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The Model

The data y is, dependent on the D-dimensional input x, assumed to be of either class y =
−1 or y = 1. The log-likelihood ratio ln(p(y = 1|x,w)/p(y = −1|x,w)) is assumed to be
linear in x, such that the conditional likelihood for y = 1 is given by the sigmoid

p(y = 1|x,w) =
1

1 + exp(−wTx)
= σ(wTx). (1)

Equally, p(y = −1|x,w) = 1− p(y = 1|x,w) = 1/(1 + exp(wTx)), such that

p(y|x,w) = σ(ywTx). (2)

Given some data D = {X,Y }, where X = {x1, . . . ,xN} and Y = {y1, . . . , yN} are N
input/output pairs, the aim is to find the posterior p(w|D), given some prior p(w). Unfor-
tunately, the sigmoid data likelihood does not admit a conjugate-exponential prior. There-
fore, approximations need to be applied to find an analytic expression for the posterior.

The approximation that will be used is quadratic in w in the exponential, such that the
conjugate Gaussian prior

p(w|α) = N (w|0, α−1I) =
( α

2π

)D/2

exp
(

−α
2
wTw

)

(3)

can be used. This prior is parametrised by the hyper-parameter α that is modelled by a
conjugate Gamma distribution

p(α) = Gam(α|a0, b0) =
1

Γ(a0)
ba0

0
αa0−1 exp(−b0α). (4)

Variational Bayesian Inference

Variational Bayesian inference is based on maximising a lower bound on the marginal data
log-likelihood

ln p(Y |X) = ln

∫∫

p(Y |X,w)p(w|α)p(α)dwdα. (5)

This lower bound is given by

ln p(Y |X) ≥ L(q) =
∫∫

q(w, α) ln
p(Y |X,w)p(w|α)p(α)

q(w, α)
dwdα, (6)

where the variational distribution q(w, α), approximating the posterior p(w, α|D), is as-
sumed to factor into q(w, α) = q(w)q(α). This approximation leads to analytic posterior
expressions if the model structure is conjugate-exponential.
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The data likelihood

p(Y |X,w) =
∏

n

p(yn|xn,w) =
∏

n

σ(ynw
Txn) (7)

does not admit a conjugate prior in the exponential family and will be approximated by
the use of

σ(z) ≥ σ(ξ) exp
(

(z − ξ)/2− λ(ξ)(z2 − ξ2)
)

, λ(ξ) =
1

2ξ

(

σ(ξ)− 1

2

)

, (8)

which is a tight lower bound on the sigmoid, parametrised by ξ (Jaakkola and Jordan, 1998).
Applying this bound, the data log-likelihood is lower-bounded by

ln p(Y |X,w) ≥ lnh(w, ξ) (9)

= wT
∑

n

yn
2
xn −wT

(

∑

n

λ(ξn)xnx
T
n

)

w

+
∑

n

(

lnσ(ξn)−
ξn
2

+ λ(ξn)ξ
2

n

)

, (10)

with one local variation parameter ξn per datum. This results in the new variational bound

L̃(q, ξ) =
∫∫

q(w, α) ln
h(w, ξ)p(w|α)p(α)

q(w, α)
dwdα, (11)

which is a lower bound on the original variational bound, that is L̃(q, ξ) ≤ L(q).
The variational posteriors are evaluated by standard variational methods for factorised

distributions. The variational posterior for w is given by

ln q∗(w) = lnh(w, ξ) + Eα(ln p(w|α)) + const. (12)

= wT
∑

n

yn
2
xn − 1

2
wT

(

Eα(α)I + 2
∑

n

λ(ξn)xnx
T
n

)

w + const. (13)

= lnN (w|wN ,VN ), (14)

with

V −1

N = Eα(α)I + 2
∑

n

λ(ξn)xnx
T
n , (15)

wN = VN

∑

n

yn
2
xn. (16)

The variational posterior for α results in

ln q∗(α) = Ew(ln p(w|α)) + ln p(α) + const. (17)

=

(

a0 − 1 +
D

2

)

lnα−
(

b0 +
1

2
Ew(wTw)

)

α+ const. (18)

= lnGam(α|aN , bN ), (19)

with

aN = a0 +
D

2
, (20)

bN = b0 +
1

2
Ew(wTw). (21)
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The expectations are evaluated with respect to the variational posteriors and result in

Eα(α) =
aN
bN

, (22)

Ew(wTw) = wT
NwN + Tr(VN ). (23)

The variational bound itself is given by

L̃(q, ξ) = Ew(lnh(w, ξ)) + Ew,α(ln p(w|α)) + Eα(ln p(α))

