
1

HEDTools User Manual

January 4, 2018

2

Table of Contents
Table of Figures .. 3

Table of Tables ... 4

1. Getting Started with HEDTools .. 5

1.1 Overview ... 5

1.2 Requirements .. 5

1.3 Installation... 5

1.3.1 Running as a standalone application .. 5

1.3.2 Running with .set data file types .. 5

1.3.3 Running as a plugin to EEGLAB... 6

2. Annotating Data .. 6

2.1 Tagging a single dataset .. 6

2.2 Tagging a directory of datasets ... 16

2.3 Tagging an EEGLAB study .. 20

3. Validating Data ... 24

3.1 What the validation checks for ... 24

3.2 Validating a single dataset .. 25

3.3 Validating a directory of datasets ... 29

3.4 Validating an EEGLAB study .. 31

4. Extracting data epochs by HED tags .. 35

5. Data Formats ... 38

5.1 XML tag hierarchy (HED) .. 38

5.2 Tags are path strings ... 40

5.3 Field and tag map representations as a MATLAB structure... 41

5.4 How tags are stored in a dataset .. 42

5.5 The fieldMap object .. 43

5.6 The tagMap object .. 45

5.7 The tagList object ... 47

6. Saving tags in the dataset .. 48

7. Running the regression tests and examples .. 50

8. Status and availability ... 50

9. Acknowledgments... 50

10. References ... 50

3

Table of Figures
Figure 1. Tagging the current dataset from the EEGLAB Edit Menu. ... 7
Figure 2. pop_tageeg menu. .. 7
Figure 3. Menu for choosing fields to tag. .. 9

Figure 4. Tagging GUI for the type field using the CTagger application. .. 10
Figure 5. Adding a new tag to the HED.. 11

Figure 6. Specifying HED version. ... 12
Figure 7. Saving the HED. .. 12
Figure 8. Saving the dataset tags... 13
Figure 9. Specifying a fieldMap description... 13

Figure 10. Saving a new dataset. .. 14

Figure 11. Tagging a directory of datasets from the EEGLAB File Menu... 16
Figure 12. pop_tagdir menu. ... 17
Figure 13. Save multiple datasets. .. 18
Figure 14. Tagging a study and its associated datasets from the EEGLAB File Menu. 20
Figure 15. pop_tagstudy menu. ... 21

Figure 16. Validating the current dataset from the EEGLAB Edit Menu. ... 26
Figure 17. pop_validateeeg menu. .. 27
Figure 18. Validate a directory of datasets from the EEGLAB File Menu. ... 29
Figure 19. pop_validatedir menu. ... 30
Figure 20. Validate an EEGLAB study from the EEGLAB File Menu. .. 32

Figure 21. pop_validatestudy menu. ... 33

Figure 22. Extracting data epochs by tags from the EEGLAB Edit Menu. .. 35
Figure 23. pop_epochhed menu. ... 36
Figure 24. pop_epochhed search bar. ... 36

4

Table of Tables
Table 1. A summary of arguments for pop_tageeg... 15
Table 2. A summary of arguments for pop_tagdir. ... 19
Table 3. A summary of arguments for pop_tagstudy. .. 23

Table 4. A summary of arguments for pop_validateeeg. .. 28
Table 5. A summary of arguments for pop_validatedir. ... 31

Table 6. A summary of arguments for pop_validatestudy. ... 34
Table 7. A summary of arguments for pop_epochhed. ... 38
Table 8. A summary of arguments for fieldMap constructor. .. 43
Table 9. A summary of the public methods of the fieldMap class. .. 44

Table 10. A summary of the public static methods of the fieldMap class. ... 44

Table 11. A summary of arguments for tagMap constructor. ... 45
Table 12. A summary of the public methods of the tagMap class. ... 46
Table 13. A summary of the public static methods of the tagMap class. ... 46
Table 14. A summary of arguments for tagList constructor. .. 47
Table 15. A summary of the public methods of the tagList class. .. 47

Table 16. A summary of the public static methods of the tagList class. .. 48
Table 17. A summary of arguments the writetags function. ... 49

5

1. Getting Started with HEDTools

1.1 Overview
HEDTools is a MATLAB/Java Toolbox and an EEGLAB plugin designed to help users annotate and

validate events or other data elements using a predefined, but extensible, hierarchically structured

annotation language. The input to the system consists of two parts: a list of items to be annotated and an

annotation hierarchy. In the case of EEG, users annotate the events that occur during an EEG study using

the hierarchical event description language (HED) as the vocabulary.

Although HEDTools can be used in very general annotation settings, the most common application is for

users to annotate the events that occur during an EEG study using the hierarchical event description

language (HED) as the vocabulary. Many of the tools are designed to assist in annotation of events as

represented in EEGLAB EEG.event structures. Once an EEG file (or study or directory) has been

annotated, users can epoch data and perform other tasks based on event annotations rather than on

laboratory specific coding schemes. This facilitates the sharing of data and comparisons of analysis across

data collections.

