EEGLAB, SPR, September 29, 2010

ICA components reliability

Arnaud Delorme

Swartz Center for Computational Neuroscience University of California San Diego, La Jolla CA

CNRS, CERCO UMR5549, Paul Sabatier University, Toulouse

Outline

- ICA basic theory
- ICA reliability within subjects
- ICA reliability across subjects

Independent component analysis

Mixture of Brain source activity

Cocktail Party

ICA and PCA

While PCA simply decorrelates the outputs (using an orthogonal matrix W), ICA attempts to make the outputs statistically independent, while placing no constraints on the matrix W.

Central limit theorem

ICA/EEG Assumptions

OK

- Mixing is linear at electrodes **OK**
- Propagation delays are negligible
- Component time courses are ~ independent
- Number of components less than the number of channels.

Number of independent components

ICA Decomposition into Independent Components

Selective Projection onto Scalp Channels

Outline

- ICA basic theory
- ICA reliability within subjects
- ICA reliability across subjects

ICA decomposition of multiple data sets from the same individuals

- Experimental protocol
 - Mind wandering experiment
 - 2 subjects
 - 11 x 30 min. sessions
 - 2 sessions per week
 - EEG from Biosemi 64 channels
 - Fs=1024 Hz

F. Campos Viola et al., "Semi-automatic identification of independent components representing EEG artifact," Clinical Neurophysiology 120, no. 5 (2009): 868–877.

suggested as the automatic correlation threshold.

Results (Cluster 1)

100 % Sessions contribute

Power (10*log $_{10}({}^{\rm A}{\rm V}^2/{\rm Hz}))$

Results (Cluster 2)

100 % Sessions contribute

Results (Cluster 8)

100 % Sessions contribute

Results (Cluster 13)

63.64% Sessions contribute

Results (Cluster 14)

36.36% Sessions contribute

Inter iteration Cluster Consistency

Iterations

		1	2	3	4	5	6	7	8	9	10	Mean
Clusters	3	100	100	100	100	100	100	100	100	100	100	100
	4	100	100	100	100	100	100	90	100	100	100	99
	5	90	40	10	90	90	60	100	10	60	90	64
	6	60	0	100	60	100	90	60	60	90	60	68
	7	90	100	90	90	60	90	90	100	90	90	89
	8	80	80	60	80	40	80	80	80	80	100	76
	9	60	90	50	60	80	60	0	10	60	50	52
	10	40	90	10	40	0	50	50	0	50	60	39
	11	60	20	0	0	10	60	10	90	60	60	37
	12	100	50	50	100	50	100	100	50	100	50	75
	13	50	10	20	50	90	50	50	10	50	20	40
	14	20	10	10	20	20	30	20	20	30	30	21

ICA reliability within subjects

ICA components are stable within subjects

Outline

- ICA basic theory
- ICA reliability within subjects
- ICA reliability across subjects

Localization

Computing residual variance (%)

$$\mathbf{r} = \Sigma (\mathbf{x}_i - \mathbf{x}_i)^2 / \Sigma \mathbf{x}_i^2$$

Validation of the ICA algorithm for EEG

Data

- 13 subjects performing a memory task
- 71 electrodes including EOGs
- more than 300,000 data points/subject

Decomposition

• 23 ICA algorithms plus PCA and Promax

Analysis

• Localization of all components with a single dipole (4-shell spherical model)

Algorithm (Matlab func.)	D%	LL	Origin
Extended Infomax (runica)	29.9	178	EEGLAB 4.515
Pearson	29.1	169	ICAcentral (6)
Infomax (runica)	28.2	160	EEGLAB 4.515
ERICA	26.9	184	ICALAB 1.5.2
SONS	25.4	183	ICALAB 1.5.2
SHIBBS	23.7	169	ICAcentral (5)
FastICA*	23.5	169	ICAcentral (2)
JADE (jader)	23.4	169	EEGLAB 4.515
TICA	23.4	169	ICALAB 1.5.2
JADE optimized (jade_op)	21.4	169	ICALAB 1.5.2
JADE w/ time delay (jade_td)	20.2	169	ICALAB 1.5.2
eeA	19.0	305	ICAcentral (8)
Infomax (icaML) †	18.8	212	ICA DTU Tbox
FOBI	18.6	169	ICALAB 1.5.2
SOBIRO (acsobiro)	17.9	167	EEGLAB 4.515
EVD 24	17.7	169	ICALAB 1.5.2
EVD	17.0	169	ICALAB 1.5.2
SOBI	16.1	583	EEGLAB 4.515
icaMS†	10.6	169	ICA DTU Tbox
AMUSE	8.5	169	ICALAB 1.5.2
PCA	3.1	583	EEGLAB 4.515
Promax	33.7	467	EEGLAB 4.515
Whitening/Sphering	57.6	164	EEGLAB 4.515

Component examples

More independence -> more biological components

ICA reliability

ICA components are stable within subjects

Thanks to:

Jason Palmer

Romain Grandchamp

Claire Braboszcz Scott Makeig

