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omAbstra
tThe support ve
tor ma
hine (SVM) is a state-of-the-art te
hniquefor regression and 
lassi�
ation, 
ombining ex
ellent generalisationproperties with a sparse kernel representation. However, it doessu�er from a number of disadvantages, notably the absen
e of prob-abilisti
 outputs, the requirement to estimate a trade-o� parameterand the need to utilise `Mer
er' kernel fun
tions. In this paper weintrodu
e the Relevan
e Ve
tor Ma
hine (RVM), a Bayesian treat-ment of a generalised linear model of identi
al fun
tional form tothe SVM. The RVM su�ers from none of the above disadvantages,and examples demonstrate that for 
omparable generalisation per-forman
e, the RVM requires dramati
ally fewer kernel fun
tions.1 Introdu
tionIn supervised learning we are given a set of examples of input ve
tors fxngNn=1along with 
orresponding targets ftngNn=1, the latter of whi
h might be real values(in regression) or 
lass labels (
lassi�
ation). From this `training' set we wish tolearn a model of the dependen
y of the targets on the inputs with the obje
tive ofmaking a

urate predi
tions of t for previously unseen values of x. In real-worlddata, the presen
e of noise (in regression) and 
lass overlap (in 
lassi�
ation) impliesthat the prin
ipal modelling 
hallenge is to avoid `over-�tting' of the training set.A very su

essful approa
h to supervised learning is the support ve
tor ma
hine(SVM) [8℄. It makes predi
tions based on a fun
tion of the formy(x) = NXn=1wnK(x;xn) + w0; (1)where fwng are the model `weights' and K(�; �) is a kernel fun
tion. The key featureof the SVM is that, in the 
lassi�
ation 
ase, its target fun
tion attempts to minimisethe number of errors made on the training set while simultaneously maximising the`margin' between the two 
lasses (in the feature spa
e impli
itly de�ned by thekernel). This is an e�e
tive `prior' for avoiding over-�tting, whi
h leads to goodgeneralisation, and whi
h furthermore results in a sparse model dependent only ona subset of kernel fun
tions: those asso
iated with training examples xn that lieeither on the margin or on the `wrong' side of it. State-of-the-art results have beenreported on many tasks where SVMs have been applied.



However, the support ve
tor methodology does exhibit signi�
ant disadvantages:� Predi
tions are not probabilisti
. In regression the SVM outputs a pointestimate, and in 
lassi�
ation, a `hard' binary de
ision. Ideally, we desire toestimate the 
onditional distribution p(tjx) in order to 
apture un
ertaintyin our predi
tion. In regression this may take the form of `error-bars', but itis parti
ularly 
ru
ial in 
lassi�
ation where posterior probabilities of 
lassmembership are ne
essary to adapt to varying 
lass priors and asymmetri
mis
lassi�
ation 
osts.� Although relatively sparse, SVMs make liberal use of kernel fun
tions, therequisite number of whi
h grows steeply with the size of the training set.� It is ne
essary to estimate the error/margin trade-o� parameter `C' (andin regression, the insensitivity parameter `�' too). This generally entails a
ross-validation pro
edure, whi
h is wasteful both of data and 
omputation.� The kernel fun
tion K(�; �) must satisfy Mer
er's 
ondition.In this paper, we introdu
e the `relevan
e ve
tor ma
hine' (RVM), a probabilisti
sparse kernel model identi
al in fun
tional form to the SVM. Here we adopt aBayesian approa
h to learning, where we introdu
e a prior over the weights governedby a set of hyperparameters, one asso
iated with ea
h weight, whose most probablevalues are iteratively estimated from the data. Sparsity is a
hieved be
ause inpra
ti
e we �nd that the posterior distributions of many of the weights are sharplypeaked around zero. Furthermore, unlike the support ve
tor 
lassi�er, the non-zero weights in the RVM are not asso
iated with examples 
lose to the de
isionboundary, but rather appear to represent `prototypi
al' examples of 
lasses. Weterm these examples `relevan
e' ve
tors, in deferen
e to the prin
iple of automati
relevan
e determination (ARD) whi
h motivates the presented approa
h [4, 6℄.The most 
ompelling feature of the RVM is that, while 
apable of generalisation per-forman
e 
omparable to an equivalent SVM, it typi
ally utilises dramati
ally fewerkernel fun
tions. Furthermore, the RVM su�ers from none of the other limitationsof the SVM outlined above.In the next se
tion, we introdu
e the Bayesian model, initially for regression, andde�ne the pro
edure for obtaining hyperparameter values, and thus weights. InSe
tion 3, we give brief examples of appli
ation of the RVM in the regression 
ase,before developing the theory for the 
lassi�
ation 
ase in Se
tion 4. Examples ofRVM 
lassi�
ation are then given in Se
tion 5, 
on
luding with a dis
ussion.2 Relevan
e Ve
tor RegressionGiven a dataset of input-target pairs fxn; tngNn=1, we follow the standard formula-tion and assume p(tjx) is Gaussian N (tjy(x); �2). The mean of this distribution fora given x is modelled by y(x) as de�ned in (1) for the SVM. The likelihood of thedataset 
an then be written asp(tjw; �2) = (2��2)�N=2 exp�� 12�2 kt��w)k2� ; (2)where t = (t1 : : : tN ), w = (w0 : : : wN ) and � is the N � (N + 1) `design' matrixwith �nm = K(xn;xm�1) and �n1 = 1. Maximum-likelihood estimation of w and�2 from (2) will generally lead to severe over�tting, so we en
ode a preferen
e forsmoother fun
tions by de�ning an ARD Gaussian prior [4, 6℄ over the weights:p(wj�) = NYi=0N (wij0; ��1i ); (3)