EEG event annotation comes in two forms: code-specific and event-specific. In code-specific event

annotation, researchers identify a small number of event classes or categories and annotate events by

category. In EEGLAB, users typically specify this category in the EEG.event.type field. EEGLAB

functions such as pop_epoch for epoching data time-locked to particular event categories can facilitate

analysis. HEDTools support a more general form of code-specific analysis than provided by EEGLAB

event codes. Users can treat any of the EEG.event fields as specifying a category, annotate each unique

member of the category using HED tags. HEDTools writes tags for the combination of categories for each

event in the EEG.event.usertags field and supports very sophisticated epoching of data based on

combinations of tags.

Users can also write tag annotations that are specific to individual events into the EEG.event.hedtags field

of the event. Often these annotations contain specific values for continuous parameters. HEDTools does

not distinguish between these event-specific annotations and code-specific annotations in downstream

analysis. This provides the basis for analysis using very general, collection-independent event

characterization as described more fully in this manual.

1.2 Requirements
HEDTools is dependent on MATLAB. You will also need EEGLAB installed if you are going to tag or

validate EEG files. Please use the most current version of EEGLAB.

1.3 Installation
You can run HEDTools as a standalone toolbox or as a plugin for EEGLAB. In both cases, you should

install EEGLAB unless you plan to use HEDTools only to validate tags from spreadsheets.

1.3.1 Running as a standalone application
If your data files are .mat files, you can simply unzip the EEGLABPlugin/HEDTools1.0.4.zip anywhere

you choose. Execute the setup script to set the paths each time you run MATLAB. Alternatively, you can

add the code contained in setup to your startup script.

1.3.2 Running with .set data file types
If you wish to use EEGLAB, you should follow the directions above also.

http://sccn.ucsd.edu/eeglab/

6

1.3.3 Running as a plugin to EEGLAB
To install HEDTools unzip the HEDTools1.0.4.zip file inside the EEGLAB plugin directory. If you don’t

install HEDTools via the EEGLAB menu, you can find this file at:

 https://github.com/VisLab/HEDTools/tree/master/EEGLABPlugin

When you start EEGLAB again, HEDTools should be ready to use. Note: EEGLAB requires that each

EEGLAB plugin be in its own subdirectory in the plugins directory of EEGLAB. Thus, if you have

unzipped HEDTools correctly, you should see …/eeglab/plugins/HEDTools1.0.4/eegplugin_hedtools.m.

2. Annotating Data
The EEGLAB plugin version of HEDTools adds several additional menu items to the EEGLAB menu

associated with annotating data. These items include: Tag current dataset (under the Edit menu),

Validate current dataset (under the Edit menu), Tag study (under the Tag files submenu under the File

menu), Tag directory (under the Tag files submenu under the File menu), and Validate files (under the

File menu). If you aren’t using the plugin version or simply want to work from the command line, you

will need to call the underlying pop functions such as pop_tageeg, pop_tagdir, pop_tagstudy, and

pop_validateeeg.

2.1 Tagging a single dataset
First load a dataset into the workspace by clicking the Load existing dataset menu item under the File

menu. To tag the dataset click the Tag current dataset menu item under the Edit menu as illustrated below

in Figure 1.

https://github.com/VisLab/HEDTools/tree/master/EEGLABPlugin

7

Figure 1. Tagging the current dataset from the EEGLAB Edit Menu.

The Tag current dataset menu item executes the pop_tageeg function, which displays a menu for

specifying tagging options as shown in Figure 2. (You can also bring up the menu by executing

pop_tageeg from the command line. The top section of the menu allows you to browse and select a HED

file and an import file containing event tags respectively. When browsing for an HED file only .xml files

will be considered. When browsing for an import file only .mat files will be considered. The next section

allows you to select the HED extension options. These options include:

• New tags can be added to HED underneath tags with the Extension Allowed attribute or leaf tags

(Only where allowed).

• New tags can be added to HED underneath any tag (Anywhere).

• No new tags can be added to HED (Nowhere).

The last section allows you to select additional options. These options include:

• Use CTagger to tag each selected field (Use CTagger).

• Select fields to ignore or tag through a menu (Select fields to tag).

• List only the tags that have the most specific tag starting with that prefix or list all tags that share

the same prefix separately (Preserve tag prefixes).

Figure 2. pop_tageeg menu.

8

Once all options are set click the Okay button to proceed. If the Select fields to tag checkbox is checked

then the following menu below will be presented. This function then extracts and displays existing tag

information from the dataset. Usually, you will specify the class of an event in the EEG.event.type field.

However, you can further refine your event annotation by giving additional subcategory fields in the

EEG.event structure and tag the unique values of these fields separately. HEDTools will individual

event .usertags field will contain the tags for the combined tags from the different fields.

Depending on the options set in the pop_tageeg menu you are allowed to specify which fields to include

for tagging and which fields to ignore from tagging. This method requires that your labeling scheme be

orthogonal --- that is, it assumes each field can be tagged separately and the tags from the fields are

combined for an event.

