
MobiGaze: A Lightweight, Low-Cost Eye Tracking System for Mobile
Brain/Body Imaging Applications

David Medinea, Matthew Grivichb, Scott Makeiga

aSwartz Center for Computational Neuroscience/INC
bNeurobehavioral Systems

1. Introduction

MobiGaze is a head-mounted eye tracker devel-
oped at the Swartz Center for Computational Neu-
roscience by Matthew Grivich. Eye trackers come
in many flavors and are available over a wide range
of prices. Since no eye tracker currently available
meets the needs of certain research projects at the
Swartz Center, MobiGaze was developed.

In mobile brain/body imaging experiments
(MoBI <1>) the subject must be free to move
about. Thus the ideal eye tracker for a MoBI
situation should be portable (which suggests head
mounting), comfortable and capable of determining
relevant information about a subject’s gaze trajec-
tory in a 3D environment.

The first two constraints are somewhat pedes-
trian, but the third, is a difficult problem. Since a
person may orient their gaze not only through eye-
ball movements, but also through head movements,
a determination of head pose is necessary for valid
gaze tracking in 3D.

Thus, if a subject may be free to move, conven-
tional eye tracking systems must determine head
pose as well as eyeball orientation. In the case of
‘remote’, or ‘table-mounted’, systems (where cam-
eras and illumination are not attached to the sub-
ject), there are numerous successful methods for es-
timating head pose. These often use geometric ap-
proaches <2> <3> <4>. Machine learning tech-
niques have also been proposed to deal with natural
head movements <5> <6>.

These techniques are more or less effective at in-
corporating head movements and thereby increase
the robustness of an eye tracker. But, often the goal

Email addresses: dmedine@ucsd.edu (David Medine),
smakeig@ucsd.edu (Scott Makeig)

in a remote eye tracker is merely to locate the sub-
ject’s gaze in the space of a computer monitor. In
a MoBI paradigm, we are often interested in a sub-
jects’ gaze at obejects or withing regions through-
out the experimental laboratory.

Since MobiGaze is an eye tracker that is intended
for deployment in MoBI paradigms, its natural en-
vironment is one equipped with motion capture
(mocap) equipment. Thus, MobiGaze may utilize
information streaming from a mocap system to lo-
cate a user’s head location and regions of interest
in the experimental laboratory.

In the absence of mocap technology, MobiGaze
is able to determine the point of regard (POR) in
a plane of the viewing frustum of a ‘scene camera’,
which is mounted above the subject’s eye to approx-
imately ‘see’ what he sees. These 3D coordinates
can also be projected into the 2D space of the scene
camera image.

By referencing a subject’s head position, we may
track the movements of the scene camera since they
are the same as the movements of the head itself
(they are attached). Thus, the coordinates indicat-
ing the subjects gaze an be gien in the space of the
mocap system. A ray between this point (the gaze
vector ~g) and the location of the scene camera (the
‘eye’ vector ~e) is then extended outward to an arbi-
trary length. It is then a matter of simple geometry
to determine if and where this ray would intersect
with regions of interest in mocap space.

2. Hardware

The hardware for MobiGaze is not expensive and
is fairly easy to construct. When constructed, it
consists of two parts, a driver box and a modified
glasses frame with cameras mounted. The glasses
frame can be of any convenient manufacture, but a

Preprint submitted to Elsevier September 23, 2015



reasonable choice is a close-fitting sunglasses frame
such as the Wileyx XL-11. The bottoms of the
frame must be cut away so that the eye camera
can view the wearer’s eyeball unobstructed. It is
also important that the glasses be more or less ‘af-
fixed’ to the subject throughout the experiment so
that shifts in position do not distort the initial cal-
ibration.

The design of the glasses is similar to previous
head-mounted systems <7> <8> <9>. This is also
the design used in the commercial PupilPro hard-
ware https://pupil-labs.com/pupil/. In this
tried and true configuration, two cameras are at-
tached to a glasses frames. One camera – the eye
camera – points toward one of the subject’s eye-
balls, and another – the scene camera – points
outward and is positioned just above the subject’s
eyeball. The eye and scene cameras are mounted
to the glasses frame with flexible, low-gauge cop-
per wire so that their positions may be easily ad-
justed if necessary. Super glue is used for the ini-
tial attachment and a layer of epoxy is later added
to strengthen the bond. The illuminating LEDs
are glued to the bottom of the eye camera. Very
small webcams (such as the CCIQ II camera http:

//www.misumi.com.tw/PLIST.ASP?PC_ID=13) are
used so as keep the head gear as lightweight and
low-power as possible. The scene camera needs to
be color, but the eye camera should be black and
white. Since infra-red light is used to illuminate the
eye (we choose an invisible band in order to mini-
mize distraction and discomfort) the lens must not
be IR blocking.

