𝑛) =
1

𝑚 − 1
 𝑥𝑖 (𝑛 − 𝑘)

𝑚

𝑘=0

𝑦𝑖(𝑛) = 𝑥𝑖 (𝑛)
2 𝑦𝑖(𝑛) = log 𝑥𝑖 (𝑛)

Component 3: Machine Learning

The Problem of
Unknown Parameters

• Processing depends on unknown parameters
(person-specific, task-specific, otherwise
variable) – e.g., per-sensor weights as below:

Blankertz et al. 2007

Reasons for
Parameter Uncertainty

• Folding of cortex differs between any two
persons

• Relevant functional map
differs across individuals

• Sensor locations differ
across recording sessions

• Brain dynamics are non-
stationary at all time
scales

Calibration Data

• Many possible kinds of data could be used

• Best known type of calibration data:
example data, i.e. examples of EEG of a
person being excited, not excited, etc.

• Collected in a special calibration recording
(before actual online use of the BCI)

“target markers” in BCILAB

Machine Learning In Practice

• Often, one trial segment (sample) is extracted for
every target marker in the calibration recording and
is used as training exemplar Xk

• Its associated label yk can be deduced from the
target marker

S2 S1 R1 S1

2 1 1

, ,
…

Machine Learning In Practice

• Often, one trial segment (sample) is extracted for
every target marker in the calibration recording and
is used as training exemplar Xk

• Its associated label yk can be deduced from the
target marker

S2 S1 R1 S1

2 1 1

, ,
… Training

function
Model

X,y 𝜽

Component 4: Feature Extraction

Feature Extraction

• Caveat: Off-the-shelf machine learning methods
often do not work very well when applied to raw
signal segments of the calibration recording

– too high-dimensional (too many parameters to fit)

– too complex structure to be captured (too much
modeling freedom, requires domain-specific
assumptions)

1000s of degrees of freedom!

Feature Extraction

• Typical Solution: Introduce additional mapping
(called “feature extraction”) from raw signal
segments onto feature vectors which extracts the key
features of a raw observation

– output is usually of lower dimensionality

– hopefully statistically “better” distributed (easier to
handle for machine learning)

Concrete Example Task

• Flanker Task: The experiment consists of a sequence of
ca. 330 trials with inter-trial interval of 2s +/- 1.5s

• At the beginning of each trial, an arrow is presented
centrally (pointing either left or right)

• The arrow is flanked by congruent or incongruent
“flanker” arrows (preceding the center by a few ms):

• The subject is asked to press the left or right button,
according to the central arrow direction, and makes
frequent errors (ca. 25%)

Approach

• Calibration recording is band-pass filtered
between 0.5Hz and 15Hz

– 0.5Hz lower edge removes drifts

– 15Hz upper edge leaves enough room for sharp
ERP features

• Epochs are extracted for each trial and label is
set to A for incorrect trials and B for corrects

Actual Data

• Time courses for all trials super-imposed
(color-coded by class) – but here different task

Extracted Epochs
Channel time courses
under Condition B

Channel time courses
under Condition A

Three sample trials (out of 100)
shown: mean, -1 std. dev, +1 std. dev

Response (A or B)

Extracting Linear Features

For each trial segment, calculate signal mean in
3 time sub-windows (3-dim feature vector)

f1 f2 f3

f1

f2 f3

Resulting Feature Space

• Plotting the 3-element feature vectors for all
error trials in red, and non-error trials in
green, we obtain two distributions in a 3d
space:

Note that across all channels this space has in fact 3 x #channels dimensions!

• Including the feature extraction, the analysis process
is as follows:

ML with Feature Extraction

S2 S1 R1 S1

2 1 1

, ,
…

Training
function Model

X,y

Extract
Features

𝑓1
𝑓2
⋮

𝑓1
𝑓2
⋮

𝑓1
𝑓2
⋮

, ,

2 1 1

…

𝜽

Machine Learning Continued

• The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

f1

f2 f3

e.g., LDA

Machine Learning Continued

• The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

• … which determines a parametric predictive mapping

f1

f2 f3

e.g., LDA

𝜽

Simple 2-class LDA In a Nutshell

• Given feature vectors 𝒙𝑘 (in vector form) in 𝒞1 and 𝒞2,

𝝁𝑖 =
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

, 𝜮𝑖 = 𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

𝜽 = 𝜮1 + 𝜮2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2

• Caveat: θ often high-dimensional but only few trials available

• Can use a regularized estimator instead, here using shrinkage;
instead of Σ𝑖, we use Σ 𝑖 above:

Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰

𝜽

b

Resulting Predictive Mapping and
Model

• LDA produces parameters of a linear mapping

y = 𝜽𝒙 − 𝑏

• For classification, the mapping is actually non-
linear:

y = sign(𝜽𝒙 − 𝑏)

• The learned model with its person-specific
parameters here consists of (𝜽, 𝑏); generally it
could include adapted signal-processing
parameters, feature-extraction parameters, etc.

Spatial Filters Visualized

• Topographically mapped, the following filters
emerge:

Note: This method (and its close relative using
“shrinkage LDA” in particular) yield state-of-the-art
Performance on ERPs.

Even More About
Calibration Data

Model Calibration

• Can use calibration / training data to estimate
parameters from, and a separate calibration step

 Calibration data

BCI
Model

Calibration step

Prior Knowledge

• Prior knowledge is neuroscientific, such as:
– Anatomical atlases

(e.g. Talairach, LONI)
– Functional atlases

(if available)

– Timing information
(e.g. neural latencies,
reaction times)

– Brain idle rhythm
frequency bands
(alpha, beta, theta, …)

Prior Knowledge

• Prior knowledge is neuroscientific, such as:
– Anatomical atlases

(e.g. Talairach, LONI)
– Functional atlases

(if available)

– Timing information
(e.g. neural latencies,
reaction times)

– Brain idle rhythm
frequency bands
(alpha, beta, theta, …)

Prior Knowledge

• Prior knowledge is neuroscientific, such as:
– Anatomical atlases

(e.g. Talairach, LONI)
– Functional atlases

(if available)

– Timing information
(e.g. neural latencies,
reaction times)

– Frequency bands of
oscillatory processes
(alpha, beta, theta, …)

Calibration Data

• Example/calibration data is used to calculate
optimal parameters of a BCI, and is extremely
important

The Ideal Calibration Data

• Collected with the same/similar measurement
apparatus as used for online runs

– otherwise extra transformations and uncertainty
incurred

• Comprises multiple independent realizations /
repetitions / trials (to quantify variability)

– one-shot learning (one exemplar) is much harder

The Ideal Calibration Data

• Collected under conditions that are as close to
those of the online runs as possible (i.e., drawn
from the same statistical distribution)

– Same person is preferable

– Same sensor arrangement is preferable

– Same session is preferable

– Task parameters (stress level, …) should be similar

• Obviously a cost/benefit tradeoff:

– Would trade off some performance for being able to
reuse one recording for multiple sessions and persons

The Ideal Calibration Data

• If there is a systematic bias (e.g., different
session), data should cover multiple
realizations (e.g., multiple sessions) to capture
variability

• A plain EEG recording is “unlabeled” (no
knowledge about the association between raw
observed signal and the cognitive state
variable of interest)

• Labeled data (person is “surprised” / “not
surprised”) is far more useful than unlabeled

The Ideal Calibration Data

• Labels are assigned per realization (e.g., per
trial) and index the output that the BCI shall
produce for this class of data

 A B A

Summary

• The required data to calibrate a BCI resembles
data produced by controlled psychological
experiments

Zander et al., 2010

Summary

• Features

– continuous EEG (or other)

– multiple trials/blocks (capturing variation)

– randomized (eliminating confounds)

– event markers to encode cognitive state
conditions of interest, e.g., stimuli/responses
(called “target markers” in BCILAB)

• Can also be used for offline performance tests

S2 S1 R1 S1

A Further Reading

These and Futher Slides:

ftp://sccn.ucsd.edu/pub/bcilab/

ftp://sccn.ucsd.edu/pub/bcilab/lectures/
ftp://sccn.ucsd.edu/pub/bcilab/lectures/

BCI Papers Worth Reading

• B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Mueller, "Single-trial
analysis and classification of ERP components - A tutorial", NeuroImage,
vol. 56, no. 2, pp. 814–825, May 2011.