Figure 3 shows the menu for selecting fields to tag and to ignore. HEDTools fills in this menu with all of

the fields that appear in the EEG.events structure, allowing you to treat each field as specifying a subclass

of events. If you want to move a field over from one list to the other click on the field and press the

Transfer button or use the left and right arrow buttons on the keyboard. Simply press the arrow key that

points in the direction of the list that you want to transfer the field to. If you double click on a field then it

will be set to the primary field. The primary field is the field used to specify what kind of event is occurring

while the other fields are subfields used to specify conditions or subcategories within the event. The

primary field requires a label tag (starting with /Event/Label), a category tag (starting with

/Event/Category), and a description tag (starting with /Event/Description) for each of its

unique values. By default, HEDTools sets the primary field to type.

9

Figure 3. Menu for choosing fields to tag.

Once you have selected the fields to tag and pressed the Okay button, HEDTools calls the CTagger tagging

application (in Figure 4) for each field in the tagging list.

10

Figure 4. Tagging GUI for the type field using the CTagger application.

CTagger is a Java application that allows you to associate tags with each unique value of the current field.

Instead of having to choose tags at random, you select from a menu of potential tags organized in a

hierarchical format from general to more specific.

The left side of the CTagger display shows the unique values from the current field and the right side

contains all of the tags from the HED hierarchy. You can use the go back and done buttons at the top left

of CTagger to go back to the previous field if not greyed out or to proceed to the next field. You can use

the the undo and redo buttons which appear at the top right of CTagger to revert the previous action. Zoom

out and zoom in buttons appear on the upper right. The search bar on the upper right displays possible

partial matches when you start typing in this box. When you click on one of the pull-down search tags,

the hierarchy scrolls to the position of that tag.

To select an event type value to tag, check the box next to it. As you click on tags from the HED hierarchy

on the right, they appear underneath the value. To remove the tag, right click on the tag and select remove.

You can add a vocabulary term to any leaf of the HED hierarch and at specified other places. To add a

new tag (Figure 5) to the HED vocabulary displayed on the right, click on a leaf tag or tag with the

Extensions Allowed attribute and click add tag. From there you need to specify the attributes of the new

tag. When done click the save button.

11

Figure 5. Adding a new tag to the HED.

Once the tag has been added to the HED then you will be prompted to specify the version (Figure 6).

Setting this will change the version number that appears at the top of the CTagger. To modify the version

number again, click on the HED/# tag and specify the value. Note: HED uses a standard x.y.z versioning

convention (e.g., 5.2.3). Changes in x denote major releases with significant changes. Changes in y denote

changes that may result in minor incompatibilities with the previous version. Changes in z denote minor

additions, modifications and corrections that introduce no incompatibilities. If you make your own

additions, you should version with x.y.z.w to make sure which version of the standard hierarchy you started

with.

The current HED hierarchy is maintained at https://github.com/BigEEGConsortium/HED/wiki/HED-

Schema in wiki format. The downloadhed function downloads this wiki file from the website. The

wiki2xml function converts the wiki to XML for use in HEDTools. The updatehed function will download

the latest version, convert to XML and save on disk for use in the tools.

https://github.com/BigEEGConsortium/HED/wiki/HED-Schema
https://github.com/BigEEGConsortium/HED/wiki/HED-Schema

12

Figure 6. Specifying HED version.

After completing the tagging, save your tagging using the File menu items. CTagger also prompts you to

save the modified HED if you have made any modifications (Figure 7).

Figure 7. Saving the HED.

The first option saves the modified HED to the HED_USER.xml file. The HED_USER.xml is intended

for modifying the original HED (HED.xml). You should never save over or delete the HED.xml file. The

13

second option allows you to save the modified HED to any location, preferably outside of the HEDTools

directory. This is very useful for versioning the HED.

Figure 8. Saving the dataset tags.

The HEDTools use fieldMap objects to maintain the association of event type values with tags so that

you can easily edit tags or apply the tags to other datasets with similar events. After saving the HED you

will prompted to export the tags as fieldMap object (Figure 8). The first option allows you to save and

specify the location of the file for saving the fieldMap. You typically want to name your file something

that reflects the data that you just tagged. Your file could include the study name or the dataset name.

When you press the Edit description button, CTagger presents a dialog for you to specify the

description of the fieldMap (Figure 9).

Figure 9. Specifying a fieldMap description.

14

The menu above allows you to add documentation to the fieldMap object. Not only is this description

saved to the specified file assigned in the previous menu, but it is written to the EEG.etc.tags.description

field of any datasets tagged by this object. After filling out the description, press the SAVE button to insert

the description. Then press Ok. CTagger then presents the following dialog for saving the dataset that you

have just tagged (Figure 10).

Figure 10. Saving a new dataset.

You can also execute pop_tageeg function from the command-line. This function takes in one required

argument, which is an EEG dataset that is loaded into the workspace.

Example 2.1: Tag an EEG dataset with additional arguments using a menu.