One must also construct a driver box to hold
the circuitry that powers the two cameras and two
infra-red LEDs that are mounted to the glasses.
The input to the driver box is a 5V DC signal.
5V batteries that use USB are common and a
good choice for use as a power supply. The cir-
cuits required to provide this power is very sim-
ple and easy to construct for anyone with ex-
perience soldering. Some cable making is also
necessary to construct MobiGaze. A parts list,
circuit diagrams, and instructions for construc-
tion are available online: http://sccn.ucsd.edu/
labinfo/eyetracker/index.php.

2.1. Hardware Extension: Trial Frames

We have also implemented the MobiGaze hard-
ware setup using the 674 Simple Trial Frames man-

1https://www.wileyx.com

Figure 1: Wearing MobiGaze.

ufactured by Hasegawa Bicoh Co., ltd.2 These
are adjustable glasses frames for which prescription
lenses can easily be swapped in and out. The ad-
vantage is that MobiGaze can be used by subjects
that require corrective lenses but for whom contact
lenses are inappropriate.

3. Software

The software associated with MobiGaze is (in
the interest of flexibility) broken into several parts.
These can be classified as either pupil tracking (es-
timating the pupil shape and position from the eye
camera image), calibrating (determining a mapping
from the estimated pupil center to points whose
location are known), gaze tracking (applying this
mapping to the estimated pupil position) and ex-
tensions (harvesting the gaze tracking data for in-
teractive applications).

The constellation of MobiGaze software appli-
cations that comprise the system are written in
C++ and are open source. Since these applica-
tions need to communicate data streams to one
another in real time, the data streaming library
Labstreaminglayer (LSL) is relied on heavily. The
LSL source code host page (https://github.
com/sccn/labstreaminglayer) also contains the
source to the MobiGaze applications. Compiled
versions of LSL for Windows 7 and 8 (including

2http://www.bicoh.co.jp/eng_products_ophthalmic.

htm

2

https://pupil-labs.com/pupil/
http://www.misumi.com.tw/PLIST.ASP?PC_ID=13
http://www.misumi.com.tw/PLIST.ASP?PC_ID=13
http://sccn.ucsd.edu/labinfo/eyetracker/index.php
http://sccn.ucsd.edu/labinfo/eyetracker/index.php
https://www.wileyx.com
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
http://www.bicoh.co.jp/eng_products_ophthalmic.htm
http://www.bicoh.co.jp/eng_products_ophthalmic.htm


Figure 2: Wearing the trial frames version of MobiGaze

binaries for the MobiGaze applications discussed
below) are available here: ftp://sccn.ucsd.edu/

pub/software/LSL/

3.1. Pupil Tracking: Finding the Pupil Center

A most important step in any video based eye
tracking application is to locate the eye from the
video image. The close proximity of the eye camera
to the eyeball (as is the case for most head mounted
eye tracking systems) makes this relatively straight
forward. Indirect IR illumination is used to cre-
ate a ‘dark pupil’ image from which we may use
computer vision techniques to derive necessary in-
formation about the pupil and corneal reflection.
The physical position and focus of the eye camera
hardware may be adjusted to optimize its view of
the eye. Furthermore, the dimensions of the frames
in which the gaze tracking algorithm searches for
the pupil and corneal reflections are adjustable in
the software layer.

The software application that performs the gaze
tracking is called GazeStream. Once the region of
interest for both pupil and corneal reflection are
sufficiently sized, thresholding is applied to mark
the most likely regions that contain these features.
This is done by simple brightness thresholding.

The pupil is assumed to be the darkest region
visible. Spatially sub-sampled points that are dark
beyond the settable threshold are used as inputs to
the ellipse-fitting algorithm given by <10>. The
center of the fitted elise is then take as the center
of the pupil.

A similar procedure is used to locate the points in
the image that most likely comprise the corneal re-
flection. This time, a circle fitting technique <11>
determines the region most likely comprises the
corneal reflection. The points in this region are
removed from the ellipse fitting process that esti-
mates the pupil from the image.

