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1 Introduction 

In the past two decades, electroencephalogram (EEG)-based brain-computer inter-
faces (BCIs) have attracted much attention in the fields of neuroscience and neural 
engineering [1-3]. Researchers have made significant progress in designing and 
demonstrating usable BCI systems for the purpose of communication and control. 
Currently, the BCI community puts great effort into translating this technology 
from laboratory demonstrations to real-life products to help physically disabled 
people achieve improved quality of life [4-5]. Although many studies have been 
carried out to implement and evaluate demonstration systems in laboratory set-
tings, developing practical BCI systems within a real-world environment still pos-
es severe technical challenges.  

    In real-world applications, a BCI system must meet the requirements of conven-
ient system use as well as robust system performance [6]. Recently, researchers 
have proposed different methods for improving the practicality of a BCI system in 
terms of hardware and software design. When working with a BCI product, re-
searchers need to pay attention to two major issues: (1) ease-of-use, and (2) ro-
bustness of system performance. Current BCI research places increasing demand 
on advanced signal-processing techniques to improve system performance and 
ease-of-use. Among the different signal-processing techniques employed in cur-
rent BCI systems, independent component analysis (ICA) is one of the most suc-
cessful methods [7]. Due to its capability in decomposing scalp EEG signals into 
functionally independent brain activities and other non-neural activities, ICA has 
been widely applied to improve the signal-to-noise ratio (SNR) of task-related 
EEG signals in BCI systems. This study focuses on the use of ICA in current BCI 
systems. The goal of this study is twofold: (1) to investigate the feasibility of us-
ing ICA to improve BCI performance through reviewing the state-of-the-art BCI 
studies; (2) to introduce our recent work on developing an ICA-based zero-
training method for deriving EEG spatial filters in a motor imagery-based BCI. 
This study applied the extended infomax ICA algorithm [8] from the open-source 
EEGLAB toolbox [9] to multichannel EEG data. 
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2 ICA in EEG signal processing 

Independent component analysis is a statistical method that aims to find linear 
projections of the observed data that maximize their mutual independence [10]. 
When applied to blind source separation (BSS), ICA aims to recover independent 
sources using multi-channel observations of mixtures of those sources. In the past 
two decades, ICA has been successfully used in processing biomedical signals in-
cluding EEG, electrocardiogram (ECG), magnetoencephalogram (MEG), and 
functional magnetic resonance imaging (fMRI) signals [11]. In EEG signal pro-
cessing, ICA has shown a good capability in separating the scalp EEG signals into 
functionally independent sources, such as neural components originating from dif-
ferent brain areas and artifactual components attributed to eye movements, blinks, 
muscle, heart, and line noise (Fig. 1). Due to its superiority in EEG source separa-
tion, ICA has been successfully applied to EEG research to reduce EEG artifact, 
enhance the SNR of task-related EEG signals, and facilitate EEG source localiza-
tion [12-15].  

Given a linear mixing model, n-channel scalp EEG signals, ࢞ = ଶݔ	ଵݔ]  [௡ݔ…
are generated by m independent sources	࢙ = ଶݏ	ଵݏ] … ࢞  :[௠ݏ =  s                                                              (1)ۯ

where ۯ is the ݊ ×݉  mixing matrix in the model. After ICA, recovered source 
signals, u, can be estimated by applying an unmixing matrix ܅(݊ ×݉)  to the ob-
served EEG data ࢞:  

  u= ࢞          ࢞܅ =  (2)                                               ࢛ଵି܅

where each row of ܅ is a spatial filter for estimating an independent component 
(IC) and each column of ି܅ଵ consists of electrode weights (i.e., a spatial projec-
tion) of an independent component. 

Fig. 1 shows an example of ICA applied to 128-channel scalp EEG data record-
ed during a visually guided reaching task, which involved various kinds of move-
ment artifacts [16]. It is apparently difficult to read the underlying neural activities 
from the scalp channel data, which include overlapped EEG signals and artifacts. 
For example, electrodes at the frontal area have very strong eye-movement arti-
facts, which seriously contaminated the midline theta activities over the prefrontal 
cortex area. In this example, ICA successfully separates scalp EEG signals into 
neural and non-neural independent source activities, which can be easily under-
stood according to their spatio-temporal characteristics. As shown in Fig. 1, re-
covered independent brain activities include the left/right mu components over the 
sensorimotor areas (L-mu, R-mu), the midline prefrontal component (MPFC), and 
the posterior parietal components (MPPC, LPPC, RPPC). In addition, ICA also 
recovered the non-neural source activities including the vertical/horizontal Elec-
trooculogram (VEOG/HEOG), ECG, and Electromyogram (EMG) components. 
This capability of decomposing scalp EEG signals into functionally independent 
sources makes ICA a potential tool for many applications in EEG-based BCIs. 
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sleepiness/drowsiness monitoring. It is quite clear that most studies fall into the 
category of enhancing the SNR of task-related EEG signals. The method corre-
sponding to each of the three categories is described in detail with example data in 
subsections below. 