[EEG, fMap, com] = pop_tageeg(EEG);

The EEG return parameter is the original dataset with the tags written to it. The fMap return parameter is

a fieldMap object that contains the field to tag association. The com return parameter contains the

command string containing the function call with the options selected from the GUI. You use the com

string to tag another dataset using the same options.

The pop_tageeg function can also be called without any user intervention if you provide a fieldMap

object. You will not see CTagger and its associated dialogs. Instead, the function applies the tags and

saves the data. The following example illustrates how to do this.

Example 2.2: Tag another dataset using a fieldMap.

[EEG1, fMap1] = pop_tageeg(EEG, false, 'BaseMap', fMap);

Here false pertains to the UseGui argument, which turns off user intervention by not showing the dialogs.

The BaseMap argument is a fieldMap object or the full path to a fieldMap object that stores existing event

tags. To find a list of all available input arguments refer to Table 1.

15

MATLAB Syntax

[EEG, fMap, com] = pop_tageeg(EEG)

[EEG, fMap, com] = pop_tageeg(EEG, UseGui, 'key1', 'value1', ...)

[EEG, fMap, com] = pop_tageeg(EEG, 'key1', 'value1', ...)

Table 1. A summary of arguments for pop_tageeg.

Name Type Description

EEG Required
The EEG dataset structure that will be tagged. The dataset

will need to have an .event field.

UseGui Optional
If true (default), use a series of menus to set function

arguments.

'BaseMap' Name-Value
A fieldMap object or the name of a file that contains a

fieldMap object to be used to initialize tag information.

'EventFieldsToIgnore' Name-Value

A one-dimensional cell array of field names in the .event

substructure to ignore during the tagging process. By

default the following subfields of the .event structure are

ignored: .latency, .epoch, .urevent, .hedtags, and .usertags.

The user can over-ride these tags using this name-value

parameter.

'HEDExtensionsAllowed' Name-Value

If true (default), the HED can be extended. If false, the

HED cannot be extended. The 'ExtensionAnywhere

argument determines where the HED can be extended if

extension are allowed.

'HEDExtensionsAnywhere' Name-Value

If true, the HED can be extended underneath all tags. If

false (default), the HED can only be extended where

allowed. These are tags with the 'ExtensionAllowed'

attribute or leaf tags (tags that do not have children).

'HedXML' Name-Value
Full path to a HED XML file. The default is the HED.xml

file in the hed directory.

'PreserveTagPrefixes' Name-Value

If false (default), tags for the same field value that share

prefixes are combined and only the most specific is

retained (e.g., /a/b/c and /a/b become just /a/b/c). If true,

then all unique tags are retained.

'PrimaryEventField' Name-Value

The name of the primary field. Only one field can be the

primary field. A primary field requires a label, category,

and a description tag. The default is the .type field.

'SaveBaseMapFile' Name-Value

A string representing the file name for saving the final,

consolidated fieldMap object that results from the tagging

process.

'SelectEventFields' Name-Value
If true (default), the user is presented with a GUI that

allow users to select which fields to tag.

'UseCTagger' Name-Value
If true (default), the CTagger GUI is used to edit field

tags.

16

2.2 Tagging a directory of datasets
To tag a directory of datasets from EEGLAB, click the Tag directory menu item under the Tag files menu

under File, which is illustrated below in Figure 5.

Figure 11. Tagging a directory of datasets from the EEGLAB File Menu.

The Tag directory menu item executes the pop_tagdir function, which brings up a menu for specifying

options for tagging a directory of datasets. The function executes without reading any datasets into

EEGLAB. The pop_tagdir function extracts tag information from all of the datasets stored in the directory

tree and uses this information to list any existing tags. The function only considers .set datasets found in

the directory.

In GUI mode, the pop_tagdir function first brings up a menu shown in Figure 12. The top section of the

menu allows you to browse and select a HED file, a directory of datasets, and an import file containing

event tags. The HED file browser only displays .xml files. The tag import file browser only displays .mat

files.

17

Figure 12. pop_tagdir menu.

The second section of the pop_tagdir menu displays options for extending the HED vocabulary. These

options include:

• New tags can be added to the HED underneath tags with the Extension Allowed attribute or leaf

tags (Only where allowed).

• New tags can be added to the HED underneath any tag (Anywhere).

• No new tags can be added to the HED (Nowhere).

The last section allows you to select additional options. These options include:

• Search subdirectories for .set datasets (Look in subdirectories).

• Use CTagger to tag each selected field (Use CTagger).

• Choose fields to tag through a menu (Choose fields to tag).

• List only the tags that have the most specific tag starting with that prefix or list all tags that share

the same prefix separately (Preserve tag prefixes).

Example 2.3: Tag a directory using a series of menus.

[fMap, fPaths, com] = pop_tagdir();

18

The fMap return argument is a fieldMap object that contains all of the tags associated with each unique

field value. The fPaths return argument is a cell array containing the full path names of the datasets tagged

during this call. You use the com string to tag another directory using the same options.