with � a ve
tor of N + 1 hyperparameters. This introdu
tion of an individual hy-perparameter for every weight is the key feature of the model, and is ultimatelyresponsible for its sparsity properties. The posterior over the weights is then ob-tained from Bayes' rule:p(wjt;�; �2) = (2�)�(N+1)=2j�j�1=2 exp��12(w � �)T��1(w � �)� ; (4)with � = (�TB�+A)�1; (5)� = ��TBt; (6)where we have de�ned A = diag(�0; �1; : : : ; �N ) and B = ��2IN . Note that �2 isalso treated as a hyperparameter, whi
h may be estimated from the data.By integrating out the weights, we obtain the marginal likelihood, or eviden
e [2℄,for the hyperparameters:p(tj�; �2) = (2�)�N=2jB�1 +�A�1�Tj�1=2 exp��12tT(B�1 +�A�1�T)�1t� :(7)For ideal Bayesian inferen
e, we should de�ne hyperpriors over � and �2, andintegrate out the hyperparameters too. However, su
h marginalisation 
annot beperformed in 
losed-form here, so we adopt a pragmati
 pro
edure, based on thatof Ma
Kay [2℄, and optimise the marginal likelihood (7) with respe
t to � and �2,whi
h is essentially the type II maximum likelihood method [1℄. This is equivalentto �nding the maximum of p(�; �2jt), assuming a uniform (and thus improper)hyperprior. We then make predi
tions, based on (4), using these maximising values.2.1 Optimising the hyperparametersValues of � and �2 whi
h maximise (7) 
annot be obtained in 
losed form, andwe 
onsider two alternative formulae for iterative re-estimation of �. First, by
onsidering the weights as `hidden' variables, an EM approa
h gives:�newi = 1hw2i ip(wjt;�;�2) = 1�ii + �2i : (8)Se
ond, dire
t di�erentiation of (7) and rearranging gives:�newi = 
i�2i ; (9)where we have de�ned the quantities 
i = 1� �i�ii, whi
h 
an be interpreted as ameasure of how `well-determined' ea
h parameter wi is by the data [2℄. Generally,this latter update was observed to exhibit faster 
onvergen
e.For the noise varian
e, both methods lead to the same re-estimate:(�2)new = kt���k2=(N �Xi 
i): (10)In pra
ti
e, during re-estimation, we �nd that many of the �i approa
h in�nity,and from (4), p(wijt;�; �2) be
omes in�nitely peaked at zero | implying thatthe 
orresponding kernel fun
tions 
an be `pruned'. While spa
e here pre
ludes adetailed explanation, this o

urs be
ause there is an `O

am' penalty to be paid forsmaller values of �i, due to their appearan
e in the determinant in the marginallikelihood (7). For some �i, a lesser penalty 
an be paid by explaining the datawith in
reased noise �2, in whi
h 
ase those �i !1.