Table 1. Classification of ICA’s applications in BCI studies. 

Application Purpose Study BCI Type 

Removing EEG artifacts Wang et al. [16] 
Halder et al. [17] 
Ghanbari et al.[18] 
Papadelis et al. [19] 

Movement planning 
Motor imagery 
Motor imagery 
Sleepiness monitoring 

Enhancing SNR of task- 
related EEG signals 

Xu et al. [20] 
Serby et al. [21] 
Li et al. [22] 
Naeem et al. [23] 
Delorme at al. [24] 
Peterson [25] 
Hung et al. [26] 
Qin et al. [27] 
Wang et al. [28] 
Lee et al. [29] 
Hill et al. [30] 
Lin et al. [31] 
Lan et al. [32] 
Erfanian et al. [33] 
Wang et al. [34] 
Hammon et al. [35] 

P300 
P300 
P300 
Motor imagery 
Motor imagery 
Motor imagery 
Motor imagery 
Motor imagery 
Motor imagery 
VEP 
AEP 
Drowsiness monitoring 
Mental tasks 
Mental tasks 
Movement planning 
Movement planning 

Selecting optimal electrodes Wang et al. [36] 
Lou et al. [37] 

VEP 
Motor imagery 

3.1 Artifact removal 

EEG signals are often contaminated by pervasive artifacts such as blinks and mo-
tions. These artifacts might seriously deteriorate the system performance of BCIs 
[38]. To make a BCI system more robust, movement and other artifacts need to be 
eliminated before the task-related EEG features can be extracted for classification. 
The superiority of ICA in EEG artifact removal has been well demonstrated by 
many studies [39]. In this application category, ICA aims to separate and eliminate 
the artifact-related non-neural activities from the EEG signals.  

Wang et al. used ICA to correct EEG signals recorded in a movement-planning 
task, which involved a lot of eye and muscle movements [16]. The EEG signals 
encoding movement directions can be applied to predict the direction of an intend-
ed movement (e.g., reach and saccade) after removing artifact components arising 
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an example of applying ICA-based spatial filters to enhance motor activities in a 
motor imagery-based BCI. IC activities with higher SNR of motor activities than 
the scalp channel data can be obtained by multiplying motor-related spatial filters 
to the scalp EEG data. As shown in Fig. 3, the spatial filters have the largest posi-
tive weights over the sensorimotor areas on both hemispheres with some negative 
weights around this area functioning as linear combinations to eliminate common 
background activities. The spatial patterns corresponding to the mu ICs show very 
typical dipolar distributions over the sensorimotor areas, indicating the source lo-
cations of mu activity modulated by motor imagery. In this example, visually cued 
motor imagery of right hand movement induced a contralateral event-related 
desynchronization (ERD) and an ipsilateral event-related synchronization (ERS) 
of the mu rhythm (indicated by arrows in Fig. 3), which were more clearly shown 
in IC activities than the unprocessed scalp EEG channel data. 

3.3 Electrode selection 

An optimal selection of a small number of electrodes plays an important role in 
the design of a practical BCI system for real-life applications [6]. For example, in 
an SSVEP BCI, the goal of electrode selection is to achieve SSVEPs with a high 
SNR using a bipolar EEG channel consisting of a signal electrode and a reference 
electrode [36]. In practice, the electrode giving the strongest SSVEP, which is 
generally located in the occipital region, is selected as the signal electrode. The 
reference electrode is searched under the following criteria: its SSVEP should be 
weak, and its position should be close to the signal electrode so that its noise activ-
ity is similar to that of the signal electrode. In this way, a high SNR can be ob-
tained with the bipolar channel because most of the spontaneous background ac-
tivities are eliminated after the subtraction, while the SSVEP component is mostly 
retained. 

