
Scripting Prerequisites 



Function Calling Syntax 

• Most functions take their arguments in the order in 
which they are listed in the documentation 

• Some can alternatively called with all parameters 
passed in as name-value pairs (using the same names 
as in the help text, in CamelCase) 

• If in doubt, pass them in by name – less chance of 
getting the order wrong, etc. 

• It is usually a bad idea to try to mix positional and 
name-value arguments in one call – don’t do it unless 
that’s the default way to call the function 

• Example: 
bci_train(mydata,myapproach) 

bci_train(‘Data’,mydata,’Approach’,myapproach) 

 



Loading Data 

• A data set (no matter what file format) is 
loaded using the function io_loadset() 

• It is almost always enough pass in just the file 
name, as in the example: 
data = io_loadset(‘/somepath/somefile.xyz’) 



Defining an Approach 



Defining a new Approach 

• Defining an approach is the most complex area in scripting 
because a data structure must be constructed 

• Since an approach is a particular instance of a BCI paradigm 
(used with custom parameters), an approach definition 
consists of: 
– The name of the paradigm (e.g., CSP, WindowMeans) 
– Optionally a list of arguments for the paradigm’s calibrate() 

function 

• The default way to specify an approach is as a cell array 
whose first element is the name of the paradigm and 
whose remaining elements are arguments to its calibrate() 
function 

• Example: 
 
appr = {‘CSP’,‘SignalProcessing’,...,‘FeatureExtraction’,...}; 



Approach Parameters 

• The parameters are a list of name-value pairs 

• Important: The argument of an approach are 
not passed in a long ‘flat’ list, but they are 
organized in a hierarchy, i.e. some parameters 
have named sub-parameters 

• Example: 
 
app = {‘CSP’,’Prediction’,{‘MachineLearning’, …}}; 

MachineLearning is a sub-parameter of Prediction 

Prediction is a “top-level” parameter 



Approach Parameters 

• Which parameter names a BCI paradigm exposes 
is the business of the BCI paradigm 

• However, practically all of them adhere to a 
uniform scheme of 2 top-level parameter names: 

– SignalProcessing is a top-level parameter that 
determines the signal processing stages that shall be 
used  

– Prediction is a top-level parameter that governs how 
the prediction function is being calibrated or applied 

 



Correspondence With The GUI 

• There is a 1:1 correspondence between the hierarchy of 
parameters that are specified in scripts and the layout of the 
parameter tree in the approach definition GUI 

The SignalProcessing 
parameter 

Sub-parameters of  
SignalProcessing 

Sub-Parameter 
of Resampling  

(itself a sub-parameter  
of SignalProcessing) 



Default Values 

• Each parameter has a default value (unless it makes 
absolutely no sense), which can also be looked up in 
the GUI 

Default = 100 

By default enabled 

By default disabled 



Parameter Help 

• Each parameter has a help text, which is also visible 
in the GUI panel (at the bottom) 

Help text for the  
selected parameter 



The SignalProcessing Parameter 

• Has one named sub-parameter for every signal processing 
plugin that can be used (these are found automatically) 

• The name under which a given signal processing plugin 
appears is up to the plugin – they declare this property at the 
beginning of their code (you can look it up there) 

Name of the sub-parameter as which 
this plugin shows up in the approach 
definition (below SignalProcessing) 



The SignalProcessing Parameter 

• The plugins that are listed under SignalProcessing are 
those in the directories:  

– code/filters (file names beginning with flt_) 

– code/dataset_editing (file names beginning with set_) 

• The value assigned to a sub-parameter (e.g., 
FIRFilter) that is presented by a function (e.g., 
flt_fir.m) is by default a cell array of arguments to 
that function 

• The arguments can be passed in any format accepted 
by the function, but preferably they should again be 
passed as name-value pairs to avoid confusion 

 

 



Configuring Signal Processing 
Stages 

• Example: 
 

app={‘CSP’,’SignalProcessing’, ... 