In Figure 3 we see a screenshot of GazeStream in
action. Here the application is in its ‘Eye camera’
modea and the points within the (adjustable) green
box that are dark beyond a certain threshold are
painted green. These are what we assume consti-
tute the pupil and they are fed to the ellipse fitting
algorithm. The center of the estimated ellipse is
marked with a yellow spot by the software. This
fitting may be improved by a dual-ellipse method
such as the one suggested in <12>.

3.2. Calibration: Mapping the Eye Center to Gaze
Points

Just as GazeStream can fit an ellipse to what is
most likely the pupil from the eye camera image,
it can also fit any number of circles around what
are most likely to be calibration spots that are dis-
played on a screen. Calibration patterns of colored
circles are seen by the scene camera when the sub-
ject’s head is oriented toward the calibration screen.

A calibration application called EyeCallbrator is
responsible for displaying these calibration points
and knowing their location on the calibration screen
as well as the dimensions of the screen itself. Eye-
Calibrator also registers the center of the pupil
(data passed from GazeStream in real time), and
determines a mapping that projects the center of
the pupil to center of the calibration targets.

Once this mapping is computed, it can be saved
and summoned by various applications in the Mo-
biGaze software constellation. One such applica-
tion is GazeStream itself, which has both a ‘Scene
camera (Calibrate)’ mode as well as a mode sim-
ply referred to as ‘Scene camera’ mode, which is
discussed below.

In Figure 4 we see GazeStream in its Scene cam-
era (Calibrate) mode. The purpose of this part of
the system is to pinpoint the locations of calibra-
tion targets in scene camera space. This data is
then fed to EyeCalibrator. Note that since these
coordinates are updated in real time, the subject is
free to move her head somewhat during calibration
without disturbing the accuracy.

During calibration, the subject is presented with
a pattern of calibration targets such as in the one

3

ftp://sccn.ucsd.edu/pub/software/LSL/
ftp://sccn.ucsd.edu/pub/software/LSL/


Figure 3: GazeStream in Eye Camera mode.

Figure 4: GazeStream in Scene Camera (calibration) mode.

4



Figure 5: The calibration targets as they appear on the mon-
itor.

shown in Figure 5. The red calibration target is the
current target of interest. In the course of the cali-
bration procedure, each target will become the sole
red target. While the subject gazes on the target,
his estimated pupil positions and the approximate
position of the calibration target are recorded for
one second. These points’ mean and standard de-
viation are stored. This data is used to minimize a
function that maps the target position to the pupil
center. The inverse of this function will calculate
an estimated POR from the location of the pupil
center.

3.3. Calibration: Details

This section describes the mathematical and pro-
grammatic details of the MobiGaze calibration pro-
cedure. The goal of the procedure is to minimize
a parametric function that transforms a calibration
target in 3D ‘world space’ to a point that represents
the center of the pupil in 2D eye camera space.

The free parameters that control our mapping
function are r, the radius of the eye; ~v0 the vector
comprised of (x0, y0, z0), the distance (in mm) of
the eyeball center from the scene camera; α, β, and
γ, the yaw, pitch and roll of the calibration screen;
~bxyz, the 3D displacement of the eye camera from
the eyeball (in mm); and l, the eye camera camera
focal length (in pixels) which can (and should) be
measured before hand.

The first step in the procedure is to use computer
vision to help estimate the distance and pose of the
scene camera relative to the calibration targets.
But first, prior to estimating these parameters,
the scene camera itself must be correctly cali-
brated. This compensates for the effects of radial
and tangential distortion inherent in the camera

Figure 6: The geometry of the eye camera calibration pro-
cedure.

hardware. The open source computer vision
library OpenCV (http://opencv.org/) gives a
method for doing so here: docs.opencv.org/

doc/tutorials/calib3d/camera_calibration/

camera_calibration.html.
We may lean a little further on the OpenCV li-

brary to determine the 3D coordinates of the cal-
ibration targets seen by the scene camera in a co-
ordinate space where the camera itself is the ori-
gin. To do this, we will need to know the height
and width of the calibration monitor in millime-
ters. EyeCalibrator uses the OpenCV function
solvePnP() to locate each calibration target.3 We
call this point ~v, a vector containing the values
(x, y, z).

We must also save the distance of the scene cam-
era from the target presented in the middle of the
screen (which is always first in the calibration pro-
cedure). This is the value of x for that middle tar-
get. We save this as a variable d which will be used
in the inverse eye mapping after the calibration pa-
rameters have been estimated.