    Due to its superiority in decomposing independent brain sources, ICA can facil-
itate the electrode selection in BCIs. Wang et al. [36] developed an ICA-based ap-
proach for electrode selection in an SSVEP BCI. The detailed procedures are de-
scribed as follows: 
1) ICA decomposition. Thirteen-channel EEG signals x (with 13-Hz SSVEPs) 
between Pz and Oz (Fig. 4(a)) were selected as the input for ICA decomposition. 
Through ICA, 13 independent components were obtained as estimates of brain 
sources s including SSVEP components (signal) and other background EEG com-
ponents (noise). 
2) Reconstruction of signal and noise. The ICs with high SNR of SSVEP (i.e., 
the ratio of EEG power at 13Hz to the EEG power in the rest of spectrum) were 
taken to be the true SSVEP-laden components and the remaining ICs were consid-
ered as background noise components. Through projecting the SSVEP sources and 
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optimizing bipolar electrodes in a motor imagery-based BCI. In their study, ICA 
was used for separating background alpha rhythms from the sensorimotor mu 
rhythms. Typical bipolar leads between the sensorimotor areas and the prefrontal 
areas (e.g., C3-FCz and C4-FCz) were demonstrated most efficient for extracting 
the motor imagery induced power change of the mu rhythms. 

4 ICA-based zero-training BCI 

As mentioned above, EEG-based BCIs often use spatial filters to improve the 
SNR of task-related EEG activities [40]. To obtain robust spatial filters, large 
amounts of labeled data, which are often expensive and labor-intensive to obtain, 
need to be collected in a training procedure before online BCI control. Recently, 
several studies have developed zero-training methods using a session-to-session 
scenario in order to alleviate this problem [43]. To our knowledge, a state-to-state 
translation, which applies spatial filters derived from one state to another, has nev-
er been reported. This study proposes a state-to-state, zero-training method to con-
struct spatial filters for extracting EEG changes induced by motor imagery. The 
unsupervised nature makes ICA a potential tool to obtain task-related spatial fil-
ters even from task-irrelevant data. In this study, ICA was separately applied to 
the multichannel EEG signals in the resting and the motor imagery states to obtain 
spatial filters specific for extracting the mu components. The resultant spatial fil-
ters were then applied to single-trial EEG to differentiate left- and right-hand im-
agery movements. 

4.1 Experiment and data recording 

Nine healthy right-handed volunteers (six males and three females, aged between 
22 and 25) participated in the BCI experiments [44]. Fig. 5 shows the paradigm 
for online motor imagery-based BCI control with visual feedback. The left- and 
right-hand movement imaginations were designated to control vertical cursor 
movement on the screen. The subject sat comfortably in an armchair, facing a 
computer screen displaying visual feedback. The duration of each trial was 8 se-
conds. During the first 2 seconds, while the screen was blank, the subject was in 
the resting state. Immediately after these brief periods, a visual cue (arrow) was 
presented on the screen, indicating the imagery task to be performed. The arrows 
pointing upwards and downwards indicated the imagination of the left hand and 
the right hand movement, respectively. After 3 seconds, a cursor started to move 
at a constant speed from the left side to the right side of the screen. The vertical 
position of the cursor was determined by the power difference of mu rhythm be-
tween the left and right hemispheres (C3 and C4 electrodes). After 8 seconds, a 
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4.2.4 Feature extraction and classification 

This study compares the classification performance of motor-imagery BCIs based 
on band-pass (8-30Hz) power of the mu and beta rhythms extracted using four 
methods: (1) monopolar C3 and C4 electrodes; (2) spatial filtering based on ICA 
using the resting data; (3) spatial filtering based on ICA using the motor imagery 
data; (4) CSP-based spatial filtering. After feature extraction, Fisher discriminant 
analysis (FDA) [45] was used to discriminate left and right hand motor imagery. 
The two-dimensional feature vector, which represented EEG power over the mo-
tor areas of two hemispheres, was fed into the FDA classifier for identifying the 
imagined hand. A 10x10-fold cross-validation was used to estimate the classifica-
tion accuracy for each subject. 

4.3 Results 

Fig. 7 shows spatial patterns of the motor components in the resting state and the 
motor imagery state for all subjects. All the components show a typical dipolar-
like topography, which is widespread over the sensorimotor cortex on left or right 
hemisphere of the brain, and shows the highest amplitudes at C3 and C4 elec-
trodes. To quantitatively evaluate the topographical similarity, this study calculat-
ed the correlations of spatial patterns of the motor components between the two 
states for each subject. The correlations were obtained by computing correlation 
coefficients of the 1 × 32 vectors. Spatial patterns (i.e. projections of the compo-
nents to the scalp) between the resting and the motor imagery states were very 
comparable (mean correlation coefficients of 0.95±0.05 and 0.94±0.06 for left and 
right ICs) for all subjects.  