The pop_tag_dir function follows a very similar workflow to the pop_tageeg function. By default,

pop_tagdir displays a menu, similar to the one of Figure 3, allowing you to decide which fields to tag or

ignore. Once you have picked the fields to tag, the pop_tagdir function displays CTagger (see Figure 4)

for each selected field. If you modify the HED hierarchy, CTagger prompts you to save the HED to a

file (Figure 5). From there you will prompted to save a fieldMap object (Figure 8 and Figure 9). The

final step of saving the tagged data uses the dialog of Figure 13. The first option allows you to overwrite

the datasets from the directory to include the HED tags. The second option allows you to copy the

datasets to a separate directory and then tag them. When finished press the Ok button.

Figure 13. Save multiple datasets.

MATLAB Syntax

[fMap, fPaths, com] = pop_tagdir()

[fMap, fPaths, com] = pop_tagdir(UseGui, 'key1', 'value1', ...)

[fMap, fPaths, com] = pop_tagdir('key1', 'value1', ...)

19

Table 2. A summary of arguments for pop_tagdir.

Name Type Description

UseGui Optional
If true (default), use a series of menus to set function

arguments.

'BaseMap' Name-Value
A fieldMap object or the name of a file that contains a

fieldMap object to be used to initialize tag information.

'EventFieldsToIgnore' Name-Value

A one-dimensional cell array of field names in the .event

substructure to ignore during the tagging process. By

default the following subfields of the .event structure are

ignored: .latency, .epoch, .urevent, .hedtags, and

.usertags. The user can over-ride these tags using this

name-value parameter.

'HEDExtensionsAllowed' Name-Value

If true (default), HED can be extended. If false, HED

cannot be extended. The 'ExtensionAnywhere'

argument determines where HED can be extended if

extension are allowed.

'HEDExtensionsAnywhere' Name-Value

If true, the HED can be extended underneath all tags. If

false (default), the HED can only be extended where

allowed: tags with 'ExtensionAllowed' attribute or

leaf tags (tags that do not have children).

'HedXML' Name-Value
Full path to a HED XML file. The default is the HED.xml

file in the hed directory of HEDTools.

'InDir' Name-Value A directory that contains similar EEG .set files.

'PreserveTagPrefixes' Name-Value

If false (default), tags for the same field value that share

prefixes are combined and only the most specific is

retained (e.g., /a/b/c and /a/b become just /a/b/c).

If true, then all unique tags are retained.

'PrimaryEventField' Name-Value

The name of the primary field. Only one field can be the

primary field. A primary field requires a label, category,

and a description tag. The default is the .type field.

'SaveBaseMapFile' Name-Value

A string representing the file name for saving the final,

consolidated fieldMap object that results from the tagging

process.

'SelectEventFields' Name-Value
If true (default), the user is presented with a GUI that

allow users to select which fields to tag.

'UseCTagger' Name-Value
If true (default), the CTagger GUI is used to edit field

tags.

20

2.3 Tagging an EEGLAB study
To tag a directory of datasets click the Tag study menu item under the Tag files menu under File as

illustrated below in Figure 14.

Figure 14. Tagging a study and its associated datasets from the EEGLAB File Menu.

The Tag study menu item executes the pop_tagstudy function, which brings up a menu for specifying

options for tagging a study and its associated datasets. The function executes without reading any datasets

into EEGLAB. The pop_tagstudy function extracts tag information from the study and uses this

information to list any existing tags.

Figure 15 shows the option menu that appears when you call pop_tagstudy as a GUI. The top section of

the menu allows you to browse and select a HED file, a study file, and an import file containing event

tags. The browser to select a HED file only shows .xml files, the browser to select study files only shows

.study files, and the browser for importing tags only shows .mat files will be considered.

21

Figure 15. pop_tagstudy menu.

The middle section of the menu provides options for modifying the HED vocabulary:

• New tags can be added to the HED underneath tags with the Extension Allowed attribute or leaf

tags (Only where allowed).

• New tags can be added to the HED underneath any tag (Anywhere).

• No new tags can be added to the HED (Nowhere).

The last section allows you to select additional options. These options include:

• Use CTagger to tag each selected field (Use CTagger).

• Choose fields to tag through a menu (Choose fields to tag).

List only the tags that have the most specific tag starting with that prefix or list all tags that share

the same prefix separately (Preserve tag prefixes).

Example 2.4: Tag a study and its associated datasets using a series of menus.

[fMap, fPaths, com] = pop_tagstudy();

The fMap return argument is a fieldMap object that contains all of the tags associated with each unique

field value. The fPaths return argument is a cell array containing the full path names of the datasets tagged

during this call. You use the com string to tag another study using the same options.

22

The pop_tag_study function follows a very similar workflow to the pop_tageeg function. By default,

pop_tagstudy displays a menu, similar to the one of Figure 3, allowing you to decide which fields to tag

or ignore. Once you have picked the fields to tag, the pop_tagdir function displays CTagger (see Figure

4) for each selected field. If you modify HED then it will prompt you to save HED to a file (Figure 7).

