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1 Introduction

In the past two decades, electroencephalogram (EEG)-based brain-computer inter-
faces (BCIs) have attracted much attention in the fields of neuroscience and neural
engineering [1-3]. Researchers have made significant progress in designing and
demonstrating usable BCI systems for the purpose of communication and control.
Currently, the BCI community puts great effort into translating this technology
from laboratory demonstrations to real-life products to help physically disabled
people achieve improved quality of life [4-5]. Although many studies have been
carried out to implement and evaluate demonstration systems in laboratory set-
tings, developing practical BCI systems within a real-world environment still pos-
es severe technical challenges.

In real-world applications, a BCI system must meet the requirements of conven-
ient system use as well as robust system performance [6]. Recently, researchers
have proposed different methods for improving the practicality of a BCI system in
terms of hardware and software design. When working with a BCI product, re-
searchers need to pay attention to two major issues: (1) ease-of-use, and (2) ro-
bustness of system performance. Current BCI research places increasing demand
on advanced signal-processing techniques to improve system performance and
ease-of-use. Among the different signal-processing techniques employed in cur-
rent BCI systems, independent component analysis (ICA) is one of the most suc-
cessful methods [7]. Due to its capability in decomposing scalp EEG signals into
functionally independent brain activities and other non-neural activities, ICA has
been widely applied to improve the signal-to-noise ratio (SNR) of task-related
EEG signals in BCI systems. This study focuses on the use of ICA in current BCI
systems. The goal of this study is twofold: (1) to investigate the feasibility of us-
ing ICA to improve BCI performance through reviewing the state-of-the-art BCI
studies; (2) to introduce our recent work on developing an ICA-based zero-
training method for deriving EEG spatial filters in a motor imagery-based BCIL.
This study applied the extended infomax ICA algorithm [8] from the open-source
EEGLAB toolbox [9] to multichannel EEG data.



2 ICA in EEG signal processing

Independent component analysis is a statistical method that aims to find linear
projections of the observed data that maximize their mutual independence [10].
When applied to blind source separation (BSS), ICA aims to recover independent
sources using multi-channel observations of mixtures of those sources. In the past
two decades, ICA has been successfully used in processing biomedical signals in-
cluding EEG, electrocardiogram (ECG), magnetoencephalogram (MEG), and
functional magnetic resonance imaging (fMRI) signals [11]. In EEG signal pro-
cessing, ICA has shown a good capability in separating the scalp EEG signals into
functionally independent sources, such as neural components originating from dif-
ferent brain areas and artifactual components attributed to eye movements, blinks,
muscle, heart, and line noise (Fig. 1). Due to its superiority in EEG source separa-
tion, ICA has been successfully applied to EEG research to reduce EEG artifact,
enhance the SNR of task-related EEG signals, and facilitate EEG source localiza-
tion [12-15].

Given a linear mixing model, n-channel scalp EEG signals, x = [x; x; ... x|
are generated by m independent sources S = [S; S ... Sp]:

x =As (1)

where A is the n X m mixing matrix in the model. After ICA, recovered source
signals, u, can be estimated by applying an unmixing matrix W(n X m) to the ob-
served EEG data x:

u= Wx x=Wlu )

where each row of W is a spatial filter for estimating an independent component
(IC) and each column of W™1 consists of electrode weights (i.e., a spatial projec-
tion) of an independent component.

Fig. 1 shows an example of ICA applied to 128-channel scalp EEG data record-
ed during a visually guided reaching task, which involved various kinds of move-
ment artifacts [16]. It is apparently difficult to read the underlying neural activities
from the scalp channel data, which include overlapped EEG signals and artifacts.
For example, electrodes at the frontal area have very strong eye-movement arti-
facts, which seriously contaminated the midline theta activities over the prefrontal
cortex area. In this example, ICA successfully separates scalp EEG signals into
neural and non-neural independent source activities, which can be easily under-
stood according to their spatio-temporal characteristics. As shown in Fig. 1, re-
covered independent brain activities include the left/right mu components over the
sensorimotor areas (L-mu, R-mu), the midline prefrontal component (MPFC), and
the posterior parietal components (MPPC, LPPC, RPPC). In addition, ICA also
recovered the non-neural source activities including the vertical/horizontal Elec-
trooculogram (VEOG/HEOG), ECG, and Electromyogram (EMG) components.
This capability of decomposing scalp EEG signals into functionally independent
sources makes ICA a potential tool for many applications in EEG-based BCls.
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Fig. 1. Schematic overview of ICA decomposition of scalp EEG data (x). Activities of inde-
pendent components (1), were obtained by applying an unmixing matrix W to x: u= Wx. Each
column of W1, which consists of electrode weights, was shown as a scalp map and referred to
as the spatial pattern of an IC. The spatial patterns (W™1) clearly showed scalp distributions of
source activities of the ICs.