The next step is to ‘shrink-wrap’ the scene cam-
era image onto the eyeball (which we assume to
be spherical). Figure 6 shows the geometry of the
setup. To do this, we first subtract ~v0 (the eye cen-
ter) from ~v (target location), and call this ~v1.

~v1 = ~v − ~v0 (1)

We can now obtain the ‘shrink-wrapped’ vector
~v2 by normalizing ~v1 and multiplying by r. At this
point, ~v2 is the calibration target of interest, pro-
jected onto a sphere of radius r. Since this vector

3For more details, please consult the OpenCV documen-
tation:http://docs.opencv.org/modules/calib3d/doc/
camera_calibration_and_3d_reconstruction.html.

5

http://opencv.org/
docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html


Figure 7: Above: projecting the scene camera image onto the
eye and rotating it to line up with the estimated pupil posi-
tion; below: extracting vertical pupil position in eye camera
space from x3 and y3 – components of ~v3 – and the eye
camera focal length, x4 = l.

is normalized and scaled, it lies on a sphere about
the origin. We are now free to consider the eye ball
center to be point (0, 0, 0).

~v2 =
r ~v1
‖~v1‖

(2)

We then define a rotation matrix R given by the
radian values α, β, and γ.

R =

cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ
sinα cosβ sinα sinβ sin γ + cosα cos γ cosα sinβ cos γ − cosα sin γ
− sinβ cosβ sin γ cosβ cos γ

 (3)

Now ~v3 (the calibration target projected onto the
eyeball and properly rotated as shown in Figure 7)
can be obtained:

~v3 = R~v2. (4)

In order to obtain the 2D coordinates of this point
in the space of the eye camera (in pixels), we define
a vector ~v4 whose components, (x4, y4, z4), are:

x4 = l
y4

y3−by)
= x4

bx−x3
z4

(z3−bz)
= x4

bx−x3
,

(5)

where (bx, by, bz) (a.k.a~bxyz) represents the position
of the eye camera relative to the eye (which is now
the origin) and x4 = l is the eye camera’s focal
length (in pixels). The geometric reasoning behind
Equation 5 is visualized in the bottom part of part
of Figure 7.

Now, the points y4 and z4 are estimates of where
the center of the pupil should be when looking at
the calibration target given by ~v. Thus, we have all
we need in order to find the values of the free pa-
rameters that will minimize the difference between

(y4, z4) and the actual, recorded pupil centers for
each calibration target.

We use the downhill simplex method <13> to
find the 11 free parameters values. The algorithm
used for this procedure is adapted directly from sec-
tion 10.4 of ye olde Numerical Recipes in C<14>.

3.4. Inverting the Eye Map

Once the 11 parameters that get us from ~v to
(y4, z4) are determined by the calibration proce-
dure, we must construct an inverse eye map that
gets from (y4, z4) to the 3D vector ~v. To do this,
we take advantage of the fact that we assume the
eyeball to be a sphere.

Recall that the vector ~v3 is the POR shrink
wrapped onto the eyeball, which is of radius r, and
rotated. Thus we may state:

r2 = x23 + y23 + z23 . (6)

Furthermore, from Equation 5, we can arrive at:

x3 = bx− x4
y3 = y4(bx−x3)

l + by
z3 = z4(bx−x3)

l + bz.

(7)

Combining Equations 6 and 7, we arrive at a
quadratic form of Equation 6, this time in terms
of (bx− x3):

0 = (1 +
y2
4

l2 +
z2
4

l2 )(bx − x3)2+

(−2bx +
2y4by

l + 2z4bz
l )(bx − x3)+

(b2x + b2y + b2z)− r2.
(8)

The appropriate value of bx−x3 can now be found
with the quadratic formula. At this point (bx−x3)
can be substituted into 7 to give us vector ~v3.

The inverse of a rotation matrix is its transpose,
so we can now recover ~v2 from ~v3

~v2 = RT ~v3. (9)

Since ~v2 is proportional to ~v1 we may state that

y−y0

x−x0
= y2

x2
z−z0
x−x0

= z2
x2
.

(10)

This gives us the horizontal and vertical positions
of the POR at a depth of x mm. These coordinates
are now all in mm. Since the information from the
eye camera is 2D, without more information, we
cannot estimate the true depth of the POR. Thus
we set x = d, where d is the on-axis displacement

6



of the eye camera from the first calibration target
that we stored as part of the calibration procedure.