  {‘FIRFilter’,{‘Frequencies’,[7 8 14 15]}}}; 

 

• This example defines a CSP-based approach that uses a 
particular Frequencies value in its FIR filter 

• The FIR filter is now also “enabled” if it was not before 

 



Disabling Signal Processing  
Stages 

• It is sometimes useful to disable a parameter that is enabled 
by default: This can be written (by convention) as follows: 
 

app={‘CSP’,’SignalProcessing’,{‘Resampling’,[]}; 

 

• Note that these are [] brackets – using {} accidentally would 
still enable the filter, but passes an empty argument list to it! 

 



Shortcuts for the Impatient 

• BCILAB has the unhealthy habit of allowing short forms for 
most things – I recommend to avoid them whenever possible, 
but it helps recognizing them 

• The most salient short-cut form is when a parameter that has 
sub-parameters is not assigned a cell array of arguments (like 
it should), but instead directly the value of the first sub-
argument 

• Example: 
 

app={‘CSP’,’SignalProcessing’,{‘Resampling’,200}}; 
 

• … is equivalent to: 
 

app={‘CSP’,’SignalProcessing’,... 

  {‘Resampling’,{‘SamplingRate’,200}}}; 

 

This number is assigned to the first  
sub-argument of the resampling filter  

(=the target sampling rate) 
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Multi-Option Parameters 

• The last kind of parameter that deserves mention are multi-
option parameters, which consists of a selection argument (a 
string) and for each possible value a different list of sub-
arguments 

• An example are the different alternative variants supported 
by the ICA filter: amica, infomax, etc., all of which have 
algorithm-specific sub-arguments 

• Below, the parameter named Variant is set to ‘fastica’, and the 
MaxIterations sub-parameter of Variant for the fastica case is 
set to 1000 



Multi-Option Parameters 

• In scripts, multi-option parameters are written just like the 
overall approach definition: as a cell array whose first element 
is the name of the selection followed by name-value pairs for 
this case 

• Example: 
 

…,‘Variant’,{‘fastica’,‘MaxIterations’,1000,‘Approach’,’symm’} 
 

• … is equivalent to setting what is shown here in the GUI: 



Other Paradigm Parameters 

• The other parameters behave in exactly the 
same ways 

• Example:  
– MachineLearning is a sub-parameter of Prediction, 

it has a Learner sub-parameter  

– Learner is a multi-option parameter with one case 
for each machine learning plugin (e.g., ‘lda’, ’qda’, 
’logreg’, …) 

– The sub-parameters of the respective case are 
those that are exposed by the respective plugin 
function (e.g., ml_trainqda.m) 



Configuring the Machine Learning 
Stage 

• Thus, the following is a valid way to configure 
the machine learning function of a paradigm: 
 

app={‘CSP’, ’Prediction’,{‘MachineLearning’, … 

     {‘Learner’,{‘qda’ ‘WeightedBias’,true}}}}; 

 

• It corresponds to the following GUI setting: 
 



Configuring the Machine Learning 
Stage 

• Thus, the following is a valid way to configure 
the machine learning function of a paradigm: 
 

app={‘CSP’, ’Prediction’,{‘MachineLearning’, … 

     {‘Learner’,{‘qda’ ‘WeightedBias’,true}}}}; 

 

• Alternative shortcut form: 
 
app={‘CSP’, ’Prediction’,{‘MachineLearning’, … 

     {‘Learner’,‘qda’}}}; 

 

 
 

Instead of at least {‘qda’} 



Remaining Script Workflows 



Calibrating (“Training”) a Model 

• A new BCI model is created using a previously 
loaded data set (the training set) and a 
previously defined approach 

• This is done using the function bci_train (the 
equivalent of the “Train new model…” dialog) 

• Example: 
 
raw = io_loadset(‘imag.set’) 

app = {‘SpecCSP’, ... }; 

[loss,model,stats] = bci_train(‘Data’,raw,’Approach’,app, ... 