−Ew(ln q(w))− Eα(ln q(α)), (24)

Ew(lnh(w, ξ)) =
1

2
wT

NV −1

N wN − D

2
+

1

2

aN
bN

(

wT
NwN + Tr(VN )

)

+
∑

n

(

lnσ(ξn)−
ξn
2

+ λ(ξn)ξ
2

n

)

, (25)

Ew,α(ln p(w|α)) = −D
2
ln 2π +

D

2
(ψ(aN )− ln bN )− 1

2

aN
bN

(

wT
NwN + Tr(VN )

)

, (26)

Eα(ln p(α)) = − ln Γ(a0) + a0 ln b0 + (a0 − 1)(ψ(aN )− ln bN )− b0
aN
bN

, (27)

Ew(ln q(w)) = −1

2
ln |VN | − D

2
(1 + ln 2π), (28)

Eα(ln q(α)) = − ln Γ(aN ) + (aN − 1)ψ(aN ) + ln bN − aN , (29)

where ψ(·) is the digamma function. In combination, this gives

L̃(q, ξ) =
1

2
wT

NV −1

N wN +
1

2
ln |VN |+

∑

n

(

lnσ(ξn)−
ξn
2

+ λ(ξn)ξ
2

n

)

− ln Γ(a0) + a0 ln b0 − b0
aN
bN

− aN ln bN + lnΓ(aN ) + aN . (30)

This bound is to be maximised in order to find the variational posteriors for w and α.
The expressions that maximise this bound with respect to q(w) and q(α), while keeping
all other parameters fixed, are given by q∗(w) and q∗(α) respectively. To find the local

variational parameters ξn that maximise L̃(q, ξ), its derivative with respect to ξn is set to
zero (see (Bishop, 2006)), resulting in

(ξnewn )2 = xT
n

(

VN +wNwT
N

)

xn. (31)

The variational bound is maximised by iterating over the update equations for wN , VN ,

aN , bN and ξ, until L̃(q, ξ) reaches a plateau. A lower bound on the marginal data log-

likelihood p(D) is given by the bound itself, as ln p(D) ≥ L(q) ≥ L̃(q, ξ).

Predictive Density

In order to get the predictive density, the posterior p(w|D) is approximated by the varia-
tional posterior q(w), and the sigmoid is lower-bounded by above bound, such that

p(y = 1|x,D) =

∫

p(y = 1|x,w)p(w|D)dw (32)

≈
∫

p(y = 1|x,w)q(w)dw, (33)

≥
∫

σ(ξ) exp

(

wTx− ξ

2
− λ(ξ)wTxxTw + λ(ξ)ξ2

)

q(w)dw. (34)
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The integral is solved by noting that the lower bound is exponentially quadratic inw, such
that the Gaussian can be completed, to give

ln p(y = 1|x,D) ≈ 1

2
ln

|Ṽ |
|VN | −

1

2
wT

NV −1

N wN +
1

2
w̃T Ṽ −1w̃ + lnσ(ξ)− ξ

2
+ λ(ξ)ξ2, (35)

with

Ṽ −1 = V −1

N + 2λ(ξ)xxT , (36)

w̃ = Ṽ
(

V −1

N wN +
x

2

)

. (37)

The bound parameter ξ that maximises ln p(y = 1|x,D) is given by

(ξnew)2 = xT
(

Ṽ + w̃w̃T
)

x. (38)

Thus, the predictive density is found by iterating over the updates for w̃, Ṽ and ξ until
ln p(y = 1|x,D) reaches a plateau. The hyper-prior p(α) does not need to be considered as
it does not appear in the variational posterior q(w).

Using Automatic Relevance Determination

To use Automatic Relevance Determination (ARD), each element of the prior of w is as-
signed a separate prior,

p(w|α) = N (w|0,A−1) =
|A|1/2
√
2π

D
exp

(

−1

2
wTAw

)

, (39)

where A is the diagonal matrix with the vector α = (α1, . . . , αD)T along its diagonal. The
conjugate hyper-prior p(α) is given by

p(α) =
∏

i

Gam(αi|a0, b0). (40)

Note that αi determines the precision (inverse variance) of the ith element ofw. A low pre-
cision makes the prior uninformative, whereas a high precision tells us that the associated
element inw is most likely zero and the associated input element is therefore irrelevant for
the prediction of y. Thus, such a prior structure automatically determines the relevance of
each element of the input to predict the class of the output.