3 ICA in BCI systems

To better understand the state-of-the-art of ICA in BCI studies, this study first pre-
sents a survey of the literature. The articles selected for this survey were chosen
from journal and conference research papers found in Google scholar using the
following keywords: “ICA”, “BCI”, and “EEG”. According to application pur-
poses, 22 selected studies were categorized into three classes: (1) artifact removal
[16-19], (2) enhancement of SNR of task-related EEG signals [20-35], (3) selec-
tion of optimal electrodes [36, 37]. In the applications of artifact removal and SNR
enhancement, ICA was used to design spatial filters to remove task-irrelevant ac-
tivities such as blinks and movement artifacts. The application of electrode selec-
tion aimed to reduce the number of electrodes needed in a BCI system based on
the spatio-spectral characteristics of independent brain components. Table 1 lists
details of these studies, including their application purpose, reference information,
and types of BCI design. These studies cover most types of BCI designs including
visual evoked potential (VEP), auditory evoked potential (AEP), P300 event-
related potential (ERP), motor imagery, movement planning, mental tasks, and



sleepiness/drowsiness monitoring. It is quite clear that most studies fall into the
category of enhancing the SNR of task-related EEG signals. The method corre-
sponding to each of the three categories is described in detail with example data in
subsections below.

Table 1. Classification of ICA’s applications in BCI studies.

Application Purpose

Study

BCI Type

Removing EEG artifacts

Wang et al. [16]
Halder et al. [17]
Ghanbari et al.[18]
Papadelis et al. [19]

Movement planning
Motor imagery

Motor imagery
Sleepiness monitoring

Enhancing SNR of task- Xu et al. [20] P300
related EEG signals Serby et al. [21] P300
Lietal. [22] P300
Naeem et al. [23] Motor imagery
Delorme at al. [24] Motor imagery
Peterson [25] Motor imagery
Hung et al. [26] Motor imagery
Qin et al. [27] Motor imagery
Wang et al. [28] Motor imagery
Lee et al. [29] VEP
Hill et al. [30] AEP
Lin etal. [31] Drowsiness monitoring
Lan et al. [32] Mental tasks
Erfanian et al. [33] Mental tasks
Wang et al. [34] Movement planning
Hammon et al. [35] Movement planning
Selecting optimal electrodes Wang et al. [36] VEP
Lou et al. [37] Motor imagery
3.1 Artifact removal

EEG signals are often contaminated by pervasive artifacts such as blinks and mo-
tions. These artifacts might seriously deteriorate the system performance of BCIs
[38]. To make a BCI system more robust, movement and other artifacts need to be
eliminated before the task-related EEG features can be extracted for classification.
The superiority of ICA in EEG artifact removal has been well demonstrated by
many studies [39]. In this application category, ICA aims to separate and eliminate
the artifact-related non-neural activities from the EEG signals.

Wang et al. used ICA to correct EEG signals recorded in a movement-planning
task, which involved a lot of eye and muscle movements [16]. The EEG signals
encoding movement directions can be applied to predict the direction of an intend-
ed movement (e.g., reach and saccade) after removing artifact components arising



from eye and muscle activities. In motor imagery-based BClIs, system perfor-
mance (e.g., classification accuracy or the R-square values of features) was im-
proved after removing EOG/EMG artifacts [17, 18]. In a drowsiness monitoring
study [19], the ICA-based artifact removal was used as a routine approach to cor-
rect the EEG signals recorded in a driving task, which involved many head/body
movements.

