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Prefatory remarks

Following  the  advent  of  averaging  computers  in  the  early  1960s,  event-related  potential  (ERP) 
averaging became the  first  functional  brain  imaging method to  open  a  window into  human  brain 
processing of first sensory and then cognitive events, and the first to demonstrate statistically reliable 
differences  in  this  processing  depending on  the  contextual  significance of  these  events  –  or  their 
unexpected absence. Yet the same response averaging methods, now easily performed on any personal 
computer, may have helped brain electrophysiological research remain split into two camps. For nearly 
half  a  century  now,  researchers  mainly  in  psychology  departments  have  recorded  human  scalp 
electroencephalographic (EEG) data and studied the features of human average ERPs time-locked to 
events and behavior, while researchers mainly in physiology departments measured averaged event-
related changes in the number of spikes emitted by single neurons in animals, captured from high-pass 
filtered local field potential (LFP) recordings from microelectrodes. Since the spatial scales of these 
phenomena are so different, these two groups have had little to say to one another. In fact, relationships 
between these quite different average brain response measures can be learned only by studying the 
spatiotemporal  complexities  of  the  whole  EEG and LFP signals  from which  they  are  respectively 
extracted, and by understanding not only their average behavior, but the complexities of their moment-
to-moment dynamics as well.

Many  open  questions  remain  about  the  nature  and variability  of  these  electrophysiological 
signals,  including  the  functional  relationships  of  their  dynamics  to  behavior  and experience.  This 
investigation  is  now beginning,  with much more  remaining to  be  discovered about  the  distributed 
macroscopic  electromagnetic  brain  dynamics  that  allow  our  brains  to  support  us  to  optimize  our 
behavior and brain activity to meet the challenge of each moment. From this point of view, key open 
questions for those interested in understanding the nature and origins of average scalp ERPs are how to 
identify  the  brain  sources  of  EEG  and  ERP dynamics,  their  locations,  and  their  dynamic  inter-
relationships.  To  adequately  address  these  questions,  new  analysis  methods  are  required  and  are 
becoming available. 

Our research over the past dozen years has convinced us, and an increasing number of other 
researchers, that using independent component analysis (ICA) to find spatial filters for  information 
sources in scalp-recorded EEG (and other) data, combined in particular with trial-by-trial visualization 
and  time/frequency  analysis  methods,  are  a  powerful  approach  to  identifying  the  complex 
spatiotemporal dynamics  that underlie both ERP averages and the continually unfolding and varying 
brain field potential phenomena they index. In essence, ICA is a method for training or learning spatial 
filters that, when applied to data collected from many scalp locations, each focus on one source of 
information in the data. Characterizing the information content of data rather than its variance (the goal 
of previous signal processing methods) is a powerful new approach to analysis of complex signals that 
is becoming ever more important for data mining of all sorts. Applied to EEG data, ICA tackles ‘head 
on’ the  major  confounding  factor  that  has  limited  the  development  of  EEG-based  brain  imaging 
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methods, namely the broad spread of EEG source potentials through the brain, skull, and scalp and the 
mixing of these signals at each scalp electrode.

I. EEG sources and source projections

In this chapter, we consider the relationship between ongoing EEG activity as recorded in event-related paradigms, 
and trial averages time locked to some class of experimental events, known as event-related potentials (ERPs). We 
first discuss the concept of the ERP as averaging potentials generated by spatially coherent activity within a number 
of cortical EEG source areas as well as non-brain sources typically treated as data artifacts. We use “ERP-image” 
plotting to visualize variability in EEG dynamics across trials associated with events of interest using an example 
data set. We then introduce the concept and use of independent component analysis (ICA) to undo the effects of 
source signal mixing at scalp electrodes and to identify EEG sources contributing to the averaged ERP.  We note that 
“independent components” are brain or non-brain processes more or less active throughout the dataset, and thus 
represent a quite different use of the term “component” in the title and elsewhere in this volume. After introducing 
some basic time/frequency measures useful for studying trial-to-trial variability, we take another look at trial-to-trial 
variability, now focusing on the contributions of selected independent component processes to the recorded scalp 
signals. We hope the chapter will help the reader interested in event-related EEG analysis to think carefully about 
trial-to-trial EEG stability and variability. The latter we suggest largely reflects not “ERP noise” but instead the 
brain’s carefully constructed response to the highly individual, complex, and context-defined “challenges” posed by 
unfolding events.

What is an EEG source?

A fundamental fact about electrophysiological signals recorded at any spatial scale is that they reflect and index 
emergent partial coherence (in both time and space) of electrophysiological events occurring at smaller scales. Brain 
electrophysiological  signals  recorded  by  relatively  large  and/or distant  electrodes  can  be  viewed as  phenomena 
emerging from the possibly one quadrillion synaptic events that occur in the human brain each second. These events, 
in turn, arise within the still more vast complexity of brain molecular and sub-molecular dynamics. The synchronies 
and near-synchronies, in time and space, of synaptic and non-synaptic neural field dynamics precipitate not only 
neural spikes, but also other intracellular and extra-cellular field phenomena – both those measurable only at near 
field (e.g., within the range of a neural arbor), and those recorded only at far field (in particular, as electrically far 
from the brain as the human scalp). The emergence of spatiotemporal field synchrony or near-synchrony across an 
area of cortex is conceptually akin to the emergence of a galaxy in the plasma of space. Both are spontaneously 
emergent dynamic phenomena large enough to be detected and measured at a distance – via EEG electrodes and 
powerful telescopes, respectively.

The emergence of synchronous or near-synchronous local field activity across some portion of 
the cortical mantle requires that cells in the synchronized cortical area be physically coupled in some 
manner.  A basic  fact  of  cortical  connectivity  is  that  cortico-cortical  connections between cells  are 
highly  weighted  toward  local  (e.g.,  shorter  than  0.5-mm)  connections,  particularly  those  coupling 
nearby inhibitory cells whose fast gap-junction connections support the spread of near-synchronous 
field  dynamics  through  local  cortical  areas  (Murre  and  Sturdy,  1995;  Stettler  et  al.,  2002).  Also 
important for sustaining rhythmic EEG activity are thalamocortical connections that are predominantly 
(though not exclusively) organized in a radial, one-to-one manner (Frost and Caviness, 1980). EEG is 
therefore likely to arise as emergent mesoscopic patterns (Freeman, 2000) of local field synchrony or 
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near-synchrony in compact thalamocortical networks. Potentials arising from vertical field gradients 
associated  with  pyramidal  cells  arrayed orthogonal  to  the  cortical  surface  produce  the  local  field 
potentials  recorded  on  the  cortical  surface  (Luck,  2005;  Nunez,  2005).  Synchronous  (or  near-
synchronous) field activity across a cortical patch produces the far-field potentials that are conveyed by 
volume conduction to scalp electrodes. Both scalp and direct cortical recordings agree that in nearly all 
cognitive states, such locally coherent field activities arise within many parts of human cortex, often 
with distinctive dynamic signatures in different areas. Direct observations in animals report that cortical 
EEG signals are indeed associated with sub-centimeter sized cortical patches whose spatial patterns 
resemble  ‘phase  cones’ (like  ‘pond  ripples,’ (Freeman  and  Barrie,  2000))  or  repeatedly  spreading 
‘avalanche’ events  (Beggs and Plenz,  2003),  though more  adequate  multi-resolution recording and 
modeling are needed to better define their spatiotemporal geometry and dynamics. 

In  this  chapter,  we  will  use  the  term  EEG  source to  mean  a  compact  cortical  patch  (or 
occasionally, patches) within which temporally coherent local field activity emerges, thereby producing 
a far-field potential contributing appreciably to the EEG signals recorded on the scalp. We will use the 
phrase source activity to refer to the varying far-field potential arising within an EEG source area and 
volume-conducted to the scalp electrodes. Recorded EEG signals are then, in this view, the sum of 
EEG source activities, contributions of non-brain sources such as scalp muscle, eye movement, and 
cardiac artifacts, plus (ideally small) electrode and environmental noise.

Note that the activity contributed by a cortical source to the recorded EEG typically does not 
comprise all the local field activity within the cortical source domain, since potentials recorded with 
small cortical electrodes at different points in a cortical source domain may only be  weakly coherent 
with the far-field activity that is partially coherent across the domain and is therefore projected to the 
scalp  electrodes.   That  is,  only  the  portion  of  the  local  field  activity  in  a  source  domain  that  is 
synchronous across the domain will contribute appreciably to the net source potentials recorded by 
scalp  electrodes.  Thus,  cortical  electrophysiology  is  by  its  nature  multiscale,  its  properties  differ 
depending on the size of the recording electrodes and their distance from the source areas in ways that 
are currently far from adequately observed or modeled. Scalp EEG recordings predominantly capture 
the sum of locally coherent source activities within a number of cortical source domains, plus non-brain 
artifact signals.

Roles of EEG source activities

The primary function of our brain is to organize and control our behavior 'in the moment' so as to optimize its outcome.  
For many neurobiologists, field potential recordings have been considered of possible interest at best only as passive,  
indirect, and quite poor statistical indices of changes in neural spike rates, their primary measure of interest. In fact,  
however, the variations in electrical potential recorded by EEG or LFP electrodes better reflect variations in concurrent  
dendritic synaptic input to neurons, input that may or may not provoke action potentials. Action potential generation is  
provoked by receipt of sufficient dendritic input within a brief (several-millisecond) time window. The emergence of  
synchronized local field potentials across a cortical area may therefore reflect changes in occurrence of  joint spiking 
events across groups of associated neurons in that area. Some recent experimental results also suggest that local field  
potentials  may  also  actively affect  spike  timing  and  degree  of  synchrony  between  of  neurons  within  a  partially-
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synchronized source domain, biasing their joint spike timing towards (or away from) concentration into brief, potent  
volleys (Voronin et al., 1999; Francis et al., 2003; Radman et al., 2006). By this means, small statistical adjustments in  
joint spike timing of neurons with common axonal targets effected by spatially synchronized local field potentials might  
be associated with large changes in effective neural communication, and thence with behavior and behavioral outcome  
(Fries et al., 2007).

According to recent reports, the timing and phase of extracellular fields may also enhance or 
weaken the effects of concurrent input on future cell and areal responsivity, by affecting the amount of 
long-term synaptic potentiation  (LTP)  produced by  that  input  (Dan  and Poo,  2004).  Thus,  locally 
synchronous (or near-synchronous) field activity arising within compact cortical source areas may not 
only weakly index neural dynamics on spatial scales larger than a single neuron, but may also play a 
more  direct  and  active  role  in  organizing  the  distributed  brain  dynamics  that  support  experience, 
behavior,  and changes  in  psychophysiological  state.  The  spatiotemporal dynamics  of  cortical  field 
synchrony, and their relationship to neural spike timing have still been relatively little studied. There is 
likely much more to be discovered about relationships between extra-cellular fields and intracellular 
potentials in living brains.

Spatial source variability

The concept that  an EEG source represents the emergence of  synchronous field  activity  across a cortical  patch is  
undoubtedly a simplification of the actual more complex, multi-scale dynamics that produce near-synchronous activity  
within an EEG source domain. Although the concept that  EEG is produced by synchronous field  activity in small  
cortical domains is supported qualitatively by fMRI results that are generally dominated by roughly cm-scale or smaller  
pockets of enhanced activity, and by a few reports of direct field potential grid recordings (Bullock, 1983; Freeman and  
Barrie, 2000), when cortical activity in animals is viewed at a smaller (sub-mm) scale using optical imaging, smaller-
scale moving waves of electromagnetic activity are observed (Arieli et al., 1995). However, simple calculation of the  
phase difference between the edges and the center of a ‘pond ripple’ pattern at EEG frequencies, based on the estimated 
(cm2-scale) domain sizes and observed traveling wave velocities (1-2 m/s), suggests that the spatial wavelength of the 
radiating ‘ripples’ is considerably larger than the size of the domain, meaning that the topographic scalp projection of a  
cortical ‘phase cone’ is  close to that of totally synchronous activity across the patch, as in our simplified EEG source  
model1. 

However,  larger-scale  travelling  or  meandering  waves  at  slow  (1-3  Hz)  delta  or  infraslow  (<1  Hz)  EEG 
frequencies have also been observed in epilepsy, sleep, and migraine (Massimini et al., 2004), and (near 12-Hz) sleep  
spindles may also ‘wander’ over cortex in concert with spatially varying activity in coupled regions of the thalamic  
reticular nucleus (Rulkov et al., 2004). Sufficiently detailed recordings from high-density, multi-resolution arrays are  
not yet available to allow models of the relationship between these moving activity patterns and apparently stable EEG 
source dynamics in waking life.

Temporal source variability

A hallmark of EEG is that its temporal dynamics are highly non-stationary and exhibit continuous changes on all time  
scales (Linkenkaer-Hansen et al., 2001). Changing EEG dynamics index changes in and between local synchronies that  
are driven or affected by a variety of mechanisms including sensory information as well as broadly projecting brainstem-
based arousal  or ‘value’ systems identified by their  central  neurotransmitters  – dopamine,  acetylcholine,  serotonin,  
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neurepinephrine, etc. These ‘neuromodulatory’ systems based in brainstem areas project to widespread cortical areas  
and are very likely an important source of temporal variability in the spatiotemporal coherence that produces far-field  
signals recorded at the scalp, variability that gives flexibility and individuality to our distributed brain responses so as to  
respond most appropriately to the particular challenge of the moment. Ranganath and Rainer (Ranganath and Rainer,  
2003) have reviewed what is known and still  unknown about these systems and their interactions with cortical field  
potentials.

Volume conduction and source mixing

Experimental  neurobiology  suggests  that  the  spontaneous  emergence  of  partial  coherence  of  complex  rhythmic 
temporal patterns of local field activity across compact cortical ‘phase cone’ or ‘avalanche’ domains a few mm or 
larger in  diameter produce the scalp EEG and therefore ERP signals.  The differences between distinct  parts of 
neurons within the partially-synchronized and nearly-aligned pyramidal cell domain sum coherently both in local 
recordings and as measured at any distance after passing by  volume conduction through intervening conductive 
media  including  cortical  grey  and white  matter,  cerebral-spinal  fluid  (CSF),  skull,  and skin  (Akalin-Acar and 
Gencer,  2004;  Gencer  and  Akalin-Acar,  2005).  The  very  broad  cortical  source  field  patterns  (each  generally 
resembling the double-lobed pattern iron filings take when placed around a bar magnet) are attenuated by the 
partial resistance of these media, and their propagation patterns are spatially distorted at tissue boundaries where 
conductance changes. The broadly projecting, spatially distorted, and severely attenuated signals are then summed 
within conductive EEG electrodes attached to the scalp (Nunez, 1977). 