The FDA classifier used the four different types of EEG features as inputs to 
classify single-trial motor-imagery movements. Table 1 summarizes the results of 
10x10-fold cross-validation. A paired t-test across subjects was used to test the 
statistical significance of the differences between different feature extraction 
methods. As expected, compared to the monopolar method, all spatial-filtering 
methods achieved significantly higher classification accuracies (87.0%, 85.9%, 
and 86.4% vs. 80.4%, p<0.01). The results of ICA trained with the motor imagery 
data were slightly better than those trained with the resting data (87.0% vs. 
85.9%), but the difference was not statistically significant (p>0.1). The results of 
using CSP-filtered (based on motor-imagery data) were comparable with those us-
ing ICA trained with motor imagery data (86.4% vs. 87.0%, p>0.1) and resting da-
ta (86.4% vs. 85.9%, p>0.1). These findings demonstrated the effectiveness of 
translating resting spatial filters to classifying motor imagery EEG data using ICA. 
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5 Conclusion and discussions 

This chapter presents an up-to-date literature review on ICA in BCI applications 
by categorizing related studies into three classes (i.e., artifact removal, SNR en-
hancement of task-related EEG signals, and electrode selection) according to the 
roles of ICA. The basic principles and methodologies behind these applications 
have been fully illustrated through examples with real EEG data. This chapter also 
describes an extended application of the ICA-based spatial filter in the develop-
ment of a zero-training method for a motor imagery-based BCI. In summary, this 
chapter shows that ICA can make a substantial contribution to the practical design 
of BCI systems. 

Although the advantages of using ICA in EEG-based BCIs have been clearly 
shown in this chapter, most applications were developed and demonstrated only 
with offline data analysis. Among all examples presented in Table 1, only three 
studies performed online system implementation ([17], [21], and [29]). The study 
in [17] implemented an online-automated artifact removal technique for BCI using 
ICA. The P300-based BCI system developed in [21] adapted ICA-based filters ob-
tained in previous offline sessions to current online sessions to enhance the P300 
potentials. The VEP-based BCI system developed in [29] used predefined spatial 
templates to select VEP-related ICs after preforming ICA in near real time. Alt-
hough these studies showed some functionality of online implementation of ICA 
in BCI systems, possibilities and practicalities of this approach still need further 
investigation. 

Currently, researchers still face some technical challenges to truly implement 
ICA in online BCI systems. First, hardware and software must meet the computa-
tional requirements of ICA. In some situations, due to EEG nonstationarity [46], 
the ICA processing might need to be performed in near real time. Under the cir-
cumstances, adaptive algorithms can be used to reduce the computational com-
plexity of ICA. Furthermore, the recent demand of mobile and wearable BCI sys-
tems poses more stringent limitations on their computational performance. A 
system-on-chip design [47] might be a practical solution to this problem. Second, 
automatic methods for identifying task relevant ICs need to be developed. In most 
studies, the IC identification was performed manually based on researchers’ per-
sonal experiences. In real-time applications, this procedure will be labor-intensive 
and time-consuming, and therefore, decrease the system’s practicality. Pattern 
recognition methods might be employed to realize automatic IC identification by 
comprehensively considering ICs’ properties in time, frequency, and spatial do-
mains. Third, stability and robustness of ICA based spatial filters always depend 
on the amount of training data. In an online BCI application, more training data 
require a longer user training time, thereby reducing the practicality of the BCI 
system. To alleviate this problem, a session-to-session translation, as well as the 
state-to-state translation method proposed in this chapter, might be a practical so-



15 

lution. Taken together, by solving these technical issues using advanced platform, 
signal processing, and machine learning techniques, ICA could make a substantial 
contribution to the development of practical online BCI systems. 
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Abstract In the past two decades, independent component analysis (ICA) has 
been widely used for Electroencephalogram (EEG) signal processing. Recently, 
towards real-life applications, the EEG-based brain-computer interface (BCI) re-
search has posed a demand for advanced signal processing techniques such as 
ICA. This chapter focuses on using the ICA-based approaches to improve perfor-
mance and practicality of BCI systems. This chapter first presents an up-to-date 
literature review on the applications of ICA in EEG-based BCIs. According to ap-
plication purposes, these studies are divided into three categories: (1) artifact re-
moval; (2) enhancement of signal-to-noise ratio (SNR) of task-related EEG sig-
nals; (3) selection of optimal electrodes. The methods will be described in detail 
with example data used in BCIs. Next, this chapter reports our recent progress on 
an ICA-based zero-training (i.e., resting-to-work translating) BCI, which aims to 
facilitate user training for a motor imagery BCI. 