    ‘TargetMarkers’,{‘S  1’,’S  2’}); 



Calibrating a Model 

• The bci_train function usually takes 3 inputs: 

– The data (Data parameter) 

– The approach (Approach parameter) 

– The description of how event types map onto 
class labels (TargetMarkers, same as in the GUI) 

• The function returns three outputs: 

– The overall loss estimate (e.g. error rate) 

– The learned model 

– Statistics about the model and training process, 
including results of a cross-validation 



Visualizing a Model 

• Models are visualized using the function 
bci_visualize 

• Example: 
bci_visualize(mymodel) 

 

• This function can take extra arguments that 
are passed on to the responsible drawing 
function (but few drawing functions have 
arguments) 



Applying a Model to Test Data 

• For offline application to test data, the 
function bci_predict can be used – it applies 
the BCI model to each trial in the data and 
calculates loss statistics 

• Example: 
 

[outputs,loss,stats] = ... 

    bci_predict(‘Data’,mydata,’Model’,mymodel); 
 

• Note: the first output are the model’s 
predictions for each trial in the data 



Annotating Data with  
Continuous BCI Outputs 

• The BCI output can be attached as an extra 
channel (or multiple channels, each 
representing the probability of class k) to a 
data set, using the function bci_annotate 

• Example: 
 

newset = bci_annotate(‘Data’,mydata,’Model’,mymodel) 



Reading Real-Time Data 

• Real-time data can be acquired from a device 
and written into a named workspace variable 
using the online reader plugins (run_read* 
functions) 

• Examples: 
 
run_readbiosemi(); # read from a BioSemi device 

 
run_readdataset(‘MatlabStream’,’mystream’,’Dataset’,myset); 



Sending Real-Time Outputs 

• The outputs of a BCI model as applied to some 
stream(s) can be calculated in the background 
online and passed on to some destination – 
this is done using the online writer plugins 
(run_write*) 

• These functions take usually the name of the 
model to use and the name(s) of the stream(s) 
to use 

• Example: 
 

run_writevisualization(‘Model’,’mymodel’, ... 

    ’SourceStream’,’mystream’) 



Performing Batch Analyses 

• Using bci_batchtrain, a single approach can be 
efficiently applied to a list of data sets or file 
names 

• Also multiple approaches can be applied to one 
or more data sets in an automated manner 

• Can not just train models but also make 
predictions and evaluate losses on test data sets 

• Example: 

results = bci_batchtrain('Data',mydatasets, ... 

    'Approaches',myapproaches,'TargetMarkers',mymarkers); 



Parameter Searches 

• It is possible to replace (practically) any value 
in an approach definition by a so-called 
“search range”, i.e. a list of possible values to 
try automatically in a systematic manner 

• A search range is specified by writing the 
expression search(value1, value2, …, valueN) 

• Multiple search parameters in one approach 
lead to combinatorial grid search (slow!) 

• Example: 
 

app={‘CSP’,’Prediction’,{‘FeatureExtraction’,{ ... 

    ‘PatternPairs’,search(1,2,3)}}}; 



3  A Close Look at Components 

Signal Processing Machine Learning BCI Paradigms Devices  

Plugins 

ICA SSA FIR 

IIR FFT … 

LDA QDA 

GMM SVM … 

DAL CSP Spec-CSP 

ERP RSSD … 

TCP 

BCI2000 … 

OSC 



Component 1: Predictive 
Mapping 



Central Predictive Mapping 

• A BCI (with limited memory of the past) can 
be viewed as a mathematical function f: 

 

 

 

• The functional form is arbitrary, for example 
 

𝑦 =  sign(var(𝑾𝑿) +  𝑏) 

• The mapping involves free parameters, here 
W and b, and data from a sliding window X 

y = f(X);   X= y= “subj. excited” (+1)   
     “subj. not excited” (-1) 



Choice of a Functional Form 

• Reflects the relationship between observation (data 
segment X) and desired output (cognitive state 
parameter y) 

• Based on some assumed generative mechanism 
(forward model) – or ad hoc 

 

 

 

 

• Note: Functional form is the inverse mapping! 