Forward and inverse modeling

A first  question for  EEG/ERP researchers,  therefore,  is  or  should be  how to separate the recorded EEG activities  
recorded at all the scalp channels into a set of activities originating within different spatial source domains. Finding the  
appropriate spatial filters is,  unfortunately,  technically difficult,  and were any arbitrary 3-D arrangement of source  
configurations  physiologically  possible,  any  number  of  them  could  be  found  that  would  produce  the  same  scalp 
potentials (Grave de Peralta-Menendez and Gonzalez-Andino, 1998). A biophysical solution to this so-called inverse  
problem must begin with construction of a forward head model specifying (1) where in the brain the electromagnetic  
sources may be expected to appear, and (2) in which orientations, and (3) how their electromagnetic fields propagate  
through the subject’s head to the recording electrodes (Akalin-Acar and Gencer, 2004). Fortunately, the well-grounded 
assumption that the brain EEG sources are cortical source patches whose field patterns are oriented near-perpendicular  
to the local cortical surface allows more physiologically plausible estimates since these assumptions allow a fair MR  
image-derived model of the shape, location, and local orientation of subject cortex (Fischl et al., 2004). Constructing  
individualized cortical models for EEG analysis requires extensive computation and expensive MR head images, and  
thus the process is still rarely carried out for routine EEG/ERP experiments. While adequate head models are needed to  
develop EEG into a 3-D functional brain imaging modality, different analysis goals may require various degrees of  
anatomic accuracy, and use of standard head models may suffice for many analysis purposes.
 

Given an accurate forward head model, the inverse problem is still underdetermined if multiple 
sources contribute to the observed scalp potential distribution whose sources are to be determined. In 
contrast, the solution is much simpler, and its answer better determined, if the scalp maps whose source 
projections they sum are simple maps representing the activity of only one source. Both EEG and MEG 
researchers have long attempted to consider scalp maps of amplitude peaks in average ERPs to be 
simple maps. That is, they attempt to use ERP averaging as a means of  spatial filtering to eliminate 
projections of EEG source areas not directly involved in the brain response to the time-locking events. 
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In many cases, taking the difference between two average ERPs time-locked to related sets of 

experimental  events  may  further  restrict  the  number  of  strongly  contributing  brain  source  areas. 
Unfortunately,  trial  averaging or  differencing is  rarely completely  effective  for  this  purpose,  since 
meaningful sensory (as well as purely cognitive) events rapidly perturb the statistics of many EEG 
sources and other (subcortical) brain processes (Halgren et al., 1998). Therefore, except for very early 
sensory brainstem and cortical potentials, ERP maps sum activities that arise, typically, in many source 
domains. This means that scalp maps of ERP or ERP difference-wave peaks are only rarely simple 
maps representing potentials projected to the scalp from a single source. To optimally estimate the 
source distribution responsible for EEG or ERP data,  it  is desirable to find a better way to isolate 
simple maps representing the projection of single sources contributing to the data, a subject we will 
return to in Section III.

II. ERP trial averaging and trial variability

The top panel of Figure 3.1 shows a single-subject ERP for all 238 scalp channels averaged 
over 500 data epochs time-locked to onsets (a latency 0) of an infrequently presented visual target disc 
in a visuospatial selective attention task (Makeig et al., 1999b; Makeig et al., 1999a; Makeig et al., 
2002;  Makeig et  al.,  2004b).  ERP traces  for  all  238 channels are  overlaid on the  same plot  axis. 
Interpolated scalp maps show the ERP scalp distribution at four indicated latencies.  The bottom panel 
shows the ERP average of the same 500 epochs, but now time-locked to the subject’s button press in 
each trial. In both panels, the data were averaged after removing artifacts produced by eye movements, 
eye blinks, electrocardiographic (ECG) activity, and electromyographic (EMG) from scalp and neck 
muscles using independent component analysis (ICA), as explained in Section III2,3. We will use these 
data through this chapter to explore relations between the average ERPs as shown in this figure and the 
single EEG data epochs that were averaged to produce them.
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Figure 3.1. ERP traces from each of  

238 scalp channels averaged over 500 EEG epochs in a single subject, time locked to (A) continually anticipated but 
infrequently presented visual target stimuli in a selective visuospatial selective attention task, and (B) immediately  
following speeded subject button presses cued by target presentation2. Solid lines cutting vertically through the ERP 
channel trace bundles lead to cartoon heads showing the interpolated scalp potential distribution at the moment  
indicated.
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The trial-averaging model

Over the past near half-century, the predominant method for reducing the complexity of event-related 
EEG  data  collected  in  sensory  and  cognitive  paradigms  is  to  form event-related  potential  (ERP) 
averages of trial records time-locked to sets of experimental events assumed by the experimenter to 
generate  the  same  or  essentially  similar  brain  responses.  To  gain  a  realistic  understanding  of  the 
features of ERP trial averages and their relationship to the underlying brain dynamics, it is important to 
understand both the strengths and limitations of ERP averaging. The physiological model underlying 
ERP averaging is  that  cortical  processing  of  sensory  (or  other)  event  information  follows a  fixed 
spatiotemporal sequence of source activities, and that this processing produces a fixed sequence of 
deviations  in  scalp  potentials  whose  distribution  reflects  the  locations  of  their  cortical  generators. 
However, these traces of the cortical processing sequence are obscured in single response epochs by 
typically  much  larger  ongoing EEG activities  generated  in  many  brain  areas,  as  well  as  artifacts 
generated in non-brain structures. Crucially, these ongoing activities are assumed to be unaffected by 
the time-locking events of interest. 

Thus, in the ERP averaging model, EEG epochs are assumed to sum (1) a temporally consistent 
event-related activity  sequence  (“the  evoked  response”),  plus  (2)  event-unrelated ongoing  or 
spontaneous EEG activities (not contributing to  the ERP).  Under these circumstances,  averaging a 
sufficient number of event-locked epochs subtracts, cancels, or spatially filters out the unrelated brain 
activities, leaving a single average response epoch dominated by the consistent event-related activity 
sequence, recorded on the scalp as the flowing ERP field ‘movie.’ The amplitudes of EEG (or other 
non-brain)  activities  unaffected  by  the  time-locking  events  that  remain  in  the  average  will  be 
approximately 1/N1/2 of the amplitude of those activities in the single trials, where N is the number of 
epochs averaged. Thus, achieving a faithful representation of the actual (and typically relatively small) 
evoked response sequence usually requires averaging a relatively large number of event-related epochs 
known or assumed to contain the same time-locked ERP sequence.

To understand how ERP averaging leads to a reduction in event-unrelated EEG activity, we first 
need to define the phase of an EEG source signal. The simplest sense of the term might be the sign or 
polarity of the recorded potential at a given time point, either positive or negative in relation to some 
baseline potential (typically established by averaging the potentials recorded in some period of the 
recording assumed to be unaffected by the events of interest). A more specific meaning for the ‘phase’ 
of a signal at some time point and frequency is as the phase of a best-fitting brief, tapered sinusoid at 
the given frequency centered on that time point.  Thus the phase of an EEG source or scalp signal, at 
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any given time point and frequency, is defined by the relation of its value at that time point to its values 
in an enclosing window of time points. Note that at a given time point a signal has a different phase at 
each  frequency.  Also,  since  EEG  signals  are  relatively  smooth,  EEG  phase  differences  between 
neighboring time points cannot vary freely but must change smoothly.4

ERP averaging can remove the contributions of those source activities unrelated to the time-
locking events by means of  phase cancellation, which works as follows. If a given source signal is 
unaffected by the time-locking events, and if the timing of the experimental events is not based on the 
ongoing EEG signals,  their phase at  each latency and frequency will differ randomly across trials. 
Mathematically, the sum of random-phase signals at a given frequency tends to become smaller and 
smaller (at that frequency) as the number of summed trials increases. We can see this most easily by 
considering the signs of the signals (+ or -) instead of their phases. If the signs of a set of signal epoch 
values  at  a  given latency are  random, then  in  the  average  of  those  epochs the  positive-phase  and 
negative-phase values in different epochs will partially cancel each other, and the magnitude of the 
average epoch at that latency will be smaller than the average of the same values were they all of the 
same sign.

Similarly, if at a given analysis frequency (say for example 9 Hz), the single-trial EEG signals 
have a random phase distribution when measured in a time window centered at some latency (say, 200 
ms following the time-locking event), then the vectors that can be used to represent their amplitudes 
and phases at that frequency will be more or less evenly distributed around the phase circle, and the 
expected length of the vector average of these vectors will  become smaller  as the number of trial 
vectors averaged increases,  provided that the exact timing of experimental events cannot be predicted 
by the brain. On average, the length of the average phase vector will decrease as the square root of the 
number of trials averaged. In this way, trial averaging filters out all features of the data that are not 
wholly or at least partially phase-locked to the time-locking events at any frequency and latency. 

It  is  important  to  understand how event-related  phase-locking  and time-locking  differ.  For 
example, imagine a set of EEG trial epochs, time-locked to a particular type of event, that each contain 
a burst of 10-Hz alpha band activity centered 500 ms after the time-locking event.  Further, imagine 
that these alpha bursts, while undeniably time-locked to the experimental events of interest, may exhibit 
any phase at 500 ms (ascending, descending, etc.). These bursts, therefore, are not phase-locked to the 
events. An ERP average of enough such epochs would therefore contain little trace of 10-Hz activity at 
500 ms, even thought this is a striking feature of the single-trial data. This is because trial averaging 
filters out all activity that is not both time-locked and phase-locked to the time-locking event. .  Thus, 
scalp ERPs do not capture all of the consistently event-related dynamics in the averaged EEG epochs, 
but only those dynamic processes that affect the phase distribution of their signals at some analysis 
frequencies and trial latencies.  We will consider this question again in Section IV (see also Chapter 2, 
this volume).



11
However, if a given brain source contributes a fixed activity sequence to a given scalp channel 

signal in every trial, at each analysis frequency and epoch latency the phase of its contributions to the 
scalp signals will be consistent across trials, and the ERP average at that scalp channel will contain all 
of that source’s activity sequence, without diminution. If the phase of its single-trial activity at a given 
frequency and latency is variable and only weakly consistent, relative to a true random phase process, 
then the source will contribute only weakly to the scalp ERP. If the source activity has truly random 
phase  at  the  given  frequency  and latency,  then  its  ERP contribution  will  be  minimal  and further 
decreasing as more trials are averaged.

If all the EEG sources that project to a scalp channel have fixed evoked activity sequences, then 
their collective contribution to the channel in each trial will be the sum of all their source activities, and 
the average  ERP at  that  channel will  be the average  of the summed source activities at  each trial 
latency. Thus source mixing that occurs at the scalp electrode could decrease (or increase) the apparent 
ERP magnitude through the same process of phase cancellation. But again, only those signals that are 
phase-locked  to  the  time-locking  events  from  trial  to  trial  will  be  retained  in  the  average.  And 
conversely, for activity at a given frequency and latency to be removed from the signal by averaging, 
only the signal phase in the single trials need be random.

Limitations of event-related averaging

The mean of any distribution is simply one statistical measure of the distribution – a statistic that, if provided apart from  
other  statistics,  may  be  informative  and/or  misleading.  For  example,  telling  a  New  Guinean  unacquainted  with  
Americans that the average adult American height is 5’6” (1.68 m) might give him or her an adequate concept of the  
distribution of American adult heights – assuming the shapes and the widths of the (near-normal) height distributions in  
the two cultures are not dissimilar. However, sending Martian scientists the arithmetically equally correct information 
that the average human is half male and half female might well engender quite incorrect ideas about human biology and 
society. The problem here is that human sexual physiology has not one but two quite distinct modes (female and male),  
information that is not captured in or conveyed by the average. Thus, the average of a distribution may or may not in 
itself provide or suggest a useful and realistic model of the underlying distribution or its features. This may be even more  
problematic for time series averages that sum disparate activities of many distinct brain and non-brain sources whose  
detailed features are of primary interest, including their spatial and temporal trial-to-trial variability.

Spatial variability of event-related activity

Note how the scalp topographies of the ERPs in both panels of Figure 3.1 differ slightly before and 
after the button press. If ERP spatial variations were generated within or directly under the scalp itself, 
such  changes  would  reflect  potential  changes  occurring  directly  below the  most  strongly  affected 
electrodes. Such an interpretation, while having naïve appeal, is however contrary to the anatomic and 
biophysical  facts about volume-conducted cortical  field potentials  that  actually  produce scalp EEG 
signals, as summarized above. The very broad ‘point-spread’ pattern of potentials propagating out by 
volume conduction from each cortical source area means that each source contributes to some extent to 
the signals recorded at nearly all of the scalp electrodes, and contributes appreciably to many of them. 
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Further, if each source area is spatially fixed (or nearly so), by itself it cannot produce a moving 

topographic pattern of field activity on the scalp – it can only produce proportional and simultaneous 
changes  across  all  the  electrodes  in  its  projection  pattern.  Therefore,  changes in  the  scalp  map of 
average ERP data (as in Fig. 3.1) must reflect sums of time-varying potentials projected in the broad 
and  highly-overlapping  scalp  patterns  from  several  spatially-fixed  EEG  source  activities,  each 
contributing to the ERP in spatially and temporally overlapping time windows. This view is compatible 
with fMRI results showing that cortical activations and deactivations mainly occur within compact 
cortical domains – though direct high-resolution, multi-scale observations of electrocortical activity 
that could constitute ‘ground truth’ evidence for this assumption are not yet available. 

Two main points  here are,  first,  that  basic  biophysical  knowledge is  not consistent with an 
interpretation  of  ERP potentials  as  exclusively  (or  even  principally)  reflecting  activity  generated 
directly below each electrode, a fact it is easy to lose sight of when focusing on the details of single-
channel ERP or EEG waveforms. Second, although when animated, changes in high-density ERP time 
series appear to flow across the scalp, features of most ERPs recorded in cognitive experiments are 
much  more  likely  produced by  sums of  time-varying  activities  of  relatively  small,  spatially-fixed 
cortical generator domains, each with a broad ‘point-spread’ pattern of projection to the scalp surface. 
Looking ahead a bit: Although the exact size distribution of these domains is not yet known, fairly 
precise indications of their centers can be obtained by methods that spatially filter the scalp EEG data 
to focus on single sources (see Section III).

ERPs as spatial filters?

Early ERP analysis attempted to deal with the difficulty in interpretation posed by volume conduction and scalp mixing  
by assuming that event-related averaging provides sufficient spatial filtering of the many source signals reaching the  
scalp electrodes so that activity from only  one affected source area contributes to each ERP amplitude peak.  That is,  
some early ERP researchers hoped that the sequence of peaks comprising ERP waveforms would each spatially filter out  
all activities not generated in a single cortical area. 