• F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
BCI designs: unified theory and new algorithms,” IEEE Transactions on
Biomedical Engineering, vol. 58, no. 2, pp. 355-362, Feb. 2011.

• R. Tomioka and K.-R. Mueller, A regularized discriminative framework for
EEG analysis with application to brain-computer interface", NeuroImage,
vol. 49, no. 1, pp. 415–432, 2010.

• B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Mueller, and G. Curio, "The
non-invasive Berlin brain-computer interface: Fast acquisition of effective
performance in untrained subjects", NeuroImage, vol. 37, no. 2, pp. 539–
550, Aug. 2007.

• M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, "Beamforming
in noninvasive brain-computer interfaces", IEEE Trans. Biomed. Eng., vol.
56, no. 4, pp. 1209–1219, Apr. 2009.

BCI Surveys

• A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, "A
survey of signal processing algorithms in brain-computer
interfaces based on electrical brain signals", J. Neural Eng.,
vol. 4, no. 2, pp. R32–R57, Jun. 2007.

• F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B.
Arnaldi, "A review of classification algorithms for EEG-
based brain-computer interfaces", J. Neural Eng., vol. 4, no.
2, pp. R1–R13, Jun. 2007.

• S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang,
K. Kreutz-Delgado, "Evolving Signal Processing for Brain–
Computer Interfaces", Proc. IEEE, vol. 100, pp. 1567-1584,
2012.

Interesting Technical Papers

• D.P. Wipf and S. Nagarajan, “A Unified Bayesian Framework
for MEG/EEG Source Imaging,” NeuroImage, vol. 44, no. 3,
February 2009.

• S. Haufe, R. Tomioka, and G. Nolte, “Modeling sparse
connectivity between underlying brain sources for
EEG/MEG,” Biomedical Engineering, no. c, pp. 1-10, 2010.

• S. Boyd, N. Parikh, E. Chu, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers,” Information Systems
Journal, vol. 3, no. 1, pp. 1-122, 2010.

• P. Zhao and B. Yu, “On Model Selection Consistency of
Lasso,” Journal of Machine Learning Research, vol. 7 pp.
2541-2563, 2006.

Technical Papers, ct’d

• J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng, “Multimodal
Deep Learning,” in Proceedings of the 28th International
Conference on Machine Learning, 2011.

• K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying
natural images from human brain activity,” Nature, vol. 452, no.
7185, pp. 352-355, Mar. 2008.

• O. Jensen et al., “Using brain-computer interfaces and brain-state
dependent stimulation as tools in cognitive neuroscience,” Frontiers
in Psychology, vol. 2, p. 100, 2011.

• D.-H. Kim, N. Lu, R. Ma,. Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M.
Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L.
Xu, M. Li, H.-J. Cung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.
G. Omenetto, Y Huang, T. Coleman, J. A. Rogers, “Epidermal
electronics,” Science vol. 333, no. 6044, 838-843, 2011.

Researchers to Watch

• Klaus-Robert Mueller et al. (TU Berlin) – one of the leading
BCI groups
http://www.bbci.de/publications.html

• Marcel van Gerven et al. (Donders) – BCI and Neuroscience
with a Bayesian approach
https://sites.google.com/a/distrep.org/distrep/publications

• Ryota Tomioka (U Tokyo) – known for some technical
achievements
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka

• Karl Friston et al. (UC London) – working on relevant
underpinnings for neuroimaging (outside BCI)
http://www.fil.ion.ucl.ac.uk/Research/publications.html

• Leading Statisticians and Machine Learners: Michael I. Jordan,
Andrew Ng, Lawrence Carin, Zoubin Ghahramani, Francis
Bach, Geoffrey Hinton, Ruslan Salakhutdinov, Yeh Whye Teh,
David Blei, …

http://www.bbci.de/publications.html
http://www.bbci.de/publications.html
https://sites.google.com/a/distrep.org/distrep/publications
https://sites.google.com/a/distrep.org/distrep/publications
https://sites.google.com/a/distrep.org/distrep/publications
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka
http://www.fil.ion.ucl.ac.uk/Research/publications.html