3 Examples of Relevan
e Ve
tor Regression3.1 Syntheti
 example: the `sin
' fun
tionThe fun
tion sin
(x) = jxj�1 sin jxj is 
ommonly used to illustrate support ve
torregression [8℄, where in pla
e of the 
lassi�
ation margin, the �-insensitive region isintrodu
ed, a `tube' of �� around the fun
tion within whi
h errors are not penalised.In this 
ase, the support ve
tors lie on the edge of, or outside, this region. Forexample, using linear spline kernels and with � = 0:01, the approximation of sin
(x)based on 100 uniformly-spa
ed noise-free samples in [�10; 10℄ utilises 39 supportve
tors [8℄.By 
omparison, we approximate the same fun
tion with a relevan
e ve
tor modelutilising the same kernel. In this 
ase the noise varian
e is �xed at 0:012 and �alone re-estimated. The approximating fun
tion is plotted in Figure 1 (left), andrequires only 9 relevan
e ve
tors. The largest error is 0.0087, 
ompared to 0.01 inthe SV 
ase. Figure 1 (right) illustrates the 
ase where Gaussian noise of standarddeviation 0:2 is added to the targets. The approximation uses 6 relevan
e ve
tors,and the noise is automati
ally estimated, using (10), as � = 0:189.
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Figure 1: Relevan
e ve
tor approximation to sin
(x): noise-free data (left), and withadded Gaussian noise of � = 0:2 (right). The estimated fun
tions are drawn as solid lineswith relevan
e ve
tors shown 
ir
led, and in the added-noise 
ase (right) the true fun
tionis shown dashed.3.2 Some ben
hmarksThe table below illustrates regression performan
e on some popular ben
hmarkdatasets | Friedman's three syntheti
 fun
tions (results averaged over 100 ran-domly generated training sets of size 240 with a 1000-example test set) and the`Boston housing' dataset (averaged over 100 randomised 481/25 train/test splits).The predi
tion error obtained and the number of kernel fun
tions required for bothsupport ve
tor regression (SVR) and relevan
e ve
tor regression (RVR) are given.errors kernelsDataset SVR RVR SVR RVRFriedman #1 2.92 2.80 116.6 59.4Friedman #2 4140 3505 110.3 6.9Friedman #3 0.0202 0.0164 106.5 11.5Boston Housing 8.04 7.46 142.8 39.0



4 Relevan
e Ve
tor Classi�
ationWe now extend the relevan
e ve
tor approa
h to the 
ase of 
lassi�
ation | i.e.where it is desired to predi
t the posterior probability of 
lass membership given theinput x. We generalise the linear model by applying the logisti
 sigmoid fun
tion�(y) = 1=(1 + e�y) to y(x) and writing the likelihood asP (tjw) = NYn=1�fy(xn)gtn [1� �fy(xn)g℄1�tn : (11)However, we 
annot integrate out the weights to obtain the marginal likelihoodanalyti
ally, and so utilise an iterative pro
edure based on that of Ma
Kay [3℄:1. For the 
urrent, �xed, values of � we �nd the most probable weights wMP(the lo
ation of the posterior mode). This is equivalent to a standard opti-misation of a regularised logisti
 model, and we use the eÆ
ient iteratively-reweighted least-squares algorithm [5℄ to �nd the maximum.2. We 
ompute the Hessian at wMP:rr log p(t;wj�)��wMP= �(�TB� +A); (12)where Bnn = �fy(xn)g [1� �fy(xn)g℄, and this is negated and inverted togive the 
ovarian
e � for a Gaussian approximation to the posterior overweights, and from that the hyperparameters � are updated using (9). Notethat there is no `noise' varian
e �2 here.This pro
edure is repeated until some suitable 
onvergen
e 
riteria are satis�ed.Note that in the Bayesian treatment of multilayer neural networks, the Gaussianapproximation is 
onsidered a weakness of the method if the posterior mode isunrepresentative of the overall probability mass. However, for the RVM, we notethat p(t;wj�) is log-
on
ave (i.e. the Hessian is negative-de�nite everywhere), whi
hgives us 
onsiderably more 
on�den
e in the Gaussian approximation.5 Examples of RVM Classi�
ation5.1 Syntheti
 example: Gaussian mixture dataWe �rst utilise arti�
ially generated data in two dimensions in order to illustrategraphi
ally the sele
tion of relevan
e ve
tors. Class 1 (denoted by `�') was sampledfrom a single Gaussian, and overlaps to a small degree 
lass 2 (`�'), sampled from amixture of two Gaussians.A relevan
e ve
tor 
lassi�er was 
ompared to its support ve
tor 
ounterpart, usingthe same Gaussian kernel. A value of C for the SVM was sele
ted using 5-fold 
ross-validation on the training set. The results for a typi
al dataset of 200 examplesare given in Figure 2. The test errors for the RVM (9.32%) and SVM (9.48%)are 
omparable, but the remarkable feature of 
ontrast is the 
omplexity of the
lassi�ers. The support ve
tor ma
hine utilises 44 kernel fun
tions 
ompared tojust 3 for the relevan
e ve
tor method.It is also notable that the relevan
e ve
tors are some distan
e from the de
isionboundary (in x-spa
e). Given further analysis, this observation 
an be seen to be
onsistent with the hyperparameter update equations. A more qualitative explana-tion is that the output of a basis fun
tion lying on or near the de
ision boundaryis a poor indi
ator of 
lass membership, and su
h basis fun
tions are naturally`penalised' under the Bayesian framework.