From there you will prompted to save a fieldMap object. Finally, you will be prompted on how you

would like to save the tagged data.

MATLAB Syntax

[fMap, fPaths, com] = pop_tagstudy()

[fMap, fPaths, com] = pop_tagstudy(UseGui, 'key1', 'value1', ...)

[fMap, fPaths, com] = pop_tagstudy('key1', 'value1', ...)

23

Table 3. A summary of arguments for pop_tagstudy.

Name Type Description

UseGui Optional
If true (default), use a series of menus to set function

arguments.

'BaseMap' Name-Value
A fieldMap object or the name of a file that contains a

fieldMap object to be used to initialize tag information.

'EventFieldsToIgnore' Name-Value

A one-dimensional cell array of field names in the .event

substructure to ignore during the tagging process. By

default, the following subfields of the EEG.event structure

are ignored: .latency, .epoch, .urevent, .hedtags, and

.usertags. The user can override these tags using this

name-value parameter.

'HEDExtensionsAllowed' Name-Value

If true (default), HED can be extended. If false, HED

cannot be extended. The 'ExtensionAnywhere'

argument determines whether HED can be extended if

extension are allowed.

'HEDExtensionsAnywhere' Name-Value

If true, HED can be extended underneath all tags. If false

(default), HED can only be extended where allowed.

These are tags with the 'ExtensionAllowed'

attribute or leaf tags (tags that do not have children).

'HedXML' Name-Value
Full path to a HED XML file. The default is the HED.xml

file in the HEDTools hed directory.

'PreserveTagPrefixes' Name-Value

If false (default), tags for the same field value that share

prefixes are combined and only the most specific is

retained (e.g., /a/b/c and /a/b become just /a/b/c).

If true, then all unique tags are retained.

'PrimaryEventField' Name-Value

The name of the primary field. Only one field can be the

primary field. A primary field requires a label, category,

and a description tag. The default is the .type field.

'SaveBaseMapFile' Name-Value

A string representing the file name for saving the final,

consolidated fieldMap object that results from the tagging

process.

'SelectEventFields' Name-Value
If true (default), the user is presented with a GUI that

allow users to select which fields to tag.

'StudyFile' Name-Value The path to an EEG study.

'UseCTagger' Name-Value
If true (default), the CTagger GUI is used to edit field

tags.

24

3. Validating Data
If you are using the plugin version, HEDTools adds three menu items to the EEGLAB menu associated

with validating annotated data: Validate current EEG (from the Edit menu), Validate study (from the

Validate files submenu under the File menu), or Validate directory (from the Validate files submenu under

the File menu). You can also validate directly from the command line as explained below.

3.1 What the validation checks for
Aside from checking if the event tags are present in HED, the validation functions also checks for and

generate errors for the following issues:

• Tags with the isNumeric attribute must have a numerical value. Some tags that are numerical

have units associated with them that can be specified. If not, the default units will be assigned to

them as determined by the unit class attribute. A unit class contains a collection of units of the

same unit dimension (e.g., length, time, angle, etc.). When units are specified for a numerical tag

the validator verifies that the units belong to the correct unit class for a particular tag.

• Tags with the required attribute must for present in each and every event. These currently are

tags that start with the prefixes /Event/Category, /Event/Description and

/Event/Label.

• Tags with the requireChild attribute cannot be present in any event. Instead a descendant of

these tags will have to be in its place. For example, the tag Event/Category cannot be

present in an event. However, Event/Category/Participant response can because

it is a descendant of Event/Category and doesn’t have the requireChild attribute.

• Tags with the unique attribute can only have one descendant tag present in an event. For

example, there cannot be two tags start with the prefix /Event/Label because this tag has the

unique attribute.

• Tags in groups can have no more than 2 tildes. For example, (/Participant ~

/Action/Type/Allow/Access ~ /Item/Object/Person/ID Holder) is a valid

group containing tildes.

• Missing commas before or after tag groups. For example,
/Event/Label/StBaselineGuardDuty (/Participant ~

/Action/Type/Allow/Access ~ /Item/Object/Person/ID Holder) is invalid

because the comma after the required label tag is missing.

• Unequal number of opening and closing parentheses in tag groups. For example,
(/Participant ~ /Action/Type/Allow/Access ~

/Item/Object/Person/ID Holder is invalid because the closing tag group parenthesis

is missing.

In addition to this, the validation generates warning for the following syntax issues:

25

• Numerical tags that have a unit class should have units specified. For example,

/Attribute/Visual/Luminance/444 is discouraged and should have units specified:

/Attribute/Visual/Luminance/444 candela.

• The first word in each tag should be capitalized and all subsequent words should be lowercase.

This doesn’t apply to tags that take a value. For example,

/Event/Category/Experimental Stimulus is discouraged. The Stimulus part

should be lowercase.