This is a reasonable choice because if the subject
were to have his head held perfectly still by a chin
strap or bite-bar, and if the PORs of interest are all
displayed on the calibration monitor, x = d would
be absolutely true. Indeed these conditions can be
created in a laboratory, but obviously, it inhibits
all subject mobility. We shall see that when we co-
register MobiGaze with a motion capture system,
these constraints become unnecessary.

Finally, there is one caveat worth mentioning.
We consider the point on axis with the center of
the scene camera to have horizontal and vertical
displacements of 0 mm. This means that in or-
der to work with y4 and z4 we must first subtract
half the height/width of the screen minus 1 pixel to
center the coordinates. Without this mapping, y4
and z4 will be centered around the lower right-hand
corner of the monitor instead of the center of the
monitor.

3.5. Gaze Tracking in Scene Camera Space

It is sometimes good to pinpoint a POR in the
viewing frame of the scene camera. MobiGaze is
equipped with this capability as illustrated in Fig-
ure 8. In order to accomplish this, we must take into
account the radial (barrel) distortion of the scene
camera lens. As mentioned above, it is necessary to
calibrate the scene camera prior to use. We use the
returned 3 distortion coefficients, (k1, k2, k3) and
the calculated horizontal and vertical focal lengths
(ly, lz) to compute a 3rd order Brown-Conrady
model of the radial distortion <15>.

The horizontal and vertical and vertical displace-
ments (y, z) that the inverse eye model returns are
first scaled by the initial target distance x = d
which remains fixed as the depth of POR. The sum
of the squares of these values is the square of the
radius of the distortion model.

ρ = (
y

x
)2 + (

z

x
)2 (11)

The radial distortion is then expressed as

δ = 1 + k1ρ
2 + k2ρ

3 + k3ρ
3; (12)

and, finally the coordinates of the POR in the 2D
space of the scene camera image are simply

ys = −ly ∗ δ y
x + .5(w − 1)

zs = −lz ∗ δ z
x + .5(h− 1)

(13)

where w and h are the width and height of the
scene camera image in pixels.

3.6. Extrapolating 3D Gaze Information Using Mo-
tion Capture

In the context of MoBI experiments, it is most
useful to have information about where a subject
is directing her gaze in the 3D space. Because the
vector ~v is the mapping of the pupil position to
some point that is in front of the scene camera, and
because the scene camera is assumed to be the ori-
gin in this space, we can easily find a gaze vector
~g which is a ~v translated and rotated by the same
amount as the location of the scene camera in mo-
cap coordinates.

In order to accomplish this, we first must ref-
erence the initial scene camera position. This is
accomplished by noting the 3D coordinates (in mo-
cap space) of the 4 corners of the calibration screen
and 4 reference markers affixed to the subject’s
head. Since OpenCV’s pose finder method can de-
termine the displacement of the camera relative to
the screen, and since the screen’s position is known,
the original position of the scene camera can be ref-
erenced simultaneous to the original position of the
4 head markers.

Now the subject is free to move. Using the
method of Challis to determine rigid body rotation
and translations <16>, we may at any time after
calibration determine an updated position of the
scene camera. We consider this point (the scene
camera location translated and rotated the same
degree as the head markers) to be the ‘eye’ vector,
~e. Given this point and the gaze vector, ~g, we have
the 2 points necessary to give an estimated gaze
trajectory in motion capture coordinates.

We may then test to see where the ray ~g−~e, when
extended, intersects with the plane of the calibra-
tion screen. In order to determine the dimensions
of the screen, we first must mark its corners with
mocap markers. Any number of screens can be set
up, but each must play a role in the calibration
procedure for the software to work properly.

In theory, any robust 3D head tracking system
could support registering an eye tracker in room co-
ordinates, although currently only the PhaseSpace
system is implemented. We welcome open source
community development that will implement other
mocap technologies (or any other improvements,
for that matter). A particular advantage of the
PhaseSpace system is that its active (LED emit-
ter) markers send their marker codes to the motion

7



Figure 8: GazeStream in Scene Camera mode, after calibration has been loaded.

Figure 9: MobiGaze co-registered with mocap allows for ro-
bust head movement and eye tracking in 3D space.

capture cameras, eliminating the chance of confus-
ing markers that are temporarily occluded by sub-
ject movements (or potentially, by the free move-
ments of several subjects each wearing MobiGaze
systems).