However,  subsequent  research  clearly  suggested  that  soon  after  sensory  signals  arrive  in  cortex  following  
meaningful events, multiple EEG sources begin to contribute to ERP averages. It has now been shown that in animals  
coordination of activities between early visual areas (Grinvald et al., 1994) and between primary visual and auditory  
cortex (Foxe and Schroeder, 2005) begins as early as 30 ms after stimulus onsets, and invasive recordings from epileptic  
patients for clinical purposes show that by at most 150 ms after presentation of meaningful visual stimuli, the phase  
statistics of local field processes are altered in many parts of the brain, both cortical and subcortical (Klopp et al., 2000).  
Thus, the somewhat different scalp distributions in the single-channel ERP scalp field maps of Fig. 3.1 in fact represent  
differently weighted mixtures of mean event-related activities, time-locked to subject  button presses,  from several  to  
many cortical sources having broad and strongly overlapping scalp projections. Also, direct cortical recordings from 
both animals and humans show that, through activity cycles through thalamocortical and other network connections  
involving significant delays, single cortical areas often produce multi-peaked complexes instead of single response peaks  
in response to single stimulus presentation events (Swadlow and Gusev, 2000), adding to the spatial overlapping of  
source activities in ERP waveforms.

Thus, response averaging is not an efficient method for spatial filtering of event-related EEG data since it  
typically does not produce a sequence of  simple maps each reflecting the projection to the scalp of a single cortical  
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source. Computing the ERP ‘difference wave’ at each scalp channel between ERPs in two contrasting conditions may  
more effectively  isolate condition differences  in the activity  of  a  single generator or  set  of  generators,  although in 
general the effectiveness of this approach cannot be guaranteed. Finding more effective methods for spatial filtering of  
EEG data into EEG source activities is therefore of urgent importance to human electrophysiology research. 

Temporal variability of event-related activity

Another problem with modeling event-related EEG dynamics  based on ERP averages alone is  that  ERP averaging 
collapses and thus conceals both the orderly (event-, task-, or context-related) as well as the disorderly (event-, task-, and 
context-unrelated) trial-to-trial variability in the recorded EEG scalp and source signals – giving no way for the user to  
determine the relative proportions or types of these two classes of signal variations that are present in the single trials. A  
model of brain activity built solely on an ERP average of scalp activity in event-related epochs must fail to include many  
aspects of  the brain processes that produce it.   If  the single-trial  EEG epochs each sum activity  and time-varying  
activities from multiple spatial sources whose dynamics are tightly linked to multiple task or context-related factors,  
focusing solely on their average may discourage study of their orderly trial-to-trial variations. 

Averaging itself simplifies not only the spatial pattern, but also the temporal patterns of the signals averaged,  
retaining only that portion of the signals (typically, a small portion) that are both time-locked and phase-locked to the  
time-locking signals (as explained above and in Chapter 2, this volume). Far too often trial-to-trial variability of EEG  
signals  is  simply dismissed by researchers  (either  explictly  or  implicitly),  as  representing irrelevant  brain ‘noise’ –  
without sufficient consideration or evidence for this assumption. To consider this point more carefully, let us examine  
some aspects of the trial-to-trial temporal variability in scalp EEG activity before and after target presentations in the  
selective visual attention task session for which Fig. 3.1 showed the ERP averages.
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Figure  3.2.  Six  ERP-image 

plots of nearly 500 visual target response epochs (same data as in Fig. 3.1) at a scalp electrode near  
the vertex (referred to right mastoid). In each panel, trial potentials are sorted (from bottom to top) in  
the order indicated, then smoothed (vertically) with a 20-trial moving window, and finally color-coded  
(see color bar on lower right). In left panels (A-C), the trials are aligned to the moment of stimulus  
onset in each trial. In right panels (D-F), they are aligned to the moment of the subject button-press  
response. The trace below each image shows the ERP average of the trials. Stimulus-locked ERP peaks  
N2 and LPC (late positive complex) are labeled in A. The trial sorting criteria are indicated in each 
ERP-image panel. Horizontal arrows show the value (C) and phase (E,F) sorting windows. The ERP 
images illustrate the wide variety of trial-to-trial differences in the data.

A first step towards understanding trial-by-trial variability in EEG epochs time-locked to some class of time-
locking events is to find useful ways to visualize their variability. Jung and Makeig have developed a method of sorting  
the order of single trials by some criterion and then plotting them as horizontal color-coded lines in a rectangular image  
they called the ERP image (Makeig et al., 1999b; Jung et al., 2001). In ERP-image plots, single-trial traces drawn as  
horizontal colored lines, with color (instead of vertical placement) encoding potential. The colored lines can be fused  
into a rectangular image and smoothed, if desired, with a vertical moving average to bring out trends. Crucially, the  
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order in which the trials are sorted (bottom to top) need not follow the actual time order of the trials, but can be based on 
any other criterion. Unlike, the average ERP, which is fixed, the ERP images resulting from different trial sorting orders  
can differ dramatically from each other, each bringing out one or more aspects of trial-to-trial variability in the data.

Panel A of Figure 3.2 uses this method to visualize nearly 500 single trials time locked to visual target stimulus  
presentations at a scalp site near the vertex (Cz) – the same stimulus-locked trials averaged to form the ERP shown in  
Fig. 3.1A, with the (vertical) order of trials here sorted in their original time order. For easier visualization of event-
related patterns across trials, in each panel of Fig. 3.2 we have smoothed the single-trial data (vertically) with a 20-trial  
moving window. The solid vertical  line in panel A marks the onset  of the visual target, the vertical dashed line the  
subject’s median button press latency. The average ERP (shown below the panel) appears to have only a small and  
temporally diffuse late positive complex (LPC or, for historical reasons, “P300”) feature, here peaking near 400 ms after  
stimulus onset.

Panel B shows the same data trials, but here sorted by the latency of the subject’s button press (dashed trace),  
again smoothing with a 20-trial moving average. We now see that in most trials a (much more distinct) LPC follows the  
subject’s button press by about 120 ms, with LPC amplitude smaller in long-RT trials (near the top of the ERP-image 
panel). This panel shows which features of the post-stimulus ERP are primarily time-locked to the stimulus onset itself  
(e.g., the negative (blue) pre-response N2 peak), and which to the subject behavioral response (the following LPC and  
two sparser ensuing positive wave fronts). The trial-to-trial latency variability of the LPC cannot be labeled as irrelevant  
trial-to-trial ‘noise,’ and cannot be deduced from the stimulus-locked trial average (blue trace below panels A and B) in  
which trial-to-trial variability time-locked to the button press rather than the stimulus onset is temporally “smeared out.”

Panel C shows again the same trials, here sorted instead by mean potential in the N2 response ERP latency  
window indicated by the dashed lines. We see that only in about the bottom half of the trials is the mean potential in this  
window actually negative. But these include about a (bottom) third of the trials in which the negativity is relatively large,  
thereby “outweighing” the contributions of the trials in which the single-trial value is positive, thus producing a negative  
peak in the average ERP (again shown below the ERP-image panel). 

The curving post-RT positive (red-orange) wave fronts in the ERP-image plot in panel B reveal that the evoked  
LPC can be more accurately represented by an ERP average of the same data epochs time-aligned to the subject button  
press rather than to stimulus onset – as in panel D. In particular, the average motor response-aligned ERP (below panel  
D) better reflects the abrupt onset, slope, and duration of the post-motor LPC in the single trials than the stimulus-
aligned ERP (below panel A). As in panel B, panel D shows that the post-button press positivity is generally stronger in  
(lowermost) trials with short button press latencies, and is weak or even absent in (uppermost) trials with long response  
latencies. Also, the slightly curving (red) response column in panel D suggests that the time locking of the LPC peak to  
the button press is only relatively constant, the LPC appearing slightly wider and centered slightly later in shortest-
latency trials, relative to other trials.

These scalp data, measuring the potential difference between an “active” electrode near the vertex (Cz) and a  
“reference” electrode on the right mastoid (see cartoon head above panel A), actually sum broadly spreading projections  
of field activities projecting by volume conduction from several to many cortical sources. The mean power spectrum for  
these trials (above panel A) contains a strong alpha-band peak at 10 Hz. Panel E shows the same response-aligned trials  
as in D, now sorted according to the best-fitting 10-Hz phase in the indicated three-cycle (300-ms) wide trial sorting  
window centered on the LPC. In this ERP-image view of the data, the central positive (red) LPC peak of the activity in  
the single trials forms a red curving wave front near the center of the sorting window. The peak latency difference (from  
bottommost to topmost trials in the image), clearly visible in panel E, is hidden in panel D using a different trial-sorting  
order.

Panel F shows again the same response-aligned trial data, but now sorted by alpha phase in the pre-response 
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(but post-stimulus) period between the dotted lines. Here, we see that ongoing alpha activity that is random phase before  
the button press (as reflected in the perfectly diagonal positive and negative wave fronts in the sorting window), but the  
ensuing LPC positivity peaking in this view about 120 ms after the button press is nearly vertical in this view, and  
therefore appears to be independent of the phase the preceding alpha band activity (which might well have a different set  
of sources than those generating the LPC). Note that the LPC positivity is again wider than the tighter peak obtained in  
the alpha-sorted view of the same data in panel E, though panels (D- F) all visualize aspects of the same data and have  
the same motor response-locked ERP. 

What conclusions can we draw from these six quite different ways of plotting the same data? Note that each  
panel highlights a different way of separating the ERP trial average into a set  of single-trial activities, followed by  
moving-average smoothing to bring out trial-to-trial trends in the trial-sorted data images. Each panel represents, in a  
way, a decomposition of the single-trial data highlighting some foreground features and smoothing other types of trial-
to-trial variability to form a kind of background “noise” (as it were). Which of these decompositions in this sense – if any  
of them – is the most physiologically realistic or ‘correct’ decomposition? Arithmetically, there is no difference between  
them; in each case the same trial data, aligned as in panels A-C or D-F, have the same ERP average, no matter how the 
trials are sorted – just as 5 pennies are equally the sum of 3+1+1 or 1+3+1 coin subsets. 

The standard model underlying ERP analysis is that the EEG data essentially sum, (1) contributions to the ERP  
occurring in each trial, and (2) other (undefined) variable activities unaffected by the time-locking events and therefore  
not contributing to the ERP.  Is this standard (“ERP + background”) decomposition of the single-trial signals more  
physiologically “realistic,” in any sense, than the different implied “decompositions” of the data into the quite different  
features that are highlighted (plus those obscured) in these six quite different ERP-image panels? In particular – do any 
of these views parse the data into physiologically distinct source contributions?

From these ERP-image representations of the data, we can at least see some ways in which an average ERP of  
the trials is  simply one statistical  measure of them, a measure that does not reveal  their orderly (though complex)  
temporal variations or multiple  spatial  sources.  In each trial,  the subject  performed the same task – attempting to  
produce quick button press responses to target stimuli while withholding responses to non-targets. Panel B clarifies at  
least one aspect of trial-to-trial EEG variability directly related to subject behavior (e.g., their manual response latency).  
What other trial-to-trial differences,  either in stimulus features (here,  in target location),  and/or in the trial  context 
(here, the history of preceding stimuli and manual responses) may have altered the nature of the ‘challenge’ posed to the  
subject’s brain – and thus affected aspects of trial-to-trial EEG variations? Neither the ERP averages nor these six ERP-
image panels answer these questions.  There are many other  possible  decompositions into putative underlying EEG  
source activities  that  examination of  its  trial  average ERP cannot  rule in  or  out  as  reflecting physiologically  valid  
distinctions among spatial sources and their event-related temporal patterns.

At the least,  these panels illustrate the fact  that  trial-to-trial  variations in EEG data are not simply “EEG  
noise.”  Rather,  they  include  several  types  of  orderly  trial-to-trial  variability  linked  to  several  EEG  source  and/or  
behavioral  and task parameters.  Panels C-F, in particular,  pose an interesting question. Is the LPC activity  at  this 
channel, time-aligned to the subject button presses dominated by positive-phase alpha activity (as panel E suggests) or by  
a broader fixed-latency, central LPC peak (as in panel F)? Or perhaps, by both types of activity arising in different  
cortical domains and both projecting to the vertex to differing relative extents in different trials? 
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Figure  3.3.  ERP-image  plots  separating 

the ERP image in panel A, in which the trials are sorted by mean potential between the two dashed lines surrounding the  
post-response ERP peak, into the sum of (B) an ERP-image of the best-fitting (non-negative) mean-ERP contribution to  
each trial, and (C) the remaining unexplained portion of each trial. As in Fig. 3.2, the mean of the single-trial data in 
each panel is shown below the panel. The ERP has been largely (though not completely) removed from the lower panel  
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data. This decomposition is compatible with the assumption that the single-trial data sum a single ERP response of  
variable amplitude (B) plus unrelated EEG activity (C). However, many EEG sources may make separate contributions  
to the data and to the ERP average. Regression of the whole average ERP trace on the single data trials does not take  
into account the spatiotemporal variability of the independent sources of trial-to-trial variation, for example the partial  
sorting by value remaining within the sorting window and near 300 ms. (Vertical smoothing window width 20 trials).

A simple ERP model of the trial-to-trial variability in EEG data represents the non-ERP portion 
of the data as summing contributions of brain source activities that are unaffected by the time-locking 
events. In an extreme version of this model, the amplitude of the ERP might be assumed to be identical 
in every trial, with any trial differences reflecting additional task-irrelevant EEG (or non-brain artifact) 
activity. But Figure 3.2 suggests that such a strict version of the model is unlikely to adequately capture 
the trial-to-trial variability in the event-related dynamics in these trials. 

Panel A of Figure 3.3 shows the same trial data as in Fig. 3.2, but now sorted by mean potential 
in  the  indicated  post-response  LPC  data  window.  Panels  B  and  C  visualize  an  ERP-based 
decomposition of the data in panel A, all three panels using the same trial sorting order (sorting by LPC 
amplitude). Panel B shows the estimated contribution of the mean ERP to each trial, as determined by 
finding the best least-square fit of the mean ERP to each single-trial epoch but not allowing negative 
ERP trial weights in the few lowest trials. Panel C shows the remaining (non-ERP) data for each trial. 
Thus, the sum of the values in panels B and C are the whole-trial data as shown in panel A. At least in 
two latency windows in Panel C (90-150 ms and 200-300 ms) exhibit systematic differences from a 
random trial distribution, indicating trial-to-trial variability of potentials in those windows is partially 
independent of the overall amount of ERP-like activity in the trial.  But is this attempted decomposition 
of the single-channel data (in panel A) into ERP and non-ERP data portions (in panels B and C) a 
physiologically valid separation between completely response-locked (ERP) and response-independent 
(non-ERP) cortical source processes in the data? 

How can we begin to find answers to this question? To model the nature of the highly variable 
signals occurring during these recorded data epochs, ideally we should first find a way to separate the 
whole scalp EEG data into a set of functionally and physiologically distinct source activities.