Fig. 2 illustrates the procedures of ICA-based artifact removal. In this example,
the scalp EEG data recorded during reach/saccade planning and execution were
contaminated by artifacts [16]. The artifact-removal method consists of three pro-
cedures: (1) apply ICA to scalp EEG data; (2) identify and remove the artifact-
related ICs; (3) project EEG-related ICs back to scalp electrodes to reconstruct ar-
tifact-corrected EEG data. In general, identification of artifact ICs can be per-
formed using prior knowledge of spatio-temporal characteristics in EEG artifacts.
For example, the IC corresponding to horizontal eye movement has a two-dipole
distribution with opposite polarities over the bilateral prefrontal areas (see Fig. 1).
As shown in Fig. 2, the SNR of the EEG signals has been considerably improved
after removing the artifact ICs including EOG, ECG, and EMG. In practice, online
implementation of this approach can effectively improve the robustness of an
online BCI system.
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Fig. 2. Illustration of the ICA-based approach for artifact removal. Activities of ICs were ob-
tained by applying ICA to scalp EEG data. Artifact (e.g., EOG, ECG, and EMG) ICs were identi-
fied and removed from the obtained ICs. Artifact-corrected EEG signals were obtained by only
projecting the brain components back to the scalp electrodes.

3.2 SNR enhancement of task-related EEG signals

Spatial filtering is one of the most important signal processing techniques em-
ployed in BCIs using multichannel EEG [40]. The basic principle of spatial filter-



ing is to eliminate task-irrelevant signals through linearly weighting different
channels, and thus, enhances the SNR of task-related EEG signals. Many multidi-
mensional data-processing methods have been adopted in recent BCI studies. For
example, the common spatial pattern (CSP) method [41], the canonical correlation
analysis (CCA) [42], and ICA, have been successfully applied to the motor image-
ry, the SSVEP, and the P300-based BClIs respectively. In general, the ICA-based
spatial filtering method has two advantages: (1) it is an unsupervised learning
method and therefore no labeled data are required; (2) it allows exploring the rela-
tionship between human behavior and the spatio-spectral pattern of an IC, facili-
tating the understanding of the specific neural mechanism. As listed in Table 1,
the ICA-based spatial filtering has been widely applied to most types of BClIs in-
cluding P300 [20-22], motor imagery [23-28], VEP [29], AEP [30], drowsiness
monitoring [31], mental tasks [32, 33], and movement planning [34, 35]. General-
ly, these studies aimed to enhance the SNR of task-related EEG signals by ICA so
that the system performance (e.g., classification accuracy) can be improved. In
practice, only a small number of task-related EEG ICs will be selected for obtain-
ing spatial filters according to their capabilities for discriminating different tasks.
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Fig. 3. ICA-based spatial filtering for extracting task-related brain activities during motor image-
ry. In this trial, the subject was instructed to imagine right-hand movement after a visual cue ap-
peared at time 0. After ICA, two ICs with characteristic spatio-sepectral patterns were selected as
the motor components (L-mu and R-mu ICs), which were dominant by the mu rhythm in the fre-
quency domain. The corresponding weighting vectors in the unmixing matrix (W) were selected
to be used as spatial filters. Arrows indicate a contralateral ERD and an ipsilateral ERS, which
can be more clearly observed in the IC activities than the scalp EEG channel data.

The major steps of the ICA-based spatial filtering approach include: (1) applica-
tion of ICA to the training data; (2) identification of task-related ICs (i.e., the mu
ICs in this case); and (3) the application of the corresponding spatial filters to EEG
data before the training and testing steps of the classification process. Fig. 3 shows



an example of applying ICA-based spatial filters to enhance motor activities in a
motor imagery-based BCI. IC activities with higher SNR of motor activities than
the scalp channel data can be obtained by multiplying motor-related spatial filters
to the scalp EEG data. As shown in Fig. 3, the spatial filters have the largest posi-
tive weights over the sensorimotor areas on both hemispheres with some negative
weights around this area functioning as linear combinations to eliminate common
background activities. The spatial patterns corresponding to the mu ICs show very
typical dipolar distributions over the sensorimotor areas, indicating the source lo-
cations of mu activity modulated by motor imagery. In this example, visually cued
motor imagery of right hand movement induced a contralateral event-related
desynchronization (ERD) and an ipsilateral event-related synchronization (ERS)
of the mu rhythm (indicated by arrows in Fig. 3), which were more clearly shown
in IC activities than the unprocessed scalp EEG channel data.