Choice of a Functional Form 

• Reflects the relationship between observation (data 
segment X) and desired output (cognitive state 
parameter y) 

• Based on some assumed generative mechanism 
(forward model) – or ad hoc 

 

 

 

 

• Remember: Functional form is the inverse mapping! 



Key Ingredient: Spatial Filter 

• Linear inverse of volume conduction effect 
between sources S and channels X 
𝑿 =  𝑨𝑺   (forward) 
𝑺 =  𝑾𝑿 (inverse) 

 

 

W A=W-1 



Component 2: Signal Processing 



Role of Signal Processing 

• BCILAB allows to implemented BCIs using a 
network of digital signal processing blocks 
(“filters”) 
 
 
 
 
 

• Relevant filter classes: Spatial Filters, Temporal 
Filters, Spectral Filters, Spatio-Temporal Filters, 
Domain Transforms (e.g. DFT) 

Filter Filter 

Filter 

Filter 

Filter Graph 
EEG 

EMG 

Control Signal 



Role of Signal Processing 

• Concrete Toy Example: Feed the amplitude of a brain 
idle oscillation (e.g. 10 Hz alpha associated with 
relaxation) from one EEG channel back to the 
user/subject 
 
 
 
 

• This produces the same output as the following 
functional-style description (T is a temporal filter 
matrix), but is computationally less costly: 

FIR Band-pass 
(8-13 Hz) Squaring 

Moving 
Average 

Square 
Root or 

Logarithm 

Running Variance 

𝑦𝑖(𝑛)  =   𝑏𝑘𝑥𝑖  (𝑛 − 𝑡)

𝑚

𝑘=0

 𝑦𝑖(𝑛)  =  
1

𝑚 − 1
 𝑥𝑖  (𝑛 − 𝑘)

𝑚

𝑘=0

 

𝑦𝑖(𝑛)  =  𝑥𝑖  (𝑛)
2 𝑦𝑖(𝑛)  =  log 𝑥𝑖  (𝑛)  



Component 3: Machine Learning 



The Problem of  
Unknown Parameters 

• Processing depends on unknown parameters 
(person-specific, task-specific, otherwise 
variable) – e.g., per-sensor weights as below: 

 

Blankertz et al. 2007 



Reasons for  
Parameter Uncertainty 

• Folding of cortex differs between any two 
persons 

• Relevant functional map 
differs across individuals 

• Sensor locations differ 
across recording sessions 

• Brain dynamics are non- 
stationary at all time  
scales 



Calibration Data 

• Many possible kinds of data could be used 

• Best known type of calibration data:  
example data, i.e. examples of EEG of a 
person being excited, not excited, etc.  

• Collected in a special calibration recording 
(before actual online use of the BCI) 

“target markers” in BCILAB 



Machine Learning In Practice 

• Often, one trial segment (sample) is extracted for 
every target marker in the calibration recording and 
is used as training exemplar Xk 

• Its associated label yk can be deduced from the 
target marker 

S2 S1 R1 S1 

2 1 1 

, , 
… 



Machine Learning In Practice 

• Often, one trial segment (sample) is extracted for 
every target marker in the calibration recording and 
is used as training exemplar Xk 

• Its associated label yk can be deduced from the 
target marker 

S2 S1 R1 S1 

2 1 1 

, , 
… Training 

function 
Model 

X,y 𝜽 



Component 4: Feature Extraction 



Feature Extraction 

• Caveat: Off-the-shelf machine learning methods 
often do not work very well when applied to raw 
signal segments of the calibration recording 

– too high-dimensional (too many parameters to fit) 

– too complex structure to be captured (too much 
modeling freedom, requires domain-specific 
assumptions) 

1000s of degrees of freedom! 