4. Applications and Accuracy

We present a variety of configurations for the Mo-
biGaze system and analyze the accuracy for each
configuration. In eye tracking, accuracy is defined
as the angle between the ray formed by the eye and
the target that the subject is supposed to be re-
garding and the ray formed by the eye and where
the actual POR is reported <17>. The smaller this
error, the higher the accuracy.

Obviously, the acuity of these measures depend
on the performance of an actual subject. Thus,
many manufacturers will use a mechanical eye to
calibrate and test their devices. It has been sug-
gested that this enhances the quality of eye tracking
accuracy <18>. Here, we are only concerned with
the accuracy of the eye tracker on human subjects
as that is the only application the device is intended
for.

Due to the variety of eye tracking methodologies
and systems, one can only generalize about what
constitutes a ‘good’ accuracy in human subjects.
One such generalization is that accuracy within 1
degree is very difficult to achieve. Another is that
one commonly sees accuracy measures in the vicin-

8



Figure 10: Targets and PORs displayed in 2D (from Protocol
1).

ity of 1.5 degrees in the literature. See for example
<19> <20> <6> <21> <22> etc.

4.1. Targets on a Screen

A common application of an eye tracking system
in behavioral neuroscience is to present visual stim-
uli to a subject on a computer monitor. In this case,
we may measure accuracy simply by comparing the
position of the target to the reported POR.

In order to meaningfully measure the accuracy,
some data manipulation is necessary. The raw data
output from MobiGaze is a duple of values. These
range (when gaze is directed at a) from 0 to 1, the
point 1,1 corresponding to the upper left corner of
the monitor. The calibration points (given by the
same coordinate system) are used as targets in the
following procedures.

An example of what this looks like is given in
Figure 10. Here the color corresponds to the error
in pixels which we may calculate simply by multi-
plying by these normalized positions by the screen
resolution.

If we wish to measure the angular error (accu-
racy) in 3D space, we must first project the target
and PORs to the monitor that we are viewing. To
do this, we first assume that the monitor itself is a
plane. We then locate the normalized, 2D coordi-
nates of the targets and PORs on the plane formed
by 2 axes in 3D. This is done simply by adding a
column of zeros to the 2D normalized coordinates.
We can then project these coordinates to the plane
formed by three of the corners of the display moni-
tor.4 This yields a picture wherein our targets and

4The affine transform that performs this mapping is

Figure 12: The data for Protocol 1.

PORs are located in 3D space as shown in Figure
12. The methods described above are used to deter-
mine the location of the scene camera at any point
in time.

Protocol 1:Head Still. The mean distance from eye
to target is 3.01 m in this protocol. The subject
is free to move when calibrating and performing
the task of gazing on each target for a period of
time. By noting the actual location of the target
and the location of the gaze we can calculate the
angle between the vectors connecting these points
to the estimated position of the scene camera for
each datum. The monitor used in this experiment
is a projection screen with the dimension of 1561.83
by 1057.27 mm and a resolution of 1280 by 2024
pixels.

Shown in Figure 12 is the data projected into 3D
space. In Figure 11 are histograms showing the ac-
curacy for each target point. The median accuracy
overall was 1.26 degrees.

Protocol 2: Wandering Head. We may also esti-
mate the accuracy of MobiGaze in an ambulatory
situation. In this protocol, we choose 1 rather than
13 targets, but the subject is asked to wander about
the room while gazing at this sole target.

The movement of the scene camera and the es-
timated PORs are shown in Figure 13. The hori-
zontal and vertical range of the angle of the scene
camera relative to the target is 73.64 and 43.29 de-
grees respectively. The range of distance traveled
is 2.81 meters. The median accuracy was measured
as 2.87 degrees. Figure 14 shows the accuracy (in

computed using Matlab’s Procrustes method:P http://www.

mathworks.com/help/stats/procrustes.html.

9

http://www.mathworks.com/help/stats/procrustes.html
http://www.mathworks.com/help/stats/procrustes.html


Figure 11: Histograms of accuracy at each target point for Protocol 1.

Figure 13: The subject moves freely and gazes at the center
target.

degrees) as functions of distance and the angle be-
tween the scene camera-target vector and the vector
orthogonal to the target on the screen.

Protocol 3: 3 Monitors. MobiGaze can be config-
ured to track POR for targets that appear on mul-
tiple monitors. In this protocol we show results for
such a setup. The subject sits before a triptych of
monitors in portrait orientation. The monitors in
this protocol are each 768 by 1366 pixels and mea-
sure 333.72 by 524.96 mm.