III. Separating EEG sources using Independent Component Analysis (ICA)

In  1995  the  first  author  and  colleagues  at  Salk  Institute  (La  Jolla,  CA)  performed  the  first 
decomposition of multi-channel EEG data into its maximally independent components (Makeig, 1996) 
using a then-new and elegant ‘infomax’ algorithm (Bell and Sejnowski, 1995) that followed insights, a 
few years earlier, that weighted sums of independent source signals should be separable ‘blindly’ into 
the individual source signals without advance knowledge of the nature of the source processes, as had 
been thought necessary (Jutten and Herault,  1991; Comon, 1994). The prototypical example of this 
problem is the ‘cocktail  party problem’ in which an array of microphones records mixtures of the 
voices of several people talking at once at a cocktail party. Individually, the recordings sound like 



19
indecipherable  ‘cocktail  party  noise.’ The  blind source  separation problem is  to  determine how to 
combine the recorded signals so as to separate out each speaker’s voice, “blind” to any knowledge of 
the nature or properties of individual sources.

At root, the insight allowing the solution to this problem is that the individual speakers’ voices 
are the only sources of independent information in the recorded data. By adapting randomly weighted 
sums of the recorded signals in such a way as to makes the weighted-sum signals more and more 
temporally  independent of  each  other,  the  unmixing  process  must  finally  arrive  at  producing  the 
individual voice signals.  In signal processing terms, the joint microphone data is separated into its 
maximally independent signal components, which must be the original voice sources since they are the 
only possible independent sources in the recorded mixtures. 

When the process proceeds without relying on any knowledge of the qualities of the individual 
source signals (for example, whether the voices are male or female), the unmixing process is called 
blind source separation. Using temporal independence to separate the source signals is a form of blind 
source separation called independent component analysis (ICA). 

Reading about the ICA solution to the cocktail problem in the influential paper of Bell and 
Sejnowski before its publication in 1995, the first author suspected that the same method should be 
applicable  to  EEG data.  The  results  of  the  first  EEG decomposition  (Makeig,  1996)  were  highly 
promising, and subsequent work over the next dozen years or more has confirmed the ability of ICA to 
identify both temporally and functionally independent source signals in multi-channel EEG or other 
electrophysiological data. ICA in effect creates a set of spatial filters that cancel out all but a single 
source signal. It can be thought of as a method of data information-driven beamforming that focuses 
spatial filters on physical sources of EEG signals – separating out distinct brain generator processes as 
well as non-brain (artifact) signals. 

More formally, a linear decomposition of a (channels by time points) signal matrix is its representation as 
any weighted sum of component signal matrices of the same size (the same numbers of channels and time points). 
Figure 3.4 schematically visualizes the simple matrix algebraic formulation of the linear signal decomposition used in 
ICA. The scalp data channel signals are formed into a matrix (top center). ICA decomposition finds an unmixing 
matrix (W) which, when multiplied by the data matrix, decomposes the data (downwards pointing arrow) into a 
matrix of independent component (IC) signals called the IC activations (lower right), of the same size as the input 
scalp data. Multiplying the IC activations matrix by the inverse of the unmixing matrix W (lower middle) 
reconstitutes or back-projects the original scalp data channels (upwards pointing arrow).
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Figure 3.4. Schematic flowchart for Independent Component Analysis (ICA) data decomposition and  
back-projection.  ICA applied to a matrix of EEG scalp data (upper middle) finds an ‘unmixing’ matrix  
of weights (W, upper left) that, when multiplied by the (channels by time points) Scalp data matrix,  
gives a matrix of independent component (IC) activities or activations (lower right). This is the process  
of ICA decomposition (downward arrow) of the data into maximally temporally independent processes,  
each  with  its  distinct  time  series  and scalp  map.  The  process  of  back-projection  (upward arrow)  
recaptures the original scalp data by multiplying the IC activations matrix (lower right) by the matrix  
of independent component (IC) scalp maps (lower center) whose columns give the relative projection  
weights from each component to each scalp channel. The IC scalp map or ‘mixing’ matrix (W-1, lower 
center) is  the inverse of  the ‘mixing matrix’ (W, upper left).  In simple matrix algebra form, if  the 
indicated scalp data matrix is X and the component activations matrix U, then algebraically WX = U  
and X = W-1U. Here, W is a matrix of spatial filters learned by ICA from the EEG scalp data that,  
when applied to the data finds the activity projections of the underlying EEG source processes, and the 
IC activations (lower right). This general schematic holds for all “complete” linear decomposition  
methods returning as many components as there are data channels.

The inverse of the unmixing matrix, W-1, is the component mixing matrix (lower center) whose 
columns give the relative strengths and polarities of the projections of one component source signal to 
each of the scalp channels. In the figure, the values in the columns of the mixing matrix are color coded 
and interpolated onto cartoon heads to  visualize the topographic projection patterns or  scalp maps 
associated with each of the sources.  
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The  component  scalp  maps  found by  ICA decomposition  are  not  constrained  to  have  any 

particular relationship to each other (unlike in PCA decomposition). They may be highly (though not 
perfectly) correlated. They may also have any (simple or complex) spatial pattern, although in practice 
scalp maps for components truly accounting for a distinct source process (contributing independent 
temporal information to the data) must reflect the relative projections of the source process to  the 
individual scalp channels. Thus, a source comprised of spatially coherent local field activity across a 
cortical patch must have a scalp map that matches that of a single tiny battery (dipole) placed in “the 
electrical center of mass” (as it were) of the source patch and called its equivalent dipole (Scherg, 
1990). However, IC scalp maps may, again have any form, depending on the pattern of the source 
projection  to  the  scalp  electrodes,  and on  the  degree  of  dominance  of  a  (maximally)  independent 
component by a single signal source.

What is an independent component?

Before going further, we must first discuss a basic terminological confound. ICA (like PCA and other 
linear  decompositions)  uses  the  term  ‘component’ to  mean  something  quite  different  than  its  use 
elsewhere in this volume (including its title), i.e. as a contraction of the term “ERP component feaure” 
– some identifiable feature in an ERP waveform (typically associated with a single peak). By broader 
definition, an ERP component may be any functionally distinct feature or portion of an ERP waveform, 
i.e. a feature with a functionally distinct relationship to experimental parameters, and/or an ERP feature 
generated in a particular brain region (see Chapter 1, this volume). 

In this chapter, however, we will use the term component process (or component for short) to 
mean some portion of an entire multi-channel recorded data set separated from the remaining recorded 
data by linear decomposition. To minimize confusion, we will substitute a terminological equivalent, 
‘ERP peak’ or ‘ERP peak feature,’ for the more usual term ‘ERP component.’ Thus again, in this 
chapter  components will not refer to ERP peaks or other features but to  EEG source processes, each 
accounting for some portion of the continuous EEG activity (at all time points) forming a multi-channel 
data  set.  Each data  set  component  naturally  then  also  accounts  for  some portion  (large,  small,  or 
negligible) of any ERP average of epochs drawn from the data set.

As shown in Fig. 3.4, an independent component (process) of an EEG data set (or IC for short) 
comprises  both a  fixed scalp  map and a  time series giving its  relative  polarity  and amplitude  (or 
“activation”) at each time point.  The scalp map shows the relative weights or projection strengths (and 
polarities) of the projection from the component process to each electrode location. The component 
activation time series gives the relative amplitude and polarity of the component’s activity at each time 
point. Because we define an EEG source as being spatially stable, a component scalp map remains 
constant over time. The back-projection of each component process to each scalp channel is the product 
of the component activation time series with the scalp map weight for that  channel. The IC back-
projection to all the channels is the portion or component of the scalp data (at all channels) contributed 
by the component process. The original channel signals are the sums of the back-projected activities of 
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all the independent components. That is,  the scalp data are the collection of all the summed back-
projections of all the independent components to all the channels.

In simple matrix algebra form, if the scalp data matrix is X and the component activations 
matrix U, then algebraically WX = U, where W is the unmixing matrix of spatial filters learned by ICA 
decomposition of the EEG scalp data. This equation simply says that applying spatial filters W to the 
data  X  (by  simple  matrix  multiplication)  gives  the  activation  time  courses  of  the  independent 
component  processes.   The  converse  process  that  reconstitutes  the  data  from the  components  is, 
algebraically, X = W-1U where W-1 (the matrix inverse of W) is the component mixing matrix. These 
same equations can be used to represent any linear decomposition method, though other methods may 
use different names for the matrices.

Independent components of EEG data

It is important to understand that each scalp EEG recording channel is itself in effect a spatially filtered measure of 
the varying scalp potential field, recording only the time-varying potential difference between two scalp electrodes, 
the so-called “active” electrode and one or more “reference” electrodes – at which brain and non-brain signals are 
potentially just as “active” as the so-called “active” electrode. ICA attempts to replace these scalp channel electrode-
difference filters with IC filters using other linear electrode combinations chosen so as to pass individual EEG source 
signals while rejecting all other sources. The degree of source fidelity ICA can achieve depends on the number of data 
channels versus the number of active sources – as well as on the length and quality of the data.

Before considering in detail the assumptions underlying ICA and giving heuristic guidelines for 
how to apply it, let us first show model examples of independent EEG components or ICs. ICs of EEG 
data  can  be  roughly  separated  into  three  types,  ICs  accounting  for  brain  and  non-brain  (artifact) 
processes, respectively, and small ICs whose maps and activities appear noisy and are poorly if at all 
replicated from session to session. This last  category can be considered a ‘noisy’ part  of the EEG 
signals that ICA is not able to resolve into components dominated by a single source (although not 
every small IC fits this description).  Between these three IC categories, there may be ICs in ‘grey 
areas’ whose assignment to one of these three categories is difficult.  Here, let us first consider ICs 
clearly accounting for activity from particular non-brain (artifact) sources.
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Figure 3.5. Typical component properties of four non-brain independent component processes accounting respectively  
for eye blinks, lateral eye movements, left post-auricular electromyographic (EMG) activity, and electrocardiographic 
(ECG) activity, from the 238-channel EEG recording studied in Figures 3.2 and 3.3. Upper panels show the interpolated 
component scalp map, activity ERP image, average ERP (below ERP image), and mean power spectrum. Lower panel  
shows the maximally independent activities of the four processes during a five-second period. Note the characteristic  
activity elements, also seen in the ERP-image representations. 

Independent non-brain component processes: Noise or signals?
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ICA characteristically separates several important classes of non-brain EEG artifact activity from the 
rest  of  the  EEG  signal  into  separate  sources  including  eye  blinks,  eye  movement  potentials, 
electromyographic (EMG) and electrocardiographic (ECG) signals, line noise, and single-channel noise 
(Jung et al., 2000b; Jung et al., 2000a). This important benefit of ICA decomposition of EEG data was 
apparent from the first attempt to apply it (Makeig, 1996). ICA has thus found initial use in many EEG 
laboratories simply as a method for removing eye blinks and other artifacts from data. For data sets 
heavily contaminated by eye blinks or other artifacts, for instance data collected from young children, 
the  ability  to  analyze  brain  activity  in  data  trials  including  eye  movement  artifacts  can  mean the 
difference between analyzing and rejecting the subject data altogether. 

Unlike regression-based methods for artifact removal, ICA artifact separation allows artifact 
subtraction (often called artifact ‘correction’) without requiring a separate (‘pure’) reference channel 
for each signal. In practice, regression methods risk eliminating brain signals that also project to the 
(impure) reference channel (e.g., frontal brain sources also project to an ‘electrooculographic (EOG) 
channel’ near the eyes). Figure 3.5 shows scalp maps, spectra, and ERP-image plots (above their trial-
average ERPs) for four typical independent artifact source components separated by ICA from the 
visual selective attention task session considered in earlier figures. The highly distinct activity features 
separated from the data by ICA make the qualitative implications of temporal independence clear. The 
recovered  component  waveforms  are  the  most  temporally  distinct portions  of  the  recorded  data. 
Separation  by  ICA of  non-brain  source  processes  allow  detailed  analysis  of  the  separated  source 
process time courses. Note, for example, that the subject refrained from blinking for over a second 
following target stimulus presentations (Fig. 3.5A). 

When, as here, the electrode montage includes both head and neck sites, scalp maps of head 
muscle components exhibit a characteristic polarity reversal at the insertion point of the muscle into the 
skull, with the direction of the dipole inversion follow the direction of the muscle fibers. Note the scalp 
map associated with an EMG component signal (Fig. 3.5B). Note also the abrupt changes in EMG 
activity level in the component ERP-image plot near trials 180, 300, and 370 (lower left), a common 
occurrence  for  scalp  muscle  activity  recorded  during  experiments  in  which  the  subject  is  sitting 
comfortably while attempting to minimize their head and eye movements. These marked changes in 
activity level of this muscle were likely neither willfully controlled nor noted by the subject. By so 
clearly  separating non-brain processes contributing to  EEG data,  ICA allows these  activities to  be 
analyzed as concurrently recorded biological (or other) signals instead of simply being rejected as non-
brain “artifacts.” 

Spatially stereotyped versus non-stereotyped artifacts

It is important, however, to understand the distinction between spatially stereotyped non-brain signal sources, such as  
eye blinks and scalp muscle activities that always project with the same topographic pattern to the scalp channels, and  
non-stereotyped non-brain signal phenomena that have varying spatial scalp projections. Consider, for example, the case  
of an unruly subject who vigorously scratches his or her scalp for a second or two during the EEG recording. This  
quickly produces a series of some hundreds of EEG data points (i.e., EEG scalp maps) whose topographic patterns do  
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not match each other nor appear elsewhere in the data. The one-time-only appearance of each of these scalp maps is in  
effect  temporally  independent  of  all  other  data  sources,  possibly  hugely  increasing  the  number  of  ‘temporally  
independent’ sources ICA needs to separate into a finite number of component activities. Further, during this period the  
changes in electrode contact with the skin may alter the spatial pattern with which the other brain and non-brain signal  
sources project to the electrode array, violating the ICA assumption that these spatial projection patterns are stable  
throughout the data. 

Thus, including a stretch of data dominated by this or other spatially non-stereotyped (SNS) artifact in the data 
given to ICA for decomposition can only limit the success of the decomposition at identifying physiologically distinct  
EEG source processes. Such SNS periods may be identified by eye while scrolling through the data, by use of simple  
heuristics (Delorme et al., 2007a), by similar observations of a preliminary ICA decomposition of the whole data, or even  
automatically during ICA training by computing the probability of each data point fitting the current ICA model and  
rejecting highly improbable data points from further training.