3.3 Electrode selection

An optimal selection of a small number of electrodes plays an important role in
the design of a practical BCI system for real-life applications [6]. For example, in
an SSVEP BCI, the goal of electrode selection is to achieve SSVEPs with a high
SNR using a bipolar EEG channel consisting of a signal electrode and a reference
electrode [36]. In practice, the electrode giving the strongest SSVEP, which is
generally located in the occipital region, is selected as the signal electrode. The
reference electrode is searched under the following criteria: its SSVEP should be
weak, and its position should be close to the signal electrode so that its noise activ-
ity is similar to that of the signal electrode. In this way, a high SNR can be ob-
tained with the bipolar channel because most of the spontaneous background ac-
tivities are eliminated after the subtraction, while the SSVEP component is mostly
retained.

Due to its superiority in decomposing independent brain sources, ICA can facil-
itate the electrode selection in BCIs. Wang et al. [36] developed an ICA-based ap-
proach for electrode selection in an SSVEP BCI. The detailed procedures are de-
scribed as follows:

1) ICA decomposition. Thirteen-channel EEG signals x (with 13-Hz SSVEPs)
between Pz and Oz (Fig. 4(a)) were selected as the input for ICA decomposition.
Through ICA, 13 independent components were obtained as estimates of brain
sources § including SSVEP components (signal) and other background EEG com-
ponents (noise).

2) Reconstruction of signal and noise. The ICs with high SNR of SSVEP (i.e.,
the ratio of EEG power at 13Hz to the EEG power in the rest of spectrum) were
taken to be the true SSVEP-laden components and the remaining ICs were consid-
ered as background noise components. Through projecting the SSVEP sources and



the noise sources back to the scalp electrodes, the SSVEP and noise activities at
each electrode over the scalp can be separated.

3) Selection of the signal electrode. Power spectrum density (PSD) analysis was
performed for calculating the SNR of the SSVEP. Fig. 4(a) shows PSDs of origi-
nal channel data and decomposed SSVEP and noise activities on all 13 scalp elec-
trodes. The electrode giving the strongest SSVEP activity (i.e., PO2) was selected
as the signal channel.

4) Selection of the reference electrode. The correlation of the SSVEP activity
and the noise activity between electrodes was calculated. The ratio of the SSVEP
correlation to the noise correlation between other electrodes and the signal elec-
trode is the criterion for selecting the reference electrode. Electrodes with high
noise correlation and low SSVEP correlation are good candidates.

Fig. 4 shows an example of the proposed approach on one subject. As shown in
Fig. 4(a), the SSVEP of this subject is highly contaminated by spontanecous EEG
signals. It is difficult to choose a good bipolar channel from the original EEG
channel data. Through ICA decomposition, the distribution of SSVEP activities
shows that PO2 has the most significant SSVEP. As indicated by an arrow in Fig.
4(a), POz was selected as the reference channel due to its low SSVEP correlation
and high noise correlation to PO2. Fig. 4(b) proves that the PO2-POz bipolar
channel can significantly enhance the SNR of SSVEP due to the elimination of the

common noise activities.
|l PO2 |
‘l POz
(b)

| PO2-POz

Fig. 4. (a) Illustration of the ICA-based approach for electrode selection in an SSVEP BCI. Thir-
teen electrodes around the occipital region were used in ICA to decompose EEG into SSVEP and
background noise activities. For each channel, PSDs of scalp EEG, SSVEP and noise activities
are put together for comparison. The arrow and shaded areas indicate the selected signal (PO2)
and reference (POz) electrodes. (b) PSDs for monopolar channels PO2, POz, and the POz-PO2
bipolar channel.(adapted from [36] with permission from IEEE)

Not limited to the SSVEP-based BCI, this approach could be easily adapted to
other BCI systems. For example, Lou et al. [37] developed a similar approach for



optimizing bipolar electrodes in a motor imagery-based BCI. In their study, ICA
was used for separating background alpha rhythms from the sensorimotor mu
rhythms. Typical bipolar leads between the sensorimotor areas and the prefrontal
areas (e.g., C3-FCz and C4-FCz) were demonstrated most efficient for extracting
the motor imagery induced power change of the mu rhythms.