Feature Extraction 

• Typical Solution: Introduce additional mapping 
(called “feature extraction”) from raw signal 
segments onto feature vectors which extracts the key 
features of a raw observation 

– output is usually of lower dimensionality 

– hopefully statistically “better” distributed (easier to 
handle for machine learning) 

 



Concrete Example Task 

• Flanker Task: The experiment consists of a sequence of 
ca. 330 trials with inter-trial interval of 2s +/- 1.5s 

• At the beginning of each trial, an arrow is presented 
centrally (pointing either left or right) 

• The arrow is flanked by congruent or incongruent 
“flanker” arrows (preceding the center by a few ms): 

 

 

• The subject is asked to press the left or right button, 
according to the central arrow direction, and makes 
frequent errors (ca. 25%) 



Approach 

• Calibration recording is band-pass filtered 
between 0.5Hz and 15Hz 

– 0.5Hz lower edge removes drifts 

– 15Hz upper edge leaves enough room for sharp 
ERP features 

• Epochs are extracted for each trial and label is 
set to A for incorrect trials and B for corrects 



Actual Data 

• Time courses for all trials super-imposed 
(color-coded by class) – but here different task 



Extracted Epochs 
Channel time courses  
under Condition B 

Channel time courses  
under Condition A 

Three sample trials (out of 100)  
shown: mean, -1 std. dev, +1 std. dev  

Response (A or B) 



Extracting Linear Features 

For each trial segment, calculate signal mean in  
3 time sub-windows ( 3-dim feature vector) 

f1 f2 f3 

f1 

f2 f3 



Resulting Feature Space 

• Plotting the 3-element feature vectors for all 
error trials in red, and non-error trials in 
green, we obtain two distributions in a 3d 
space: 

Note that across all channels this space has in fact 3 x #channels dimensions! 



• Including the feature extraction, the analysis process 
is as follows: 

ML with Feature Extraction 

S2 S1 R1 S1 

2 1 1 

, , 
… 

Training 
function Model 

X,y 

Extract 
Features 

𝑓1
𝑓2
⋮

 
𝑓1
𝑓2
⋮

 
𝑓1
𝑓2
⋮

 

, , 

2 1 1 

… 

𝜽 



Machine Learning Continued 

• The feature vectors are passed on to a machine 
learning function (e.g., Linear Discriminant Analysis) 

f1 

f2 f3 

e.g., LDA 



Machine Learning Continued 

• The feature vectors are passed on to a machine 
learning function (e.g., Linear Discriminant Analysis) 

• … which determines a parametric predictive mapping 

f1 

f2 f3 

e.g., LDA 

𝜽 



Simple 2-class LDA In a Nutshell 

• Given feature vectors 𝒙𝑘  (in vector form) in 𝒞1 and 𝒞2, 
 

𝝁𝑖 = 
1

𝒞𝑖
 𝒙𝑘

𝑘∈𝒞𝑖

,   𝜮𝑖 =  𝒙𝑘 − 𝝁𝑖 𝒙𝑘 − 𝝁𝑖
⊺

𝑘∈𝒞𝑖

 

 
𝜽 = 𝜮1 + 𝜮2

−1 𝝁2 − 𝝁1 , b = 𝜽⊺ 𝝁1 + 𝝁2 /2 

 

• Caveat: θ often high-dimensional but only few trials available 

• Can use a regularized estimator instead, here using shrinkage; 
instead of Σ𝑖, we use Σ 𝑖 above: 

 
Σ 𝑖 = 1 − 𝜆 Σ𝑖 + 𝜆𝑰 

 

 

𝜽 

b 



Resulting Predictive Mapping and 
Model 

 
• LDA produces parameters of a linear mapping 
 

y = 𝜽𝒙 − 𝑏 
 

• For classification, the mapping is actually non-
linear:  

y = sign(𝜽𝒙 − 𝑏) 
 

• The learned model with its person-specific 
parameters here consists of (𝜽, 𝑏); generally it 
could include adapted signal-processing 
parameters, feature-extraction parameters, etc. 



Spatial Filters Visualized 

• Topographically mapped, the following filters 
emerge: 

Note: This method (and its close relative using  
“shrinkage LDA” in particular) yield state-of-the-art 
Performance on ERPs. 