Cases intermediate between spatially stereotyped and non-stereotyped artifacts are phenomena 
with  spatially  stereotyped  but  non-stationary  scalp  patterns,  for  example  slow  blinks  (Onton  and 
Makeig,  2006),  ballistocardiographic (BCG) cardiac artifacts recorded within a high-field magnetic 
resonance scanner (Debener et al., 2008), and slow waves in sleep (Massimini et al., 2004). In such 
cases, ICA typically finds a small set of maximally independent components that each capture one time 
period of the repeating activity pattern, thereby separating it from other source activities.
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Figure 3.6. Equivalent dipoles for six maximally independent brain source components. Near each IC index (ranked in 
order of variance contributed to the scalp data), the residual variance (r.v.) of the equivalent dipole model across the 
238-channel component scalp map is indicated, based on fitting the measured 3-D electrode locations to an 
individualized three-shell boundary element method (BEM) head model. All the residual variances are low (< 6%),  
indicating that the component maps are compatible with an origin in a single (or, IC8, in dual bilateral cortical patches).  
The equivalent dipoles (center) are likely situated somewhat closer to the cortical surface than the locations of the 
equivalent model dipoles. The five-second activation periods shown in the lower panel give representative (not  
concurrent) examples of bursts of frontal midline (IC21) theta (and higher frequency) activity, and posterior (IC3, IC4) 
alpha source activities for three of the components.

Independent brain component processes
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Using ICA solely to remove non-brain source processes, while valuable, does not exploit the power of 
ICA to separate the activities of individual brain sources that contribute to the scalp data. Some might 
ask that since no part of the brain acts wholly independently from the rest of the brain, how can ICA 
decomposition extract physiologically meaningful component signals?  The answer to this question is 
that ICA finds the  maximally independent components for a data set,  even if traces of dependence 
remain  between  them.  This  dependence  might  be  transient  –  for  example  the  occasional  strong 
similarity  of  occasional  evoked activity  in  otherwise  maximally  independent  left  and  right  lateral 
occipital  processes  produced by central  visual  stimulus  presentation  (Makeig et  al.,  2002).  Or  the 
dependence might  be limited,  for example  only reflected in  weakly coherent,  low amplitude,  high 
frequency activity. 

Even in cases in which two ICs have remant mutual dependence, i.e. when their joint activities 
could be said to form "a dependent two-dimensional subspace" of the data, ICA should still separate the 
activity of this subspace from the activities of other,  single  independent component processes.  For 
example, a moving scalp artifact produced by slow eye blinks might be separated into two or more 
independent components, each accounting for one phase of the moving blink potential. In this case, the 
spatiotemporally overlapping component activities would differ from one another, not allowing their 
parsing as a single  IC. Though not completely independent of each other,  the time courses of the 
partially  dependent  ICs  might  still  be  independent  of  any  other  IC  time  course  in  the  data  and 
sufficiently different from each other to require more than one IC.

Applied to high-density EEG data of adequate length and quality, ICA decomposition typically 
produces from one to three dozen components with low mutual information and scalp maps highly 
compatible with an origin in a single cortical patch (or occasionally in a bilaterally symmetric pair of 
cortical patches), as in our definition of an EEG source in Section I (above). As an example, Figure 3.6 
shows 3-D scalp maps and equivalent dipole locations in an individualized subject boundary element 
method (BEM) head model for six independent brain components separated by ICA from the same 
recorded data as in earlier figures. Beside each component scalp map, the residual scalp map variance 
(r.v.)  not explained by the best-fit single (or dual bilateral)  equivalent dipole model is shown. The 
component scalp maps are nearly dipolar, i.e.  nearly matching the computed projection of a single 
equivalent dipole (or bilateral dipole pair), whose locations are here within an individualized boundary 
element  method (BEM) head model  built  from a subject  MR image (Oostenveld and Oostendorp, 
2002). 

Again,  the  computed  IC  single  equivalent  dipole locations  cannot  represent  the  spatial 
distribution of the cortical generator domains. Instead, they represent the computed positions (in the 
BEM head model) of vanishingly small oriented dipoles whose scalp projection patterns match most 
closely the actual IC component maps (across all electrodes). In general, an equivalent dipole for a 
cortical patch source is typically deeper in the brain than the cortical patch itself (Scherg, 1990). Recent 
advances in distributed inverse source localization methods suggest that it may soon prove possible to 
estimate, using subject MR images, the patch (or patches) of subject cortex that most likely constitute 
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each IC source domain. Such a goal is likely not reachable by the alternate strategy of first computing 
an ERP average and then finding inverse source distributions of one or more ERP scalp maps, since the 
ERP scalp map at  any point in time is typically a weighted mixture of contributions from several 
cortical source areas.

ICA assumptions 

As illustrated in Figures 3.5 and 3.6 (above), ICA decomposition has proven to be highly successful for 
studying EEG data – Why?  An important part of the answer must be that there is an approximate fit, at 
least, between ICA assumptions and the physiological nature of EEG sources themselves (Makeig et 
al., 2004a; Onton and Makeig, 2006; Onton et al., 2006). Basically, ICA “blindly” separates the scalp 
data  given  it  into  component  processes  whose  spatial  and  temporal  properties  are  not  known  in 
advance, based on the following five assumptions:

(1) That the component source locations (and thereby their topographic projection patterns to the 
scalp sensors) are fixed throughout the data.

(2) That the projected component source activities are summed linearly at the sensors.
(3) That there are no differential delays involved in projecting the source signals to the different 

sensors.
(4) That the probability distributions of the individual component source activity values are not 

precisely Gaussian.
(5) That the component source activity waveforms are (maximally) temporally independent of one 

another.

The last (‘independence’) assumption (5) can be translated informally as saying that the component 
source activity time patterns are maximally distinct from one another. More technically, a set of signals 
are temporally independent, in the sense used for ICA, if knowing the activity (µV) values of any 
subset of the signals at a given time point gives no clue about the activity values of any subset of 
remaining sources at the same time point. Thus each component source signal is, in a particular sense, 
an independent  source of  information in  the  data,  contributing a  temporal  pattern  not  in  any way 
determinable from the values (at the same time point) of the other component source signals. 

The  spread  of  information-based  signal  processing  into  nearly  every  signal  processing 
application area in the last decade (Jutten and Karhunen, 2004) derives primarily from the basic interest 
of investigators in all research areas in identifying the sources of information that contribute to their 
multi-dimensional data. However, the value of ICA for decomposing any signal is determined by the 
degree to which the ICA assumptions fit the manner in which the data are  actually generated and 
recorded. For EEG signals, the assumptions of simple summation at the electrodes (2) and lack of 
differential delay (3) are met precisely. The non-Gaussian distribution assumption (4) is plausible for 
EEG  sources  generated  by  nonlinear  cortical  dynamics  as  well  as  for  non-brain  artifact  sources 
including cardiac signals, line noise, muscle signals, eye blinks and eye movements, etc. that are not 
themselves sums of smaller uncorrelated signals. 
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As mentioned earlier,  the  ICA spatial  source  stationarity  assumption  (1)  is  consistent  with 
indirect evidence from fMRI and other brain imaging methods, and the independence assumption (5) is 
consistent  with  the  very  sparse  long-range  cortico-cortical  coupling  and  the  predominantly  radial 
thalamocortical connectivity profile. However, both these assumptions have limitations. In particular, 
optical dye recordings in animals of local field potentials at the millimeter and smaller scale reveal 
moving wave patterns (Arieli et al., 1995), and comparison of ICA solutions across a group of subjects 
participating in the same task suggests that the spatially stable EEG sources separated from the data by 
ICA depend in part  on the task the subject is performing (Onton,  2005).  Thus,  further research is 
needed on methods of identifying spatial lability in EEG source data (Anemuller et al., 2003) and for 
identifying changes in the spatial distribution of the sources as subject task, strategy, or preoccupation 
changes (Lee, 2000). However, given a hypothetical switch between two sites of EEG signal generation 
as  the  subject  alternately  performs  two  tasks,  ICA should  in  theory  return  two  components  each 
showing the task-related activity only during one performance condition.

Dual-dipole IC processes

From the viewpoint of ICA decomposition, an EEG source is nothing more than an independent time 
course of information in the data, whatever its scalp projection pattern. The scalp projections (and 
hence, scalp maps) of ICA components are thus constrained only by the projection patterns of the 
actual physical sources of the data. Cortical (or other) source signals arising in separate cortical patches 
may be partially or wholly synchronized if the separate patches are physically linked by dense white 
matter tracts (such as corpus callosum), or are identically stimulated. In this case, ICA decomposition 
will (rightly) return a component summing the scalp projections of the two (physical) source patches. 
For  example,  a  single  IC  typically  accounts  for  eye  blink  artifacts  from  the  two  eyes,  whose 
synchronized small  upward movements during the blink induce electrical  activity accounted by an 
equivalent dipole located in each eye.  Similarly, ICA may return one or more brain components whose 
scalp maps sum the projections of two equivalent dipoles, usually with bilaterally near symmetrical 
locations and scalp projections, compatible with patches connected by corpus callosum. Theoretically, 
cortical activities on either end of any dense white matter tract might synchronize and their activities be 
combined into a single IC, though to us this has not yet been conclusively demonstrated. It makes no 
sense to say that ICA fails to separate “sources” in this case, unless one for example (re)defines the 
term “EEG source” to mean activity in a single cortical patch. However, in practice the number of dual-
dipolar” ICs is relatively small (except for most ICs accounting for eye movements, thankfully).

ICA ambiguity 

Discussions of the polarity and amplitude ambiguity inherent in IC activations in some early ICA papers have been 
confusing to some readers. In fact, this ambiguity is present only when the IC activations and IC scalp maps are 
considered separately. We might say that the sign and scaling of the (back-projected) component in the data is split  
(arbitrarily) between its activation and scalp map. Since -1 × -1 = 1, inverting the signs of both an IC activation and 
its scalp map will not change their product, the back-projection of the IC into the original data, which will retain its 
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original polarity. These ambiguities should be kept in mind when examining or comparing IC activations or scalp 
maps.

However, the µV scaling of the back-projected IC scalp activity is precisely the product of the scalp map 
values with the activation time series.  Thus,  ICA decomposition does not lose  this information, as is  sometimes 
mistakenly suggested. Also, while IC potentials at the cortical surface are also proportional to the IC activation, 
accurate source location and electrical head models are needed to determine the actual IC strength on or in the 
cortex, since this depends on the resistance between scalp and cortex, which in turn varies across heads and source 
locations.

Note that, ICA does not itself sort the components into any fixed order. Thus, decompositions of similar data, 
even data from the first and second halves of the same recording session, are not guaranteed to return ICs in the 
same order. ICs from different data sets need to be compared with each other using one or more measures of their 
time courses and/or scalp maps, for example their power spectra and equivalent dipole locations.

Number of data channels

How many data channels should be used for ICA filtering to be successful? The most computationally efficient and 
robust ICA methods, such as infomax ICA, neither increase nor decrease the dimensionality of the data – they find 
the same number of  components as there are data channels and are  therefore  called “complete” decomposition 
methods5. How many independent sources contribute to EEG data? It is highly likely that there are always more 
(brain and non-brain) sources with distinct (e.g., near-independent) time courses and unique scalp maps than any 
possible number of recording channels, since synchronized cortical field activity likely occurs, at least transiently, at 
more than one spatial scale, and to some extent uncorrelated noise is generated at each of the electrodes. Most such 
source activities will be small to negligible, but their presence guarantees that the number of degrees of freedom of 
the recorded data will never be less than the number of data channels. 

Data contributions from numbers of sources beyond the number of available component degrees of freedom 
(i.e., beyond the number of data channels) will be mixed into some or all of the resulting components, thereby adding 
a kind of  ‘noise’ to  the results  of  the decomposition.  The noise  inherent to ICA decomposition  of  EEG data is 
evidenced by the indeterminate scalp maps of the very smallest ICs in a high-dimensional data decomposition, ICs 
that may not prove stable under repeated decomposition and whose scalp maps are often far from ‘dipolar’ (i.e., 
resembling the projection of a single dipolar source). Because of the need for ICA to ‘mix’ all of the EEG sources into 
the available number of components, decomposing data with a larger number of (clean signal) channels may be 
preferable when there are enough data to decompose them (see following). But decomposing a smaller number of 
channels will likely prove beneficial as well. 

Data requirements

Successful ICA decomposition requires an adequate amount of data. We may say, metaphorically, that 
the independence of many source signals cannot be “expressed” in brief mixtures of them. To “express” 
their  independence  (or  less  metaphorically,  for  an  ICA algorithm to  recognize  it),  a  considerable 
amount of data is typically required. Thus, successful ICA decomposition typically profits from being 
applied to a large amount of data, typically  the entire collection of continuous data or extracted and 
then  concatenated  single  trials  from  an  event-related  EEG/ERP task  session.  The  most  frequent 
mistake  researchers  make  in  attempting  to  apply  ICA to  their  data  is  to  attempt  to  apply  ICA 
decomposition to too few data points. For high channel numbers (64 or more), we suggest it is optimal 
to decompose a number of time points at least 20 or more times the number of channels squared. This 
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is only a heuristic standard,  not a strict minimum. For very dense scalp arrays, this standard could 

require an unreasonable amount of data. For example, to decompose 256-channel data 20 × 2562 time 

points at 256 points/sec would require over 80 minutes of recording time and occupy nearly 1.5 GB, 
though by this same standard for 64-channel data a 22-minute recording occupying about 0.35 GB 
would suffice. 

We are not as sure about the influence of sampling rate on ICA decomposition. Doubling the 
sampling  rate  during  a  recording  period  shortened  by  half  might  not  produce  as  effective  a 
decomposition, since the higher frequencies captured in the data acquired with a higher sampling rate 
would be small, relative to lower frequency activity, and might have lower source-signal-to-noise ratio. 
See Onton & Makeig (Onton and Makeig, 2006) for further discussion. 

Optimally the data should be from a period in which the subject is predominantly in the same 
state (for example, awake and attentive), and performing the same type of task or tasks.  Although 
standard ICA methods are theoretically able to separate data into sources that are principally active at 
different  periods  in  the  data  set,  a  promising  newer  mode  of  ICA decomposition  allows  learning 
multiple  sets  of  independent  components  wherein  each  time  point  is  associated  with  only  one 
decomposition (Palmer, 2008).

Finally, it should be noted that ICA is reference free, since any re-referencing of the data that 
preserves its dimensionality does not change its information content or its sources. After re-referencing, 
the IC scalp maps will change but IC activation dynamics and equivalent model dipole locations should 
not change except as a result of normal statistical variability, which is typically small for ICs with 
highly ‘dipolar’ scalp maps.

ICA versus PCA

Another  well-known  method  of  linear  decomposition  of  multi-channel  data,  principal  component  
analysis (PCA), transforms multi-channel data into a sum of uncorrelated principal components so 
named because they each, in sequence, account for the most possible (or ‘principal’) variance in the 
remaining uncorrelated (or orthogonal) portion of the signal data not accounted for by the preceding 
principal components. By contrast, independent components (ICs) produced by ICA have no natural 
order – though it is common to sort them by descending variance of the (back-projected) scalp data 
they each account for. Again, for either PCA or ICA the whole scalp data are the sum of the individual 
component contributions. The simple system of Fig. 3.4 thus applies to PCA as well, though for PCA, 
W-1 is called the eigenvector matrix and W is its inverse. Also, in PCA both the eigenvector matrix and 
the activations or factor weights matrices are normalized, and an intervening diagonal matrix E, the 
eigenvalues matrix, is used to hold the relative scaling of the components (i.e., X = W-1EU), while the 
columns of the mixing matrix as well as the rows of the activations matrices are each normalized (to 
have unity root-mean-square values).
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The important difference between ICA and PCA is in their quite different goals or objectives. 