Shown in Figure 15 is the setup for this protocol.
The median overall accuracy for this protocol is 3.01

Figure 14: Accuracy as functions of distance and angle in
Protocol 2.

10



Figure 15: The experimental setup and data for Protocol 5.

Figure 16: Wandering and gazing at ‘hotspots’ (POR error
is arbitrary).

degrees which boils down to 103.80 pixels given the
distance of the subject from the monitors.

4.2. Targets in 3D Space

In the following procedures we show how Mo-
biGaze may be used to estimate PORs in 3D space,
quite apart from a monitor. This is of particular
advantage in MoBI experiments which tend to be
more interactive, rather than passive experiences
for subjects. In the case of tracking PORs on a
computer monitor, MobiGaze will actually estimate
where in the space of the monitor the subject is
gazing. In the following protocol, MobiGaze will
instead report as to whether or not a subjects POR
points toward the vicinity a particular, pre-recorded
points in 3D space. The tolerance (in degrees) for
how near the gaze must be to the target is settable.

Protocol 4: Hotspots. In the experiment illustrated
in 16, 12 ‘hotspots’ are placed at roughly equal in-
tervals on the walls of the lab. The subject wanders

around the room gazing from hotspot to hotspot. In
this configuration, MobiGaze determines whether
or not a subject’s gaze intersects with each hotspot
by measuring the angle between their vectors. If
the angle is less than a certain tolerance, we say
that the subject is gazing toward the hotspot. We
do not provide a measure of accuracy in this proto-
col as this would be somewhat artificial. But, this
procedure for discrete determination of gaze inter-
section can be a very powerful tool in the context
of a MoBI experiment. It allows researchers to de-
termine with authority whether or not a subject is
directing his gaze in the vicinity of any one of a
number of different points in a room.5

5. Future Work

The software applications associated with Mo-
biGaze were developed using the Embarcadero de-
velopment environment which places them firmly
in the realm of Windows only. It is desirable to
repackage the software to make it cross platform,
probably using Qt (http://www.qt.io/) as a GUI
building environment. Such a project also requires
incorporating the video grabbing software stack for
each supported operating system.

The MobiGaze system is also designed to work
in conjunction with the PhaseSpace motion capture
system. In theory, however, any 3D motion capture
technology could be used. This would most likely
require some modification of the code in order to
interface correctly with other systems’ spatial ori-
entation and units of measure. A desirable feature
would be a GUI so that users rather than develop-
ers could adjust these parameters on the fly.

As of now, the MobiGaze cameras must be
physically connected to the computer that runs
GazeStream. The driver box, however, can be pow-
ered by a 5-V USB battery, but it is certainly desir-
able to develop a wireless capability for streaming
the camera’s ouput as well.

It is also true that sometimes in the course of
an experiment MobiGaze glasses may change their
position on the subjects face – either through slip-
ping or by unconscious adjustment on the part of
the wearer. This will, of course cause inaccuracies

5Incidentally, one may also configure hotspots so that the
ray of interest is the one formed by two points in mocap
space (not necessarily in MobiGaze space). This means that
we may also reliably detect if a subject is point toward any
point.

11

http://www.qt.io/


in the final output data. We may therefor want to
improve the ‘fit’ by using the corneal reflection as
a reference point, a method suggested in <9>.

6. Conclusions

We present MobiGaze, a modular, extensible,
and open source eye tracking system developed at
the Swartz Center for Computational Neuroscience
for use in MoBI experiments. The pupil tracking
and POR mapping procedures (which make use of
geometric models) are detailed. We also present
preliminary results indicating that the accuracy of
the system is comparable to previous eye tracking
systems. It is shown that the MobiGaze system is
very flexible and is notable for its ability to accu-
rately track a subject’s gaze in ambulatory scenar-
ios.

References

[1] S. Makeig, K. Gramann, T.-P. Jung, T. J. Sejnowski,
H. Poizner, Linking brain, mind and behavior, Inter-
national Journal of Psychophysiology 73 (2) (2009) 95–
100.

[2] R. Newman, Y. Matsumoto, S. Rougeaux, A. Zelinsky,
Real-time stereo tracking for head pose and gaze esti-
mation, in: Automatic Face and Gesture Recognition,
2000. Proceedings. Fourth IEEE International Confer-
ence on, IEEE, 2000, pp. 122–128.