4 ICA-based zero-training BCI

As mentioned above, EEG-based BCIs often use spatial filters to improve the
SNR of task-related EEG activities [40]. To obtain robust spatial filters, large
amounts of labeled data, which are often expensive and labor-intensive to obtain,
need to be collected in a training procedure before online BCI control. Recently,
several studies have developed zero-training methods using a session-to-session
scenario in order to alleviate this problem [43]. To our knowledge, a state-to-state
translation, which applies spatial filters derived from one state to another, has nev-
er been reported. This study proposes a state-to-state, zero-training method to con-
struct spatial filters for extracting EEG changes induced by motor imagery. The
unsupervised nature makes ICA a potential tool to obtain task-related spatial fil-
ters even from task-irrelevant data. In this study, ICA was separately applied to
the multichannel EEG signals in the resting and the motor imagery states to obtain
spatial filters specific for extracting the mu components. The resultant spatial fil-
ters were then applied to single-trial EEG to differentiate left- and right-hand im-
agery movements.

4.1 Experiment and data recording

Nine healthy right-handed volunteers (six males and three females, aged between
22 and 25) participated in the BCI experiments [44]. Fig. 5 shows the paradigm
for online motor imagery-based BCI control with visual feedback. The left- and
right-hand movement imaginations were designated to control vertical cursor
movement on the screen. The subject sat comfortably in an armchair, facing a
computer screen displaying visual feedback. The duration of each trial was 8 se-
conds. During the first 2 seconds, while the screen was blank, the subject was in
the resting state. Immediately after these brief periods, a visual cue (arrow) was
presented on the screen, indicating the imagery task to be performed. The arrows
pointing upwards and downwards indicated the imagination of the left hand and
the right hand movement, respectively. After 3 seconds, a cursor started to move
at a constant speed from the left side to the right side of the screen. The vertical
position of the cursor was determined by the power difference of mu rhythm be-
tween the left and right hemispheres (C3 and C4 electrodes). After 8 seconds, a
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true or false mark appeared on the screen to indicate the final result of the trial and
the subject was asked to relax and wait for the next task.

|«— restng —» |« motor imagery -
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Fig. 5. Experiment paradigm for the motor imagery-based brain-computer interface.

32-channel EEG signals referenced to the CMS-DRL ground were recorded us-
ing a BioSemi ActiveTwo system with the electrodes placed according to the 10-
20 international system. The signals were digitized at 256 Hz and band-pass fil-
tered (2-30Hz) for further analysis. For each subject, the experiment consisted of
four blocks, each including 60 trials (30 trials per class). There were 3-5 minutes
of breaks between two consecutive blocks. A total of 240 trials (120 trials per
class) were recorded for each subject.

4.2 Method

4.2.1 ICA decomposition

As indicated in Fig. 5, the 0-2s and 2.5-4.5s segments in a trial were selected to
represent the resting state and the motor imagery state, respectively. For each sub-
ject, ICA was performed on data under the two states separately. For each state,
data of all trials were concatenated to a 480-second (240 trialsx2 seconds) long
data segment. Because the size of data was very limited (480 seconds), to improve
the robustness of ICA, 32-channel data were first projected to a 15-dimensional
subspace using principal component analysis (PCA). Then, for each subject, ICA
resulted in two sets of 15 X 32 spatial filters (Wyes; and Wy,;) and 32 X 15 spatial
projections (Wek, and W 1) corresponding to the resting and motor imagery.