We may say that PCA attempts to lump together maximum signal variance from however many sources 
into as few principal components as possible, whereas ICA attempts to split the signal into its separate 
information sources, regardless of their variance. This makes PCA useful for compressing the number 
of  dimensions  in  the  data  while  preserving  as  much  as  possible  of  the  data  variance.  However, 
elimination of low-variance PCs for the purpose of dimension reduction most likely deletes portions of 
nearly all  the source activities,  not just  the smaller  ones.  When data  length is not long enough to 
successfully decompose all available channels, another possibility is to perform ICA decomposition of 
data from some channel subset. The relative value of these two approaches (principal subspace versus 
channel subspace) is difficult to evaluate in advance.

The ‘maximum successive variance’ objective of PCA also forces both the principal component 
activities and the scalp projections (scalp maps) to be mutually uncorrelated (orthogonal). Since the 
scalp projections of brain (and non-brain) sources are rarely themselves orthogonal, this property forces 
all  but  the  first  very  few principal  component  scalp  maps  to  resemble  checkerboards  that  cannot 
reasonably represent the activity of single EEG sources. In general, principal component maps do not 
resemble the projection of a single EEG source unless one source (often, eye blinks) or two sources 
with  near-orthogonal  maps (for  example,  lateral  and vertical  eye  movements)  dominate  the  signal 
variance. 

For  this  reason,  some  ERP researchers  advocate  the  use  of  post-PCA component  rotation 
methods developed for earlier factor analysis approaches, such as Varimax or Promax (Dien et al., 
2005). These may help focus the scalp maps of the very first components to emphasize a few large 
source activities (such as eye blink artifacts and lateral  eye movements),  but both simulations and 
actual decompositions show their power to accomplish this for many brain and non-brain sources pales 
in comparison to ICA methods when properly applied to sufficient data (Makeig et al., 1999b; Makeig 
et al., 2002).

Independence  among source  waveforms,  however,  is  a  much stronger  assumption  than  the 
simple absence of correlations between source pair signals. Substituting the stronger assumption of 
independence between component activities instead of requiring them only to be uncorrelated allows 
ICA to return independent components (ICs) having any (non-identical) scalp maps. Every IC scalp 
map is then free to represent the projection of a single brain or non-brain signal source, whereas PCA 
component  maps  are  constrained  to  be  uncorrelated  and  therefore  most  have  a  “checkerboard” 
appearance not compatible with a single cortical (or other) source projection. 

Theoretically, exact independence is such a strict requirement that it can never be established 
for EEG signals with finite length. ICA algorithms, therefore, may at best produce components with 
maximal independence by ensuring that components continually  approach independence as the ICA 
algorithm iteratively  applied to  the  data.  The  degree  of  IC  independence  achieved may differ  for 
different data sets and also for different ICA algorithms applied to the same dataset. Our discussion of 
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the  nature  of  brain  EEG sources  (Section  I)  implies  that  the  more  independent  the  recovered  IC 
activities,  the  more  dipolar  (or  occasionally,  bilateral  dual-dipolar)  the  IC  scalp  maps  of  brain 
components, a trend supported by recent tests (Delorme, unpublished data).

Independent component contributions to single trials and ERPs

By definition and design, independent component processes contribute nearly independent temporal 
variability  to  sets  of  single-trial  epochs.  Each  IC  represents  an  independent  EEG  process  whose 
continuous activity variations in the single trials are available for inspection and analysis. In particular, 
brain-based ICs with near-dipolar scalp maps may each be presumed to index the near-synchronous 
field activity arising in a single patch of cortical neuropile (or occasionally,  simultaneously in two 
bilaterally  symmetric  and  likely  tightly-coupled  cortical  patches).  Examining  the  trial-to-trial 
variability  in  the  IC activities  relative  to  a  set  of  time-locking events  may allow a  more  detailed 
understanding of event-related brain dynamics than examination of raw scalp channel data themselves, 
since the effects of source (and artifact) mixing by volume conduction have been removed or strongly 
reduced by ICA.

As an example of this, Figure 3.7 shows ERP-image plots of the activities of six independent 
components in the same response-locked single-trial data as earlier figures. In each ERP image, IC 
activity is scaled (in µV) as in it projects to the near-vertex (Cz) electrode. Locations of the equivalent 
IC dipoles are shown in the central panel. Trials are ordered exactly as in Fig. 3.3, by the amplitude of 
the LPC peak 120 ms after the button press (0 ms) at the vertex. Note the quite high degree of overlap 
of  the  ‘dipolar’ scalp  maps  of  these  midline  components  that  contribute  temporally  independent 
contributions to the recorded EEG signals.

The sum of the signals projected by these six component processes is shown in the middle right 
(grey) panel. Note that the trial order used here, which sorts the trials by ERP amplitude at the selected 
channel (as in Fig. 3.3B), only partially sorts the post-response amplitude of each IC activation. This is 
shown by the uneven gradations of the post-motor response positivity in the component ERP-image 
panels and in the sum of their contributions at the same near-vertex channel (middle right panel). This 
implies that  contributions to  the  activity  fitting the mean ERP template  in Fig.  3.3B sum  varying 
spatial combinations of these and other brain source processes in the different trials. 

Note also in Fig. 3.7 the different peak latencies of the LPC peak for ICs 2, 6, and 15 (top row). 
The trial ordering selected in Fig. 3.3 based on the amplitude of the average ERP ignores these single 
trial and component process differences. It sorts trials according to the amplitude of the average 
summed contributions of these and other independent sources, rather than on the varying amplitudes 
and latencies of the individual source processes. 

The summed and similarly smoothed (smaller) contributions of all the other 232 non-artifact 
components to the same channel in the single trials are shown in the lower right (grey) panel. The 
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channel ERP image in Fig. 3.3A is thus the sum of the two right (grey) panels, as well as the sum of the 
two ERP-image panels Fig. 3.3 B and C. Neither of the ‘remainder’ ERP images (Fig. 3.3C or Fig. 3.7 
lower right) suggest a satisfactory modeling of the LPC as summing just two factors – i.e. neither the 
‘six-ICs’ model imaged in Fig. 3.7 (lower right) nor the ‘invariant-ERP’ model in Fig. 3.3 (B and C). 
Using the ICA model, however, we may examine, for example, whether the particular trial-to-trial 
differences in the LPC window of each identified IC may indicate that its response varies with some 
dimension of the varying trial context (e.g., each trial’s particular cognitive and behavioral demands 
and demand history). 

Figure 3.7. ERP images for six midline and one bilateral brain independent components (ICs) in the same session as  
earlier figures (compare Fig. 3.6), with trials sorted in the same order as Fig. 3.3, and scaled as they contribute to the 
near-vertex channel signal imaged in Fig. 3.3. There, the trials were sorted by the amplitude of the LPC peak centered 
120 ms after the button press (at latency 0 ms) at the near-vertex channel shown on the head cartoon (middle right  
panel). The sum of the signals projected by these six component processes is shown in the same panel (note difference in 
color scale). The summed contributions of the other 232 non-artifact components to the same channel are shown in the 
lower right panel. The channel ERP-image plot (Fig. 3.3A) is thus the sum of the two ERP-image panels with grey 



35
backgrounds at the right of this figure. Separately, the contributions to the ERP of each of the other components 
summed in the lower right panel are smaller than those of the six components whose contributions are shown in the 
other panels.

Figure 3.8 shows that a portion of the IC trial-to-trial  variability highlighted  in Fig. 3.7 is 
indeed linked in orderly ways to behavioral trial differences. It shows ERP-image plots for the same six 
independent  components  (ICs)  as  in  Fig.  3.7,  again  scaled as  they  contribute  to  the  central  scalp 
channel (center right) but here sorted by subject reaction time and then smoothed with a wider (50-trial) 
moving window to more clearly visualize trends. Note that the wider averaging window reduces the 
overall  amplitude  of  the  imaged  data  through  phase  cancellation  of  trial-to-trial  IC  variability  in 
neighboring trials (compare the color µV scale limits here with those in Fig. 3.7). 

The middle right panel shows the summed contribution of the six ICs to the whole channel signal, and the 
lower right panel, again the remainder of the whole channel signals they do not account for. This view reveals that a 
portion of the trial variability evidenced in Fig. 3.7 is tightly linked to differences in subject reaction time. For 
anterior sources ICs 2 and 8, the negativity preceding the button press is time-locked to stimulus onsets, while the 
subsequent LPC is mainly time-locked to the subject button press. For central midline sources IC3 and IC4, the 
negativity onset and offset are time-locked to the stimulus and button press respectively. Posterior sources IC3 and 
IC4 appear to exhibit partial phase resetting of their alpha activities following stimulus presentations (see Section 
IV). The single scalp channel data and ERP sum all these (and doubtless other) event-related source process 
contributions.

It may be worth the reader’s effort to examine again carefully the trial variability in different 
dimensions visualized for scalp channel data in Figs. 3.2 and 3.3, and for IC data in Figs. 3.7 and 3.8.
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Figure 3.8. ERP images for the same six independent components (ICs) as in Fig. 3.7, again scaled as 
they contribute to the central scalp channel (center right cartoon head) but here sorted by subject  
reaction time and then smoothed with a broader (50-trial) moving window (note color scales). The  
middle right panel shows the summed contribution of the six ICs to the whole channel signal, with  
again  (lower  right)  the  difference  between  the  whole  signals  and  the  sum  of  these  six  source  
contributions. This view reveals that a portion of the trial variability evidenced in Fig. 3.7 is tightly  
linked  to  differences  in  subject  reaction  time.  For  anterior  sources  ICs  2  and  8,  the  negativity  
preceding the button press is time-locked to stimulus onsets, while the subsequent LPC is mainly time-
locked to the subject button press. For central midline sources IC3 and IC4, the negativity onset and 
offset are time-locked to the stimulus and button press respectively. Posterior sources IC3 and IC4  
appear to exhibit partial phase resetting of their alpha activities by stimulus presentations. The single  
scalp channel signal sums all these (and other) event-related source dynamics.

Independent component clustering
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To compare, group, or further average ERPs across subjects and/or sessions, channel data are typically 
identified by the labeled (Cz, Pz, etc.) or measured (x,y,z) channel positions on the scalp. Though 
equating of equivalent scalp locations across sessions and subjects is adequate for many purposes, it 
ignores the variety of individual cortical configuration differences, particularly in the positions and 
orientations of cortical sulci, that may orient anatomically equivalent EEG source projections toward 
different scalp areas in different subjects. In this case, functionally equivalent sources may have quite 
different scalp maps, and therefore electrodes at analogous locations will record different weighted 
mixtures of  source activities.  Thus,  for example,  signals  from ‘my Cz’ and ‘your Cz’ may not  be 
equivalent, even if our brains have equivalent cortical areas that function identically. This produces 
unavoidable and rarely considered variability in scalp recordings that are compared or averaged across 
subjects. 

Since under favorable circumstances ICA can separate scalp-recorded signals into the volume-
conducted  activities  of  maximally  independent  brain  sources,  it  may  be  more  accurate  to  group, 
compare,  and  characterize  functionally equivalent  clusters  of  ICs  across  subjects  and/or  sessions. 
Finding these IC equivalence classes is the challenge of IC clustering across subjects and/or sessions. 
IC clusters  may be  selected on  the  basis  of  their  equivalent  dipole  locations,  ERPs,  and/or  other 
measures.6

Figure 3.9 shows a sample application of IC clustering to a grand mean ERP averaging data 
from 12 subjects who participated in a visual attention-shift experiment. Throughout the experiment, 
subjects made speeded manual choice responses to indicate in which dimension (shape or color) the 
lateral target stimulus (presented at 0 ms) differed from a simultaneously presented neutral background 
stimulus. In the 12 subjects’ ICA-decomposed data, we identified 22 clusters of similarly located and 
similarly reacting ICs by comparing equivalent dipole locations, mean power spectra and event-related 
spectral perturbations (ERSPs, see Section IV) in three stimulus conditions. Figure 3.9 focuses on a 
grand-mean ERP time locked to stimulus presentation (at latency 0 s) in one condition. The central 
panel shows IC equivalent dipole locations for four of 22 identified IC clusters.

The black traces in the four top and bottom plot panels show the envelope of the grand mean ERP (i.e., its 
maximum and minimum channel values at each latency). The four top and bottom panels show the cluster-mean 
scalp maps and the boundaries of the colored regions, the envelopes of those portions of the grand-mean ERP 
accounted for by each of the four clusters.7 Envelope plotting allows the ERP contributions of one or more ICs or IC 
clusters to be visually compared with the envelope of the whole scalp ERP.
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Figure 3.9. Equivalent model dipole locations, mean scalp maps, and cluster projection envelopes of four (of 22)  
independent component cluster contributions to a visual stimulus ERP (grand mean over 12 subjects) in a visual  
attention-shift experiment. ERP envelopes show only the most positive and most negative channel values at each 
response latency. Here, the envelope (see text) of the grand-average back-projection of the indicated IC cluster is color-
filled. The outer black traces are the envelope of the whole grand-mean ERP after removing contributions of component 
clusters and outlier components accounting for eye, muscle, and other non-brain artifacts. The bottom two panels show 
clusters accounting for most of the P1 peak in the grand-mean ERP. The upper two panels indicate the portions of the 
grand-mean ERP accounted for by a central posterior cluster (blue, with maximal contribution to the peak labeled P2) 
and a midline cluster (red, with maximal contribution to the later peak labeled P3).

The lower panels show two lateral occipital IC clusters (see the green and purple IC dipoles) 
that accounted for nearly all the bilateral positive peak near 110 ms in the ERP, plus a later sustained 
“ridge-like” feature. The upper two panels show the portions of the grand mean ERP accounted for by a 
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central posterior cluster (blue) whose maximum ERP contribution was to the positive peak near 220 
ms, and a midline cluster (red) that contributed maximally to a later positive peak near 350 ms. 

Note that although the model dipoles are represented, for visual convenience, as small balls, the 
actual  uncertainty  in  their  individual  locations  is  rather  larger,  as  are  the  distributions  of  cortical 
territory across which synchronized local field activity (in our model) produce the far-field potentials 
recorded  by  the  scalp  electrodes.  Sources  of  dipole  location  error  in  Fig.  3.9  include  possible 
differences in recorded electrode positions relative to each other and the scalp, errors in co-registering 
the electrodes to the head model, and differences in head shape, and possible differences in head tissue 
conductivity parameters. Although the equivalent model dipole locations shown in the middle panel are 
relatively tightly grouped, their  spread may also reflect  differences in the locations of functionally 
equivalent  cortical  areas  across  subjects,  since  similarities  between  activity  measures  were  also 
considered in assigning components to clusters. 