Any event tags that do not comply with these rules will be written to a log file. The log file by default will

only contain errors. To include warnings in the file you will need to specify the option. A typical log file

appears as follows:

Issues in event 28:
 Invalid HED tag - "Action/Type/Button press/Keyboard in group ((Participant ~

Action/Type/Button press/Keyboard ~ Participant/Effect/Body part/Arm/Hand/Finger))"

The snippet above contains the event in which the issue occurred, the type of issue, and the tag that

generated the issue.

3.2 Validating a single dataset
To validate tags of a single dataset, you should load the dataset into the MATLAB workspace. If working

through the EEGLAB menu, should load the dataset into EEGLAB by clicking the Load existing dataset

menu item under the File menu. To validate the dataset click the Validate current dataset menu item under

the Edit menu as illustrated below in Figure 16.

26

Figure 16. Validating the current dataset from the EEGLAB Edit Menu.

The Validate current dataset menu item executes the pop_validateeeg function which brings up a menu

for specifying options for validation.

27

Figure 17. pop_validateeeg menu.

The top section of the pop_validateeeg allows you to browse for a HED file and to set an output directory.

The next section allows you to indicate whether or not you want to include warnings in the log file:

• Include warnings in addition to errors in the log file (Include warnings in log file)

Once all options are set, click the Okay button to proceed.

Example 3.1: Validate the HED tags in a dataset, the workspace with a list of issues, and output a log

file under the current directory.

[issues, com] = pop_validateeeg(EEG);

The issues return argument is a one-dimensional cell array containing the output from the validation. Each

cell corresponds to a particular event that raised an issue. You can use the com string to validate another

dataset using the same options.

When working exclusively from the command line, you should set the second argument of the

pop_validateeeg function to false. This bypasses the menus for setting the function arguments.

28

Example 3.2: Validate the HED tags in a dataset and write the output to the workspace and a log file

under the current directory without using a menu.

[issues, com] = pop_validateeeg(EEG, false);

MATLAB Syntax

[issues, com] = pop_validateeeg(EEG)

[issues, com] = pop_validateeeg(EEG, UseGui, 'key1', 'value1', ...)

[issues, com] = pop_validateeeg(EEG, 'key1', 'value1', ...)

Table 4. A summary of arguments for pop_validateeeg.

Name Type Description

UseGui Optional
If true (default), use a series of menus to set function

arguments.

EEG Required

The EEG dataset structure containing HED tags in the

EEG.event structure. The tags need to be present in the

.usertags and/or .hedtags fields of EEG.event.

'GenerateWarnings' Name-Value
If true, include warnings in the log file in addition to errors.

If false (default), only include errors in the log file.

'HedXml' Name-Value

The full path to a HED XML file containing all of the tags.

This by default will be the HED.xml file found in the hed

directory of HEDTools.

'OutputFileDirectory' Name-Value The directory where the validation output is written.

'WriteOutputToFile' Name-Value

If true (default), write the validation issues to a log file in

addition to the workspace. If false, only write the issues to

the workspace.

29

3.3 Validating a directory of datasets
To validate a directory of datasets click the Validate directory menu item under the File menu as illustrated

in Figure 18.

Figure 18. Validate a directory of datasets from the EEGLAB File Menu.

The Validate directory menu item executes the pop_validatedir function, which brings up a menu for

specifying options for validation.

30

Figure 19. pop_validatedir menu.

The top section of the pop_validatedir menu allows you to browse and select a root directory where the

datasets are located, a HED file, and an output directory. The next section allows you to set additional

options including:

• Search in the subdirectories for datasets (Look in subdirectories)

• Include warnings in addition to errors in the log file (Include warnings in log file)

Click the Okay button to proceed to validation.

Example 3.3: Validate the HED tags in a directory of datasets and write the log file to the current

directory using a menu.

[fPaths, com] = pop_validatedir();

The fPaths return argument is a cell array containing the full path names of the datasets tagged during this

call. You can use the com string to validate another directory using the same options without the menu.

When working exclusively from the command line, you want to set the second argument of the

pop_validatedir function to false. This bypasses the menu for setting the function arguments.

31

Example 3.4: Validate the HED tags of the datasets in the current directory and write the log file to the

current directory without using a menu.

fPaths = pop_validatedir(false);

MATLAB Syntax

[fPaths, com] = pop_validatedir()

[fPaths, com] = pop_validatedir(UseGui, 'key1', 'value1', ...)

[fPaths, com] = pop_validatedir('key1', 'value1', ...)

Table 5. A summary of arguments for pop_validatedir.

3.4 Validating an EEGLAB study
To validate an EEGLAB study from the EEGLAB menu, click the Validate current dataset menu item

under the File menu as illustrated in Figure 20.

Name Type Description

UseGui Optional
If true (default), use a series of menus to set function

arguments.

'DoSubDirs' Name-Value
If true (default), the entire inDir directory tree is searched. If

false, only the inDir top-level directory is searched.

'GenerateWarnings' Name-Value
If true, include warnings in the log file in addition to errors.

If false (default), only include errors in the log file.

'HedXml' Name-Value

The full path to a HED XML file containing all of the tags.

This by default will be the HED.xml file found in the hed

subdirectory of the HEDTools.