[3] A. Villanueva, R. Cabeza, S. Porta, Eye tracking: Pupil
orientation geometrical modeling, Image and Vision
Computing 24 (7) (2006) 663–679.

[4] E. D. Guestrin, M. Eizenman, General theory of remote
gaze estimation using the pupil center and corneal re-
flections, Biomedical Engineering, IEEE Transactions
on 53 (6) (2006) 1124–1133.

[5] Z. Zhu, Q. Ji, K. P. Bennett, Nonlinear eye gaze map-
ping function estimation via support vector regression,
in: Pattern Recognition, 2006. ICPR 2006. 18th Inter-
national Conference on, Vol. 1, IEEE, 2006, pp. 1132–
1135.

[6] Z. Zhu, Q. Ji, Novel eye gaze tracking techniques under
natural head movement, Biomedical Engineering, IEEE
Transactions on 54 (12) (2007) 2246–2260.

[7] J. S. Babcock, J. B. Pelz, Building a lightweight eye-
tracking headgear, in: Proceedings of the 2004 sympo-
sium on Eye tracking research & applications, ACM,
2004, pp. 109–114.

[8] D. Li, J. Babcock, D. J. Parkhurst, openeyes: a low-cost
head-mounted eye-tracking solution, in: Proceedings of
the 2006 symposium on Eye tracking research & appli-
cations, ACM, 2006, pp. 95–100.

[9] F. J. Parada, D. Wyatte, C. Yu, R. Akavipat, B. Emer-
ick, T. Busey, Experteyes: Open-source, high-definition
eyetracking, Behavior research methods 47 (1) (2014)
73–84.

[10] A. Fitzgibbon, M. Pilu, R. B. Fisher, Direct least square
fitting of ellipses, Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on 21 (5) (1999) 476–480.

[11] R. Bullock, Least-squares circle fit,
URL:www.dtcenter.org/met/users/docs/write ups/circle fit.pdf.

[12] T. Ohno, N. Mukawa, A. Yoshikawa, Freegaze: a gaze
tracking system for everyday gaze interaction, in: Pro-
ceedings of the 2002 symposium on Eye tracking re-
search & applications, ACM, 2002, pp. 125–132.

[13] J. A. Nelder, R. Mead, The downhill simplex algorithm,
Computer Journal 7 (S 308).

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery, Numerical recipes in C, Vol. 2, Cambridge
university press Cambridge, 1996.

[15] C. B. Duane, Close-range camera calibration, Pho-
togram. Eng. Remote Sens 37 (1971) 855–866.

[16] J. H. Challis, A procedure for determining rigid body
transformation parameters, Journal of biomechanics
28 (6) (1995) 733–737.

[17] K. Holmqvist, M. Nyström, F. Mulvey, Eye tracker data
quality: what it is and how to measure it, in: Proceed-
ings of the symposium on eye tracking research and ap-
plications, ACM, 2012, pp. 45–52.

[18] S. Nevalainen, J. Sajaniemi, Comparison of three eye
tracking devices in psychology of programming re-
search, 6th Annual Psychology of Programming Interest
Group (2004) 170–184.

[19] D. W. Hansen, Q. Ji, In the eye of the beholder: A
survey of models for eyes and gaze, Pattern Analysis
and Machine Intelligence, IEEE Transactions on 32 (3)
(2010) 478–500.

[20] A. Duchowski, Eye tracking methodology: Theory and
practice, Vol. 373, Springer Science & Business Media,
2007.

[21] B. Noris, J.-B. Keller, A. Billard, A wearable gaze track-
ing system for children in unconstrained environments,
Computer Vision and Image Understanding 115 (4)
(2011) 476–486.

[22] J. W. Lee, C. W. Cho, K. Y. Shin, E. C. Lee, K. R.
Park, 3d gaze tracking method using purkinje images
on eye optical model and pupil, Optics and Lasers in
Engineering 50 (5) (2012) 736–751.

12


	Introduction
	Hardware
	Hardware Extension: Trial Frames

	Software
	Pupil Tracking: Finding the Pupil Center
	Calibration: Mapping the Eye Center to Gaze Points
	Calibration: Details
	Inverting the Eye Map
	Gaze Tracking in Scene Camera Space
	Extrapolating 3D Gaze Information Using Motion Capture

	Applications and Accuracy
	Targets on a Screen
	Targets in 3D Space

	Future Work
	Conclusions