Using the same variational Bayes inference as before, the variational posteriors are
given by

q∗(w) = N (w|wN ,VN ), q∗(α) =
∏

i

Gam(αi|aN , bNi), (41)

with

V −1

N = Eα(A) + 2
∑

n

λ(ξn)xnx
T
n , (42)

wN = VN

∑

n

yn
2
xn, (43)

aN = a0 +
1

2
, (44)

bNi = b0 +
1

2
Ew(w2

i ), (45)
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wherewi is the ith element ofw, andAN = Eα(A) is a diagonal matrix with its ith diagonal
element given by Eα(αi) = aN/bNi. Ew(w2

i ) evaluates to Ew(w2

i ) = Ew(wi)
2 + varw(wi) =

(wN )2i + (VN )ii.
The new expectations to evaluate the variation bound are

Ew(lnh(w, ξ)) =
1

2
wT

NV −1

N wN − D

2
+

1

2

(

Tr(ANVN ) +wT
NANwN

)

+
∑

n

(

lnσ(ξn)−
ξn
2

+ λ(ξn)ξ
2

n

)

, (46)

Ew,α(ln p(w|α)) =
1

2

∑

i

(ψ(aN )− ln bNi)

−D
2
ln 2π − 1

2

(

Tr(ANVN ) +wT
NANwN

)

, (47)

Eα(ln p(α)) =
∑

i

(

− ln Γ(a0) + a0 ln b0 + (a0 − 1)(ψ(aN )− ln bNi)− b0
aN
bNi

)

,(48)

Eα(ln q(α)) =
∑

i

(− ln Γ(aN ) + (aN − 1)ψ(aN ) + ln bNi − aN ) , (49)

resulting in

L̃(q, ξ) =
1

2
wT

NV −1

N wN +
1

2
ln |VN |+

∑

n

(

lnσ(ξn)−
ξn
2

+ λ(ξn)ξ
2

n

)

+
∑

i

(

− ln Γ(a0) + a0 ln b0 − b0
aN
bNi

− aN ln bNi + lnΓ(aN ) + aN

)

.(50)

As the variational posterior expression q∗(w) is independent of the hyper-parameters, the
predictive density is evaluated as before.

Implementation

Bayesian logistic regression can be implemented in various variants, some of which are
discussed below. The first variant adds each xn incrementally, optimising each ξn in turn.
All other variants add all xn at once, optimising all ξn in combination.

Incremental Posterior Update

The script bayes logit fit iter .m updates the posterior parameters incrementally by adding
the observations xn, yn one by one, while optimising ξn for each of those observations sep-
arately. Let Vj andwj denote the parameters of q∗(w) after j observations have beenmade.
Vj follows the incremental update

V −1

j = V −1

j−1
+ 2λ(ξj)xjx

T
j , (51)

starting with V −1

j = Eα(α)I . The incremental update of wj is slightly more complex, but
from observing that

V −1

j wj =

j
∑

n

yn
2
xn =

yj
2
xj +

j−1
∑

n

yn
2
xn = V −1

j−1
wj−1 +

yj
2
xj , (52)

it is easy to see that

wj = Vj

(

V −1

j−1
wj−1 +

yj
2
xj

)

. (53)
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The script avoids taking the inverse of V by updating V −1 and V in parallel, where the
latter is based on an application of the Sherman-Morrison formula on the V −1 update,
resulting in

Vj =
(

V −1

j−1
+ 2λ(ξj)xjx

T
j

)

−1

= Vj−1 −
2λ(ξj)Vj−1xjx

T
j Vj−1

1 + 2λ(ξj)xT
j Vj−1xj

. (54)

ln |Vj | can be updated in a similar way, based on the Matrix determinant lemma,

|V −1

j | = |V −1

j−1
+ 2λ(ξj)xjx

T
j | = |V −1

j−1
|
(

1 + 2λ(ξj)x
T
j Vj−1xj

)

, (55)

such that, using ln |Vj | = − ln |V −1

j |,

ln |Vj | = ln |Vj−1| − ln
(

1 + 2λ(ξj)x
T
j Vj−1xj

)

. (56)

In the iterative version of the script the hyperprior α is ignored, and instead p(w) =
N (w|0, D−1I) is used. This leads to the initial parametersw0 = 0, V0 = D−1I , V −1

0
= DI ,

and ln |V −1

0
| = −D lnD.