4.2.2 ICA-based spatial filters
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In previous studies, ICA has shown its robustness in finding motor components,
which have characteristic features in spatial and frequency domains [37]. This
study used two criteria to identify the motor components: (1) the spatial pattern,
which suggests the source location of the component, should be consistent with
the scalp projection of the sensorimotor cortex on each hemisphere; (2) the PSD of
the component should match the typical spectral profile of the mu/beta rhythms. In
practice, a motor component should fit both criteria. After identifying the two mo-
tor ICs, the corresponding weighting vectors in the unmixing matrix (W) were
used as spatial filters for enhancing the sensorimotor mu/beta rhythms.

4.2.3 Resting-to-work translation

Suppose the two motor components in the resting state and the motor imagery
state have strong similarities, it might be feasible to use the spatial filters obtained
from the data in the resting state as estimates of the spatial filters for the motor
imagery state. The proposed method can be described as follows:

(A —1 — -1 0, —
wmotor_mi - motor_rest wmotorfmi - motor_rest (3)

where Wi otor rest a0d Wioror mi are motor-related spatial filters for the resting
state and the motor imagery state respectively. Fig. 6 illustrates the principle of the
proposed method. In this paradigm, data in the resting state, which do not require
the subject’s attention or action, and the motor imagery state were totally non-
overlapped. The spatial filters derived from the resting data were estimates of the
spatial filters for the motor imagery data. In practice, the resting EEG data can be
easily collected before a BCI session.
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Fig. 6. Diagram of translating spatial filters from the resting state to the motor imagery state.
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4.2.4 Feature extraction and classification

This study compares the classification performance of motor-imagery BClIs based
on band-pass (8-30Hz) power of the mu and beta rhythms extracted using four
methods: (1) monopolar C3 and C4 electrodes; (2) spatial filtering based on ICA
using the resting data; (3) spatial filtering based on ICA using the motor imagery
data; (4) CSP-based spatial filtering. After feature extraction, Fisher discriminant
analysis (FDA) [45] was used to discriminate left and right hand motor imagery.
The two-dimensional feature vector, which represented EEG power over the mo-
tor areas of two hemispheres, was fed into the FDA classifier for identifying the
imagined hand. A 10x10-fold cross-validation was used to estimate the classifica-
tion accuracy for each subject.

4.3 Results

Fig. 7 shows spatial patterns of the motor components in the resting state and the
motor imagery state for all subjects. All the components show a typical dipolar-
like topography, which is widespread over the sensorimotor cortex on left or right
hemisphere of the brain, and shows the highest amplitudes at C3 and C4 elec-
trodes. To quantitatively evaluate the topographical similarity, this study calculat-
ed the correlations of spatial patterns of the motor components between the two
states for each subject. The correlations were obtained by computing correlation
coefficients of the 1 X 32 vectors. Spatial patterns (i.e. projections of the compo-
nents to the scalp) between the resting and the motor imagery states were very
comparable (mean correlation coefficients of 0.95+0.05 and 0.9440.06 for left and
right ICs) for all subjects.

The FDA classifier used the four different types of EEG features as inputs to
classify single-trial motor-imagery movements. Table 1 summarizes the results of
10x10-fold cross-validation. A paired t-test across subjects was used to test the
statistical significance of the differences between different feature extraction
methods. As expected, compared to the monopolar method, all spatial-filtering
methods achieved significantly higher classification accuracies (87.0%, 85.9%,
and 86.4% vs. 80.4%, p<0.01). The results of ICA trained with the motor imagery
data were slightly better than those trained with the resting data (87.0% vs.
85.9%), but the difference was not statistically significant (p>0.1). The results of
using CSP-filtered (based on motor-imagery data) were comparable with those us-
ing ICA trained with motor imagery data (86.4% vs. 87.0%, p>0.1) and resting da-
ta (86.4% vs. 85.9%, p>0.1). These findings demonstrated the effectiveness of
translating resting spatial filters to classifying motor imagery EEG data using ICA.
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Fig. 7. Spatial patterns of the left and right motor components for all nine subjects (S1 to S9): (a)
spatial patterns of the resting state (left panels: left motor IC on the left hemisphere, right panels:
right motor IC on the right hemisphere); (b) spatial patterns of the motor imagery state.