IC clustering is required to compare ICA decompositions from more than one subject or session. 
It  can  be  used  to  understand  the  locations  and  dynamics  of  independent  component  processes 
contributing to  average ERPs as well  as to  the unaveraged single  trials.  IC clustering provides an 
involved  but  under  favorable  circumstances,  we  believe   a  more  adequate  answer  to  the  inverse 
problem of estimating the distributed sources of ERP scalp maps and the relationship of the source 
dynamics to experimental events and conditions. In particular, IC clustering gives a more adequate 
solution  than  simply  attempting  to  model  the  distributed  cortical  sources  of  ERP  scalp  maps 
themselves. IC clustering also  allows testing for  differences within  and/or  between subject  groups 
reflected in the presence or absence of ICs in one or more clusters and/or on details of the clustered IC 
locations or activities.

IV. Time/frequency analysis of event-related EEG data

Time-locked but not phase-locked: Event-related spectral perturbations (ERSPs)

To understand the relationship of ERP features to the event-related dynamics of the entire EEG signals 
from which they are derived, it is convenient to use time/frequency analysis that models the single-trial 
data as summing an ever-changing collection of sinusoidal bursts across a wide frequency range. Note 
that producing this representation of the data does not mean that the EEG is necessarily composed of 
such bursts, or that the burst shape or window employed in the analysis is necessarily a physiologically 
accurate template. Rather, as Joseph Fourier first showed for heat flows along a copper tube, frequency 
analysis,  and  later  non-stationary  time/frequency  analysis,  can  be  used  to  represent  any temporal 
activity pattern, not limited to those portions of the recorded signals that do indeed resemble single 
time/frequency basis  elements,  e.g.  symmetric  and smoothly  tapered  bursts  at  a  single  frequency. 
However, the frequent appearance of periodicities at multiple frequencies is a clear and remarkable 
feature of EEG records and this property of the signals show quite clear and spatially distinct changes 
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accompany changes in arousal and attention, making time/frequency analysis clearly useful for EEG 
analysis.

Figure  3.10.  Event-related 

time/frequency analysis of the set of independent component trials shown in Fig. 3.7 and 3.8 (upper  
left).  Mean event-related spectral perturbation (ERSP, top) and inter-trial coherence (ITC, bottom)  
time/frequency images for a leftward-pointing mid-frontal independent component (IC2) time-locked to  
button presses following target stimuli. Regions of non-significant difference from baseline (p< .001,  
uncorrected) are masked with light green. The top (ERSP) image reveals that mean alpha band power  
at  10  Hz  increases  weakly  following  the  button  press.  On  average,  low-beta  activity  (15-20  Hz)  
activities first decrease slightly, then increase after 400 ms. Activity at the baseline spectral peak (6 Hz,  
see top left baseline spectrum plot) does not change, though activity below 5 Hz is maximal at the 
button press.  The bottom (ITC) image shows that 4-Hz activity  becomes partially  but significantly 
phase-locked around the button press, meaning the portion of the component ERP (lower trace) near 4  
Hz is  statistically  significant (compare the ERP trace below),  as are its  weak 10-Hz “scalloping” 
between  -50  and  200  ms.  Component  activation  units  (‘act.’)  are  proportional  to  scalp  µV.  The 
statistically significant changes in mean spectral power in the beta band, shown in the upper panel, are  
not associated with significant ERP features and therefore represent changes in component activity  
time-aligned but not phase-aligned to the button presses.

Rather than averaging the recorded (‘time-domain’) event-related data epochs directly, one may 
average their time/frequency transforms (see also Chapter 2, this volume). Averaging time/frequency 
power  or  log  power  values  in  a  regular  grid  of  time/frequency  windows  gives  an  event-related 
spectrogram that is nearly always dominated by relatively large low-frequency activities. Normalizing 
the result, therefore, by subtracting the mean log power spectrum within some defined ‘baseline’ period 
(pre-stimulus or otherwise, as relevant to the analysis) allows a color-coded time/frequency image of 
mean log spectral differences we call the event-related spectral perturbation (ERSP) image (Makeig, 
1993). Basing the ERSP on changes in log power implicitly assumes a multiplicative model by which 
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EEG spectral changes represent the multiplication or division of the baseline power at each frequency 
in each latency window relative to the time-locking events. 

Determining either the amplitude or the phase of activity at a particular time/frequency point 
involves  matching the  data  in  a  window surrounding the  given  time point  to  the  oscillatory basis 
element (typically a tapered sinusoidal burst or ‘wavelet’). To measure low frequencies, this window 
must be relatively long, limiting the frequency range considered for short data epochs. Also, event-
related  changes  in  spectral  power  may last  longer  than  significant  features  in  the  ERP.  For  these 
reasons, our own typical time/frequency analyses use epochs including at least 1 s before the time-
locking event and continuing to 2 s or more following it, allowing a frequency decomposition based on 
a three-cycle tapered sinusoidal wavelet down to 3 Hz.

The mean ERSP of a set of event-related data epochs can index event-related dynamics that 
leave no trace at all in the ERP average of the same epochs, as first shown for alpha band activity by 
Pfurtscheller and Aranibar (Pfurtscheller and Aranibar, 1977). Thus the ERSP transform of the average 
ERP for a set of data epochs, while of possible interest to compute, may bear little or no resemblance to 
the average ERSP for the same collection of epochs. For one, significant ERSP features may long 
outlast the reliable ERP features. For example, Figure 3.10 (top panel) shows a mean event-related 
spectral  perturbation  (ERSP) time/frequency image for a  left-frontal  independent  component  (IC2) 
time-locked to button presses following target stimuli (from the same session as Fig. 3.1-3.8). Regions 
of non-significant difference from baseline (here p < .001, uncorrected for multiple comparison) are 
masked with light green. The ERSP image reveals that  mean alpha band power just  below 10 Hz 
increases weakly following the button press, while mean low-beta activity (15-20 Hz) in two frequency 
ranges increase after most markedly after 400 ms. Activity at the 6-Hz baseline spectral peak (see top 
left side-facing blue baseline spectrum) does not change, though activity below 5 Hz increases weakly 
around the button press, and then decreases beginning 200 ms after the button press. 

Spectral power in the average ERP is often referred to as the spectrum of activity  evoked by 
events, while changes in spectral power appearing in the ERSP are dubbed changes induced by events. 
However, this terminological distinction should not suggest that the two are necessarily physiologically 
distinct.  To see this,  we need to  consider  changes in  phase  statistics  associated with experimental 
events.

Phase-locking across trials: inter-trial coherence (ITC)

The ERSP disregards completely the consistency or inconsistency of the phase of the activity at each 
frequency and latency in a set of event-related epochs. Inter-trial coherence (ITC), or more precisely, 
inter-trial phase coherence, introduced as ‘phase-locking factor’ by Tallon-Baudry et al. (Tallon-Baudry 
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et  al.,  1996),  measures  the  degree  of  consistency,  across  trials,  of  the  phase  of  the  best-fitting 
time/frequency basis element at each latency/frequency point. Phase consistency is measured on a scale 
from 0 (no consistency, phase across trials is random and uniform around the phase circle) to 1 (phase 
perfectly consistent across trials).  The ITC for any  finite set of randomly-selected data epochs will 
typically not be 0. Therefore, it is important to compute a baseline threshold for the appearance of 
significantly non-random phase coherence. An ITC reliability threshold for a set of trial data can be 
found  using  either  parametric  or  non-parametric  statistical  methods  (Mardia,  1972;  Delorme  and 
Makeig, 2004).

It is important to note that the ITC and ERSP images for a given set of event-locked data epochs 
may  have  few  or  even  no common  features.  For  example,  in  Fig.  3.10  the  post-motor  response 
increases in alpha and then in beta-band power in the frontal midline IC spectrum are not mirrored by 
significant changes in ITC at the same latencies and frequencies. 

However,  there  is an intimate relationship between the ITC and the  ERP.  In  particular,  the 
occurrence of a significant ERP peak or other feature requires significant ITC (see Section II). In this 
sense, a significant ERP value at any time point reflects and requires significant ITC values at one or 
more frequencies at that time point (except in odd, improbable cases). Note also that the ITC for any 
frequency  may  be  significant  even  at  latencies  at  which  the  mean  potential  ERP value  is  0.  For 
example, if the 0 value in the ERP occurs during the zero crossing of an alpha oscillation in each trial, 
then the ITC at that alpha frequency might be highly significant, although the ERP at that time point 
might have a value of 0. The ITC may also be significant, at a particular latency, at more than one 
frequency. If so, this will be reflected in the shape of the ERP waveform surrounding the latency in 
question. 

For  example,  in  the  ITC image  in  Figure  3.10  (lower  panel),  activity  near  4  Hz  becomes 
partially but significantly phase-locked around the button press event (0 ms), meaning the portion of 
the component ERP (bottom trace) at 4 Hz is statistically significant. As well, ITC becomes (barely) 
significant at 10 Hz, a fact reflected in the weak 10-Hz ‘scalloping’ in the ERP waveform between -200 
and +300 ms. No other ITC frequencies, and therefore no other ERP frequencies, are significantly 
different from chance. The statistically significant ERSP changes in mean spectral power in the beta 
and low-gamma bands, shown in the upper panel, are not associated with significant ITC features and 
therefore  represent  component  activity  that  is  phase  inconsistent,  i.e.  not  phase-aligned (or  phase-
coherent) across trials, and so does not contribute significantly to the trial-average ERP.
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Figure 3.11. ERPs and partial phase resetting. The right panel shows an ERP-image plot visualizing  
the responses in over 400 single trials of a bilateral occipital independent component (IC) process  
following presentation of a letter at the central fixation point of a subject participating in a working  
memory task.  The  bilateral  component  (IC6,  sixth  by  variance  expressed  in  the  data)  produces  a  
response largely resembling a one-cycle sinusoid at 9 Hz. The mean ERP trace (below the ERP image)  
plots its mean time course, time locked to stimulus onset. The ERSP trace (below that) shows that the  
mean level of 9-Hz energy in the data, during this period, is 15 dB or more higher than in the pre-
stimulus (or ensuing) period. The ITC trace (below that) confirms that during this ERP feature the 
phase  of  the  entire  9-Hz activity  in  the  trials  is  highly  consistent  (ITC approaching  1).  The  blue  
backgrounds  show  p  <  .01  probability  limits,  demonstrating  that  all  three  measures  are  highly  
significantly different from baseline in this period. The panel on the left shows a quite different set of  
over 100 data trials for a medial (or medial bilateral) occipital IC process in the five-box task of Fig.  
3.1 in which stimuli were presented above and left of a central fixation cross, while the subject retained 
fixation.  The  large  amount  of  alpha  band  activity  produced  by  this  IC  process  under  these 
circumstances likely reflects ‘alpha flooding’ of relevant visual cortex when visual attention is forced 
by the task to remain elsewhere in the visual field (Worden et al., 2000).
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ERPs and partial phase resetting

The relatively low peak ITC values in Fig. 3.10 (~0.4) are not unusual for longer-latency ERP features. 
An alternate model, first proposed for selected event-related data as early as 1974 by Sayers (Sayers et 
al., 1974), is known as the phase-resetting or partial phase-resetting model. Phase resetting refers to a 
phenomenon seen both in mathematical models and in biological systems in which the phase of an 
ongoing  periodicity  (e.g.,  the  cardiac  or  circadian  cycle)  is  reset  to  a  fixed  value  relative  to  the 
delivered perturbing stimulus. For example, brief exposure to strong light delivered to a dark-adapted 
rat (or human) at almost any phase of the wake-sleep cycle, will tend to reset the cycle to a fixed phase 
value (Winfree, 1980; Czeisler et al., 1986; Honma et al., 1987; Tass, 1999). At the frequency of the 
ongoing, spontaneous rhythm, an ITC measure time-locked to comparable events delivered at random 
time points throughout the session will become significant as the phase of the rhythm in some or most 
of the trials is reset to a fixed value. If the phase of the rhythmic activity then tends to continue to 
advance in a regular manner from its initial reset value, the ITC time-locked to the events of interest 
will  remain significant  for some number of cycles until,  across trials,  natural  variability  randomly 
separates the advancing phase values.

The term ‘phase resetting’ has been applied to EEG dynamics in a less formal sense, since in 
most cases there is no constant, ongoing rhythm for experimental events to perturb. Rather, in many 
cases  the  signal  contains  only  intermittent  bursts  of  alpha  or  other  frequency  spindles  of  various 
lengths. The term ‘phase resetting’, therefore, can be formally applied in some statistical sense to mean 
that the phase statistics (as measured, for example, by the ITC) are transiently perturbed following 
events of interest. If, whenever rhythmic activity at a given frequency is present, its phase distribution 
following the time-locking events becomes non-uniform, ITC will increase and may tend to remain 
significant for as long as the rhythmic activity is present.

Figure 3.11 shows ERP-image plots for two sets of visual-stimulus locked trial data from two 
ICs captured in  different  subjects  under  rather  different  task conditions.  In  panel  3.11A (left),  the 
stimulus is a briefly-flashed disk presented at a central, visually unattended target square located above 
a  central  fixation cross during a visual selective attention task.  The IC shown here has a bilateral 
equivalent dipole model in or near primary visual cortex, and produces abundant alpha-band activity 
(see power spectrum),  likely reflecting the ‘alpha flooding’ of visual cortical  areas sensitive to  the 
foveal fixation region when the subject places his or her visual attention elsewhere in the visual field 
(Worden et al., 2000). This alpha activity appears to be ‘partially phase-reset’ (ITC ~ 0.4) for nearly 
500 ms (5 alpha cycles) following stimulus presentation. In the ERP image, trials are sorted by alpha 
phase in a three-cycle window ending 50 ms after stimulus onset.  The possibility of ‘partial phase 
resetting’ is suggested by the bending and then near-vertical alignment of the positive and negative 
wave fronts beginning near 100 ms in the ERP image, when the ITC becomes significant. 