SVM: error=9.48%  vectors=44 RVM: error=9.32%  vectors=3

Figure 2: Results of training fun
tionally identi
al SVM (left) and RVM (right) 
las-si�ers on a typi
al syntheti
 dataset. The de
ision boundary is shown dashed, and rele-van
e/support ve
tors are shown 
ir
led to emphasise the dramati
 redu
tion in 
omplexityof the RVM model.5.2 Real examplesIn the table below we give error and 
omplexity results for the `Pima Indian diabetes'and the `U.S.P.S. handwritten digit' datasets. The former task has been re
entlyused to illustrate Bayesian 
lassi�
ation with the related Gaussian Pro
ess (GP)te
hnique [9℄, and we utilised those authors' split of the data into 200 training and332 test examples and quote their result for the GP 
ase. The latter dataset is apopular support ve
tor ben
hmark, 
omprising 7291 training examples along witha 2007-example test set, and the SVM result is quoted from [7℄.errors kernelsDataset SVM GP RVM SVM GP RVMPima Indians 67 68 65 109 200 4U.S.P.S. 4.4% { 5.1% 2540 { 316In terms of predi
tion a

ura
y, the RVM is marginally superior on the Pima set,but outperformed by the SVM on the digit data. However, 
onsistent with otherexamples in this paper, the RVM 
lassi�ers utilise many fewer kernel fun
tions.Most strikingly, the RVM a
hieves state-of-the-art performan
e on the diabetesdataset with only 4 kernels. It should be noted that redu
ed set methods existfor subsequently pruning support ve
tor models to redu
e the required number ofkernels at the expense of some in
rease in error (e.g. see [7℄ for some example resultson the U.S.P.S. data).6 Dis
ussionExamples in this paper have e�e
tively demonstrated that the relevan
e ve
torma
hine 
an attain a 
omparable (and for regression, apparently superior) level ofgeneralisation a

ura
y as the well-established support ve
tor approa
h, while at thesame time utilising dramati
ally fewer kernel fun
tions | implying a 
onsiderable



saving in memory and 
omputation in a pra
ti
al implementation. Importantly, wealso bene�t from the absen
e of any additional nuisan
e parameters to set, apartfrom the need to 
hoose the type of kernel and any asso
iated parameters.In fa
t, for the 
ase of kernel parameters, we have obtained improved (both interms of a

ura
y and sparsity) results for all the ben
hmarks given in Se
tion3.2 when optimising the marginal likelihood with respe
t to multiple input s
aleparameters in Gaussian kernels (q.v. [9℄). Furthermore, we may also exploit theBayesian formalism to guide the 
hoi
e of kernel itself [2℄, and it should be notedthat the presented methodology is appli
able to arbitrary basis fun
tions, so we arenot limited, for example, to the use of `Mer
er' kernels as in the SVM.A further advantage of the RVM 
lassi�er is its standard formulation as a prob-abilisti
 generalised linear model. This implies that it 
an be extended to themultiple-
lass 
ase in a straightforward and prin
ipled manner, without the needto train and heuristi
ally 
ombine multiple di
hotomous 
lassi�ers as is standardpra
ti
e for the SVM. Furthermore, the estimation of posterior probabilities of 
lassmembership is a major bene�t, as these 
onvey a prin
ipled measure of un
ertaintyof predi
tion, and are essential if we wish to allow adaptation for varying 
lasspriors, along with in
orporation of asymmetri
 mis
lassi�
ation 
osts.However, it must be noted that the prin
ipal disadvantage of relevan
e ve
tor meth-ods is in the 
omplexity of the training phase, as it is ne
essary to repeatedly 
om-pute and invert the Hessian matrix, requiring O(N2) storage and O(N3) 
omputa-tion. For large datasets, this makes training 
onsiderably slower than for the SVM.Currently, memory 
onstraints limit us to training on no more than 5,000 examples,but we have developed approximation methods for handling larger datasets whi
hwere employed on the U.S.P.S. handwritten digit database. We note that while the
ase for Bayesian methods is generally strongest when data is s
ar
e, the sparsenessof the resulting 
lassi�er indu
ed by the Bayesian framework presented here is a
ompelling motivation to apply relevan
e ve
tor te
hniques to larger datasets.A
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