The script iterates over j = 1, . . . , N , at each step optimising ξj iteratively to maximise
the variational bound. At each step it starts at ξj = 0, such that λ(ξj) = 1/8, leading to a
simplified initial step,

V −1

j (ξj) =ξj=0 V −1

j−1
+

1

4
xjx

T
j , (57)

Vj(ξj) =ξj=0 Vj−1 −
Vj−1xjx

T
j Vj−1

4 + xT
j Vj−1xj

, (58)

ln |Vj(ξj)| =ξj=0 ln |Vj−1| − ln

(

1 +
1

4
xT
j Vj−1xj

)

. (59)

After this initial step, the parameters ξj , Vj(ξj), and wj(ξj), are updated iteratively as de-
scribed above until either Lj(ξj) changes less than 0.001% between two consecutive up-
dates, over the number of iterations exceeds 100. The variational bound itself is, without
the hyperprior, given by

Lj(ξj) =
1

2
wT

j (ξj)V
−1

j (ξj)wj(ξj) +
1

2
ln |Vj(ξj)|+ lnσ(ξj)−

ξj
2

+ λ(ξj)ξ
2

j . (60)

Batch Posterior Update

The scripts bayes logit fit .m and bayes logit fit ard .m consider all inputs at once and
optimise all ξn in combination. The difference between the two scripts is that the former
operates without ARD, while the latter uses ARD. Both take inputs X and y, where X is an
N ×D matrix with xT

n as its rows. y is a column vector containing the yn’s.
Let us first consider the version without ARD. In this version, all ξn are stored in the

vector xi and are updated simultaneously. The script start by assuming ξn = 0 for all n,
such that λ(ξn) = 1/8. Additionally, it pre-computes w t =

∑

n xnyn/2. The initial update

of VN (ξ), wN (ξ), bN (ξ), and L̃(q, ξ) is computed outside of the loop. After that, the script
iterates over first updating ξ, then bN (ξ), followed by VN (ξ) andwN (ξ). The iteration stop

if either L̃(q, ξ) does not change more than 0.001% between two consecutive iterations, or
the number of iterations exceeds 100.

The script employs a few short-cuts and vectorisations which will be discussed here. In

particular, the initial L̃(q, ξ) at ξ = 0 is simplified by using

∑

n

(

lnσ(ξn)−
ξn
2

+ λ(ξn)ξ
2

n

)

=ξ=0 −N ln 2. (61)
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Also, as the scripts computes VN (ξ) by inverting V −1

N (ξ), it computes ln |VN (ξ)| from
V −1

N (ξ) for better stability, using ln |VN (ξ)| = − ln |V −1

N (ξ)|. In addition, the following
vectorised operations are used:

∑

n

yn
2
xn = 0.5 ∗ sum(bsxfun(@times, X, y), 1)’, (62)

2
∑

n

λ(ξn)xnx
T
n = 2 ∗ X’ ∗ bxsfun(@times, X, lam xi), (63)

xT
n

(

VN +wNwT
N

)

xn = (sum(X .∗ (X ∗ (V + w ∗w’)), 2))n . (64)

(65)

The ARD version of the code differs from the non-ARD version by the variables bn and
E a now being vectors rather than scalars. Their updates and use is adjusted accordingly,
in line with what has been described above.

Predictive Density

Both scripts bayes logit post iter .m and bayes logit post .m compute the predictive prob-
ability p(y = 1|x,D), the only difference being that the latter is a vectorised version of the
former.

Let us firstly consider bayes logit post iter .m. This script iterates over all given x,
as rows of the input X, and optimises ξ for each of those separately. In order to do so, it

employs a simplification to logdetV xi = ln |Ṽ |/|VN |, appearing in ln p(y = 1|x,D). From

the expression for Ṽ −1 and the Matrix determinant lemma it can be shown that

ln |Ṽ | = − ln |Ṽ −1| = − ln |V −1

N |−ln
(

1 + 2λ(ξ)xTVNxT
)

= ln |VN |−ln
(

1 + 2λ(ξ)xTVNx
)

.
(66)

Thus, ln |Ṽ |/|VN | results in

ln
|Ṽ |
|VN | = − ln

(

1 + 2λ(ξ)xTVNx
)

(67)

Additionally, the Sherman-Morrison formula can be applied to avoid inverting Ṽ −1 by
using

Ṽ = VN − 2λ(ξ)VNxxTVN

1 + 2λ(ξ)xTVNx
(68)

instead.
The script initially starts with ξ = 0 for each x, using some initial simplifications based

on λ(ξ) = 1/8, as already previously discussed. It then iterates over updating ξ, Ṽ and
w̃ until the variational bound either changes less than 0.001% between two consecutive
iterations, or the number of iterations exceeds 100. The variational bound is computed as a
simplified version of ln p(y = 1|x,D), omitting all terms that are independent of ξ.

The vectorised script bayes logit post .m follows exactly the same principles, but op-
timises ξ for all x at the same time, by maximising a sum of the individual variational
bounds.
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