Even More About  
Calibration Data 



Model Calibration 

• Can use calibration / training data to estimate 
parameters from, and a separate calibration step 

 

      Calibration data 

BCI 
Model 

Calibration step 



Prior Knowledge 

• Prior knowledge is neuroscientific, such as: 
– Anatomical atlases 

(e.g. Talairach, LONI) 
– Functional atlases 

(if available) 
 

– Timing information  
(e.g. neural latencies,  
reaction times) 

 

– Brain idle rhythm 
frequency bands 
(alpha, beta, theta, …) 



Prior Knowledge 

• Prior knowledge is neuroscientific, such as: 
– Anatomical atlases 

(e.g. Talairach, LONI) 
– Functional atlases 

(if available) 
 

– Timing information  
(e.g. neural latencies,  
reaction times) 

 

– Brain idle rhythm 
frequency bands 
(alpha, beta, theta, …) 



Prior Knowledge 

• Prior knowledge is neuroscientific, such as: 
– Anatomical atlases 

(e.g. Talairach, LONI) 
– Functional atlases 

(if available) 
 

– Timing information  
(e.g. neural latencies,  
reaction times) 

 

– Frequency bands of  
oscillatory processes 
(alpha, beta, theta, …) 



Calibration Data 

• Example/calibration data is used to calculate 
optimal parameters of a BCI, and is extremely 
important 

 



The Ideal Calibration Data 

• Collected with the same/similar measurement 
apparatus as used for online runs 

– otherwise extra transformations and uncertainty 
incurred 

• Comprises multiple independent realizations / 
repetitions / trials (to quantify variability) 

–  one-shot learning (one exemplar) is much harder 



The Ideal Calibration Data 

• Collected under conditions that are as close to 
those of the online runs as possible (i.e., drawn 
from the same statistical distribution) 

– Same person is preferable 

– Same sensor arrangement is preferable 

– Same session is preferable 

– Task parameters (stress level, …) should be similar 

• Obviously a cost/benefit tradeoff:  

– Would trade off some performance for being able to 
reuse one recording for multiple sessions and persons 



The Ideal Calibration Data 

• If there is a systematic bias (e.g., different 
session), data should cover multiple 
realizations (e.g., multiple sessions) to capture 
variability 

• A plain EEG recording is “unlabeled” (no 
knowledge about the association between raw 
observed signal and the cognitive state 
variable of interest) 

• Labeled data (person is “surprised” / “not 
surprised”) is far more useful than unlabeled 



The Ideal Calibration Data 

• Labels are assigned per realization (e.g., per 
trial) and index the output that the BCI shall 
produce for this class of data 

    A     B     A 



Summary 

• The required data to calibrate a BCI resembles 
data produced by controlled psychological 
experiments 

 

Zander et al., 2010 



Summary 

• Features 

– continuous EEG (or other) 

– multiple trials/blocks (capturing variation) 

– randomized (eliminating confounds) 

– event markers to encode cognitive state 
conditions of interest, e.g., stimuli/responses 
(called “target markers” in BCILAB) 

• Can also be used for offline performance tests 

S2 S1 R1 S1 



A  Further Reading 



These and Futher Slides: 

ftp://sccn.ucsd.edu/pub/bcilab/ 

ftp://sccn.ucsd.edu/pub/bcilab/lectures/
ftp://sccn.ucsd.edu/pub/bcilab/lectures/
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Researchers to Watch 

• Klaus-Robert Mueller et al. (TU Berlin) – one of the leading 
BCI groups 
http://www.bbci.de/publications.html 

• Marcel van Gerven et al. (Donders) – BCI and Neuroscience 
with a Bayesian approach 
https://sites.google.com/a/distrep.org/distrep/publications 

• Ryota Tomioka (U Tokyo) – known for some technical 
achievements 
http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka 

• Karl Friston et al. (UC London) – working on relevant 
underpinnings for neuroimaging (outside BCI) 
http://www.fil.ion.ucl.ac.uk/Research/publications.html 

• Leading Statisticians and Machine Learners: Michael I. Jordan, 
Andrew Ng, Lawrence Carin, Zoubin Ghahramani, Francis 
Bach, Geoffrey Hinton, Ruslan Salakhutdinov, Yeh Whye Teh, 
David Blei, … 
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