Note  that  the  visual  evidence  presented  by  this  ERP-image,  including  the  finding  of  a 
significant ITC (lower ITC trace), are  not in themselves sufficient evidence to prove that these data 
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truly fit  a ‘phase resetting’ model  (for more discussion,  see Chapter 2,  this  volume).  Nor do they 
necessarily rule out a ‘true-ERP’ model for the data, e.g. a model in which the same ERP (upper ERP 
trace) resembling an alpha burst is simply added to ongoing alpha and other EEG activity in every trial 
(as in Fig. 3.3), and that the ongoing alpha activity is in turn reduced in amplitude just enough to make 
total mean alpha power at each latency constant, as observed here (middle ERSP trace). However, keep 
in mind that these data are the result of spatial filtering by ICA of a single independent source, very 
likely focused on a  single  source area (or closely spaced medial  bilateral  areas),  given the  highly 
‘dipolar’ from of the IC scalp map. It thus seems to us physiologically implausible that, following these 
visual events, this same cortical source area produces ongoing random-phase alpha activity plus a fixed 
but wholly unrelated alpha-burst ERP. Several groups have recently proposed measures to further test 
phase resetting models on data such as these (Mazaheri and Jensen, 2006; Hanslmayr et al.,  2007; 
Martinez-Montes et al., 2008). Ultimately, the issue will likely be settled by fitting concurrent scalp and 
intracranial EEG recordings to generative models of cortical field dynamics, a process begun by groups 
studying human brain responses during cortical modeling (Wang et al., 2005).

In  panel 3.11B (right),  on the other hand, the time-locking stimulus is a letter presented  at 
fixation in a letter working memory task. The spectrum of the bilateral lateral-occipital IC (inset) has 
only a weak alpha band peak, and no sign of prolonged alpha-band phase resetting following the highly 
stereotyped (ITC > 0.8) component IC stimulus-evoked response (which contributes strongly to the P1-
N1-P2 features of the full scalp ERP, not shown). At the frequency best fitting the ERP complex (9 Hz), 
mean single-trial  amplitude  during the  ERP is  nearly  6  times (over  15 dB)  higher  than  the  mean 
amplitude of activity at the same frequency in the pre-stimulus baseline. Phase-sorting the single trials 
at 9 Hz in a window ending 50 ms after stimulus onset (as in A) shows that the phase of the weak alpha 
activity present in single trials during the baseline period has no obvious effect on the latencies of the 
subsequent evoked-response  activity  in  the  same trials. For this  IC stimulus response,  therefore,  a 
‘partial phase-resetting model’ seems unnatural and a ‘true ERP’ model adequate. However, even here 
one may ask whether, for example, the frequency peak of the ERP (9 Hz) may not also be a peak of the 
spontaneous (baseline) spectrum of this cortical area.

Many authors have attempted to draw a hard distinction between evoked and induced event-related activities,  
defining evoked activity as being activity completely time-locked and phase-locked to the stimulus (ITC = 1) and thereby 
composing the ERP, while the remainder of the single-trial activity, having no phase locking to the time-locking events  
(ITC = 0) is defined as induced (Galambos, 1992). While this distinction may be useful for some purposes, drawing this  
terminological distinction does not mean this decomposition of the EEG signal into evoked (ERP) activity plus induced 
(other EEG) activity has any natural physiological basis. Think of a stack of five pennies – Again, does this stack ‘really’  
sum two groups of two and three, or of groups of four and one? In fact, the stack of pennies retains no trace of how it  
was  constructed  and thus  cannot  be  said  to  be  any more  ‘really’ 3+2 than 4+1,  no  matter  how it  was  originally  
constructed. The same applies to the model of event-related EEG data illustrated in Fig. 3.3:  EEG data = ERP + Other,  
a model that, as ICA decomposition and Figs. 3.7 and 3.8 suggest, disregards the varying single-trial contributions of  
spatially separable data information sources, some clearly linked to trial-by-trial behavioral differences.

Figs. 3.7 and 3.8 suggest that scalp ERPs sum channel activity arising from different mixtures of spatial source  
processes in different trials. But how should we think of the average response of a single IC? Assuming that an IC  
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activation does index locally-synchronous or near-synchronous field activity of a single patch of cortex, can the IC  
activity producing the IC “ERP” activity (strictly time-locked to the set of evoking events) be physiologically distinct from 
other (non phase-locked) EEG activity originating at the same moments in presumably the same cortical patch? 

Linear  summation  in  cortex,  even  of  direct  sensory  input  and  ongoing cortical  dynamics,  appears  physiologically  
implausible without strong nonlinear interactions. Fiser and colleagues  (Fiser et al.,  2004)  have noted that even at  
prototypical sensory cortex – the input layer of primary visual cortex (in ferrets), only a few percent of the synapses  
deliver information directly from the eyes via the lateral geniculate nucleus (LGN). In accord with this fact, they report  
that  “at all ages including the mature animal, correlations in spontaneous neural firing [during natural vision] were  
only slightly modified by visual stimulation, irrespective of the sensory input. These results suggest that in both the  
developing and mature visual cortex, sensory evoked neural activity represents the modulation and triggering of ongoing  
circuit dynamics by input signals, rather than directly reflecting the structure of the input signal itself” (Fiser et al.,  
2004). If this is the case even for V1, it should not be less so for cortical areas that are not primary sensory areas. 
Clearly, deeper understanding of the EEG dynamic changes associated with sensory and other events will require more  
detailed observation and modeling of brain dynamics at multiple spatial scales. In terms of EEG research, more detailed  
observations  and  modeling  are  needed  of  trial-by-trial  differences  in  oscillatory  activity  and  its  relationship  to  its  
transformation by experimental events.

Event-related coherence

Cognitive events – moments at which we apperceive the significance of some sensory event and mentally ‘grasp’ its 
immediate consequences for our attention and behavioral planning – must involve and/or produce complex and 
distributed changes in EEG dynamics. Furthermore, some mechanism of information transfer between brain regions 
must exist that is dynamically dependent both on the nature of the stimulus and its relation to subject expectations 
and intentions. A possible mechanism for this transfer may be indexed by transient temporal coupling between pairs 
of sources relative to experimental events. One measure of this coupling is event-related coherence (ERC) (Delorme 
and Makeig, 2003). 

The preponderance of coherence observed between scalp channel signal pairs is accounted for by ICA as 
deriving from common IC projections to both scalp channels. An amplitude change in activity of a single IC may 
produce a change in the measured (zero-lag) scalp channel coherence without any actual brain coherence changes 
occurring. By maximally reducing the effects of volume conduction on the data, ICA decomposition allows a more 
principled study of transient or intermittent coherence between IC source activities.

Recently, we used ICA decomposition of target response data from the same five-box task used here for 
illustrative purposes to show that brief and weakly spatially coherent theta wave complexes arise in frontal midline, 
somatomotor,  and  parietal  cortex  in  many  subjects  following  significant  events  (Makeig  et  al.,  2004b),  often 
beginning in frontal polar cortex (Delorme et al., 2007b). But how can the activities of ‘independent’ components be 
(occasionally) phase coherent? As described previously, ICA decomposition actually derives maximally independent 
components  –  this  allows  the  discovered  IC  activity  patterns  to  exhibit  occasional  transient  dependence  –  for 
example, in the five-box data at one frequency in at most a fifth of the trials. In this and related cases, we found the  
partial coherences to have non-zero phase lags, and to remain when each component ERP was (artificially) regressed 
out of  each single trial  activity and coherence was computed only on the remainder. Event-related coherence is 
another measure that cannot be deduced from ERP waveforms alone, and cannot be confidently interpreted when 
computed for pairs of scalp-channel signals. ICA preserves only those coherences that represent transient coupling of 
the frequency-domain activities of two EEG sources with a fixed latency difference.

A ‘close up’ example of similar ‘phase reorganization’ in human brain was recently provided by the study by 



47
Wang and colleagues of event-related local field activity in multi-channel ‘thumbtack’ electrodes pushed through a 
small piece of intact cortex in anterior cingulate before its clinically required removal in a brain operation (Wang et 
al., 2005). They reported that theta band activity was generated in superficial layers of anterior cingulate cortex 
(ACC) both before and after presentations of  a variety of  task-relevant stimuli,  while  after presentations phase-
locking between ACC and other brain areas increased transiently.

V. Meeting the Challenge of the Moment

For us to survive and thrive, at each moment our brain must integrate its awareness of its present situation and 
environment, including existing plans for action and/or inaction, with its emerging sensory experience and mnemonic 
associations. It must optimally engage or revise its attentional distribution, action plans, and physiological body state 
in a way adequate to meet the challenge of the moment. 

This volume summarizes the results of nearly fifty years of scientific experience in studying the shapes and 
sizes of average event-related potential (ERP) responses of scalp EEG signals to sensory or other events, responses 
that depend in large part on the significance of the events to the subject and on the context in which they occur. EEG 
is the oldest and most non-invasive functional brain imaging modality; it is also the least expensive and most highly 
portable.  The continuing promise of EEG brain imaging is that the highly labile dynamics of EEG scalp fields, 
signaling changes in local field synchrony within and between cortical areas, can provide detailed indices of changes 
in human attentional, intentional, and affective state, both  post hoc and even, to an increasing extent, online, with 
potentially important applications to basic scientific research, to clinical and workplace monitoring, and to other 
fields of human interest and endeavor.

In this chapter, we have discussed the origins in  local cortical  synchrony of  both EEG signals and ERP 
waveforms derived from them. We have defined the concept of an EEG source, based on both EEG analysis and 
physiological evidence, and have demonstrated the utility of independent component analysis (ICA) for separating 
multi-channel EEG recordings into a set of temporally and functionally independent brain and non-brain source 
processes. Finally, we have shown a simple example of using ICA decomposition to study the sources that contribute 
to (as well as those that contaminate) ERPs, and their activities in the single-trial EEG data. We have given examples 
of using ERP-image plotting to visualize the dependence of EEG responses in single trials on behavioral, EEG, or 
other parameters, have introduced time/frequency analysis in the form of inter-trial coherence (ITC) to show that 
the activity captured in average ERPs reflects trial-to-trial phase consistency, and have the introduced the concept 
that some ERP features may reflect reorganization (or perturbation) of the exact timing or phase statistics of ongoing 
activity in the same cortical areas, as long suggested by investigators familiar with control theory and other dynamic 
modeling methods.

 We believe the increasingly urgent challenge for the field of ERP and more general EEG research is to 
discover the brain source dynamics that produce the characteristic features of evoked responses and to model the 
trial-by-trial (and condition-by-condition) differences in EEG (and ERP) dynamics associated with the large variety 
of events that unfold continually in our daily lives, within an ever-evolving situational context – events that pose a 
wide variety of challenges to which our brains respond effectively. 

We believe this to be an exciting time to study human electrophysiology, an era in which non-invasive EEG 
recording is moving toward fulfilling its promise of becoming a true functional brain imaging modality. Current 
knowledge and understanding of EEG dynamics is likely to advance steadily as new analysis tools developed for this 
purpose become more widely applied. One result should be a deeper and fuller understanding of the nature and 
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significance of ERP features.
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Endnotes
1For example, at 20 Hz and traveling at 1 m/s, a radiating ‘pond ripple’ would reach the edge of a 1-cm 

source domain in 5 ms, one tenth of a 20-Hz cycle. Therefore, there would only be a 2π/10 = 36 degree 

phase lag between the center and the edge of the patch, and the spatiotemporal pattern of potentials at 
scalp electrodes would be highly correlated with the pattern produced by completely synchronous 20-
Hz activity across the same 1-cm domain.

2These  EEG  data  were  collected  synchronously  from  250  scalp  plus  four  infra-ocular  and  two 
electrocardiographic (ECG) electrodes with an active reference (Biosemi, Amsterdam) at a sampling 
rate of 256 Hz and 24-bit A/D resolution. Onsets and offsets of target discs, as well subject button 
presses, were recorded in a simultaneously acquired event channel. The recording montage covered 
most of the skull, forehead, and lateral face surface, omitting chin and fleshy cheek areas. Locations of 
the electrodes relative to skull landmarks for each subject were recorded (Polhemus, Inc.). Electrodes 
with grossly abnormal activity patterns were removed from the data, leaving 238 channels.  After re-
referencing to digitally linked mastoids, the data were digitally filtered to emphasize frequencies above 
1 Hz. Data periods containing broadly distributed, high-amplitude muscle noise and other irregular 
artifacts  were  identified  by  tests  for  high  kurtosis  or  low-probability  activity  and  removed  from 
analysis.  Occurrence of eye blink, other eye movement, or isolated muscle noise artifact was not a 
criterion  for  rejection.  Remaining  data  time  points  were  then  concatenated  and  submitted  to 
decomposition by extended infomax ICA using the binica function available in the EEGLAB toolbox 
(http://sccn.ucsd.edu/eeglab). Decompositions used extended-mode infomax ICA (Makeig et al., 1997) 
with default training parameters. Extended infomax was used to allow recovery of any components 
with sub-gaussian activity distributions, including 60-Hz line noise contamination. ICA components 
clearly  and predominantly  accounting for eye  movement,  muscle,  cardiac,  single-channel,  or  other 
artifactual  activity  were  removed  from  the  ERP data.  Both  the  target  stimulus-locked  and  motor 
response-locked epochs analyzed in the figures were referred to a mean baseline in a 500-ms period 
before target stimulus onsets.

3Data figures in this chapter were produced using software tools from the freely available EEGLAB 
Matlab software environment (sccn.ucsd.edu/eeglab/).  The single-subject 256-channel data set  from 
which we derived most of the figures was recorded and first studied by Delorme et al. (Delorme et al., 
2007b) and is available for download in raw and in EEGLAB formats from the EEGLAB web site 
(above).

4In particular, the phase of a digitally recorded signal cannot be defined above its Nyquist frequency 
(half of its sampling rate) and is ambiguous at its Nyquist frequency. 

5Methods that find more components are available, but require narrower source assumptions and more 
computation time.
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6EEGLAB includes Matlab-based tools for applying, evaluating, and exploring component clustering. 

7Data used for the IC cluster figure were collected by Klaus Gramann at the University of Munich from 
12 subjects  performing a  visual  feature  discrimination  task.  The  electroencephalogram (EEG) was 
recorded continuously at a sampling rate of 500 Hz using 64 Ag/AgCl electrodes mounted on an elastic 
cap. EEG signals were amplified using a 0.1–100-Hz bandpass filter and filtered off-line using a 1–40-
Hz bandpass. All electrodes were recorded referenced to Cz and then re-referenced off-line to linked 
mastoids. Average ERPs in an 800-ms epoch were computed relative to a 200-ms pre-stimulus baseline. 
ICA decomposition  used  extended  infomax.  ICs  were  clustered  across  subjects  using  EEGLAB 
clustering  functions  based  on  their  respective  dynamics  under  three  target  stimulus-difference 
conditions  (whether  or  not  the  target  had  a  different  color,  different  shape,  or  both  than  the 
accompanying standard  stimuli).  Only  ICs  whose  equivalent  dipole  projection  to  the  scalp  had  a 
residual variance from the IC scalp map below 15% and an equivalent dipole location within the brain 
volume were  considered  for  clustering.  These  ICs  were  separated  into  22  clusters  based  on  their 
equivalent  dipole  locations,  event-related  spectral  perturbations  (ERSPs)  and inter-trial  coherences 
(ITCs) in the 500 ms following target onsets.
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