Table 2. Classification accuracy (%) for all subjects using different feature extraction methods.

Method
Subjects Monopolar ~ ICA-mi ~ ICA-rest CSp
sl 86 84 84 8
2 66 70 70 2
s3 84 92 22 o
4 86 94 88 93
S5 84 90 88 o8
6 93 96 96 92
7 87 92 93 92
S8 85 97 95 95
39 53 67 68 69

Mean 80.4+12 87.0+9 85.9+11 86.4+9
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5 Conclusion and discussions

This chapter presents an up-to-date literature review on ICA in BCI applications
by categorizing related studies into three classes (i.e., artifact removal, SNR en-
hancement of task-related EEG signals, and electrode selection) according to the
roles of ICA. The basic principles and methodologies behind these applications
have been fully illustrated through examples with real EEG data. This chapter also
describes an extended application of the ICA-based spatial filter in the develop-
ment of a zero-training method for a motor imagery-based BCI. In summary, this
chapter shows that ICA can make a substantial contribution to the practical design
of BCI systems.

Although the advantages of using ICA in EEG-based BCIs have been clearly
shown in this chapter, most applications were developed and demonstrated only
with offline data analysis. Among all examples presented in Table 1, only three
studies performed online system implementation ([17], [21], and [29]). The study
in [17] implemented an online-automated artifact removal technique for BCI using
ICA. The P300-based BCI system developed in [21] adapted ICA-based filters ob-
tained in previous offline sessions to current online sessions to enhance the P300
potentials. The VEP-based BCI system developed in [29] used predefined spatial
templates to select VEP-related ICs after preforming ICA in near real time. Alt-
hough these studies showed some functionality of online implementation of ICA
in BCI systems, possibilities and practicalities of this approach still need further
investigation.

Currently, researchers still face some technical challenges to truly implement
ICA in online BCI systems. First, hardware and software must meet the computa-
tional requirements of ICA. In some situations, due to EEG nonstationarity [46],
the ICA processing might need to be performed in near real time. Under the cir-
cumstances, adaptive algorithms can be used to reduce the computational com-
plexity of ICA. Furthermore, the recent demand of mobile and wearable BCI sys-
tems poses more stringent limitations on their computational performance. A
system-on-chip design [47] might be a practical solution to this problem. Second,
automatic methods for identifying task relevant ICs need to be developed. In most
studies, the IC identification was performed manually based on researchers’ per-
sonal experiences. In real-time applications, this procedure will be labor-intensive
and time-consuming, and therefore, decrease the system’s practicality. Pattern
recognition methods might be employed to realize automatic IC identification by
comprehensively considering ICs’ properties in time, frequency, and spatial do-
mains. Third, stability and robustness of ICA based spatial filters always depend
on the amount of training data. In an online BCI application, more training data
require a longer user training time, thereby reducing the practicality of the BCI
system. To alleviate this problem, a session-to-session translation, as well as the
state-to-state translation method proposed in this chapter, might be a practical so-
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lution. Taken together, by solving these technical issues using advanced platform,
signal processing, and machine learning techniques, ICA could make a substantial
contribution to the development of practical online BCI systems.
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Abstract In the past two decades, independent component analysis (ICA) has
been widely used for Electroencephalogram (EEG) signal processing. Recently,
towards real-life applications, the EEG-based brain-computer interface (BCI) re-
search has posed a demand for advanced signal processing techniques such as
ICA. This chapter focuses on using the ICA-based approaches to improve perfor-
mance and practicality of BCI systems. This chapter first presents an up-to-date
literature review on the applications of ICA in EEG-based BCIs. According to ap-
plication purposes, these studies are divided into three categories: (1) artifact re-
moval; (2) enhancement of signal-to-noise ratio (SNR) of task-related EEG sig-
nals; (3) selection of optimal electrodes. The methods will be described in detail
with example data used in BCIs. Next, this chapter reports our recent progress on
an ICA-based zero-training (i.e., resting-to-work translating) BCI, which aims to
facilitate user training for a motor imagery BCI.