'InDir' Name-Value A directory containing tagged EEG datasets to be validated.

'OutputFileDirectory' Name-Value
The directory where the validation output is written. There

will be a log file generated for each study dataset validated.

'WriteOutputToFile' Name-Value

If true (default), write the validation issues to a log file in

addition to the workspace. If false, only write the issues to

the workspace.

32

Figure 20. Validate an EEGLAB study from the EEGLAB File Menu.

The Validate study menu item executes the pop_valideatestudy function, which brings up a menu for

specifying options for validation as shown in Figure 21.

33

Figure 21. pop_validatestudy menu.

The top section of the pop_validatestudy menu allows you to browse and to select a study file, a HED file,

and an output directory. The next section allows you to include warnings in addition to errors in the log

file (Include warnings in log file). Click the Okay button to proceed.

Example 3.5: Validate a study using a menu.

[fPaths, com] = pop_validatestudy();

The fPaths return argument is a cell array containing the full path names of the datasets tagged during this

call. You can use the com string to validate another study using the same options without the menu.

MATLAB Syntax

[fPaths, com] = pop_validatestudy()

[fPaths, com] = pop_validatestudy(UseGui, 'key1', 'value1', ...)

[fPaths, com] = pop_validatestudy('key1', 'value1', ...)

34

Table 6. A summary of arguments for pop_validatestudy.

Name Type Description

UseGui Optional
If true (default), use a series of menus to set function

arguments.

'GenerateWarnings' Name-Value
If true, include warnings in the log file in addition to errors.

If false (default), only include errors in the log file.

'HedXml' Name-Value

The full path to a HED XML file containing all of the tags.

This by default will be the HED.xml file found in the hed

subdirectory of HEDTools.

'OutputFileDirectory' Name-Value

The directory where the validation output is written to.

Validation generates a log file for each study dataset

validated.

'StudyFile' Name-Value
The full path to an EEG study file. This must be provided if

UseGui is false.

35

4. Extracting data epochs by HED tags

The EEGLAB pop_epoch function extracts data epochs that are time locked to specified event types. This

function allows you to epoch on one of a specified list of event types as defined by the EEG.event.type

field of the EEG structure. HEDTools provide a simple way for extracting data epochs from annotated

datasets using a much richer set of conditions. To use HED epoching, you must have annotated the EEG

dataset with HED tags stored in the .usertags and .hedtags fields under the EEG.event field of the EEG

dataset. If the dataset is not tagged, please refer to section 2.1 on how to tag a dataset.

To extract data epochs by HED tags through the EEGLAB menu, first load a dataset into the workspace

by clicking the Load existing dataset menu item under the File menu. From there click the Extract epochs

by tags menu item under the Tools menu as illustrated in Figure 22.

Figure 22. Extracting data epochs by tags from the EEGLAB Edit Menu.

The Extract epochs by tags menu item executes the pop_epochhed function, which brings up a menu for

specifying options for extracting data epochs as shown in Figure 23.

36

Figure 23. pop_epochhed menu.

The pop_epochhed menu is almost identical to the EEGLAB pop_epoch menu with the exceptions of the

first input field (Time-locking HED tag(s)) and the second input field (Exclusive HED tag(s)). Instead of

passing in or selecting from a group of unique event types the user passes in a comma separated list of

HED tags. For each event all HED tags in this list must be found for a data epoch to be generated.

Clicking the adjacent button (with the label …) will open a new menu used for inputting HED tags as

shown below in Figure 24.

Figure 24. pop_epochhed search bar.

When you type something in the search bar, the dialog displays a list below containing possible matches.

Pressing the "up" and "down" arrows on the keyboard while the cursor is in the search bar moves to the

next or previous tag in the list. Pressing "Enter" selects the current tag in the list and adds the tag to the

search bar. When done, click the "Ok" button to return to the main epoching menu.

37

Exclusive tags negate matches to other tags that are grouped with them. In order for a match to be returned

the exclusive tag must be specified in the search sting also.

Another thing to keep in mind is that the matching works differently when specifying non-exclusive tags

that are attributes. If an attribute tag is specified in the search by itself then it needs to be present at the

top-level of the event tags, the top-level and all tag groups, or in all tag groups if there are no top-level

tags.

Here are a few examples to help clarify the way that the search works.

Example 4.1: Partial match found.
Event tags: a/b/c
Search tags: a/b
Result: True

Example 4.2: Match found but offset because exclusive tag isn’t specified in search.
Event tags: a/b, Attribute/Intended effect
Search tags: a/b
Result: False

Example 4.3: Match found but offset because exclusive tags need to be grouped with other tags.
Event tags: (a/b, Attribute/Intended effect), c/d
Search tags: c/d, Attribute/Intended effect
Result: False

Example 4.4: Match found but offset because attribute tags are found in group but not found at the top-

level.
Event tags: (a/b, Attribute/X, Attribute/Y), c/d
Search tags: Attribute/X, Attribute/Y
Result: False

Example 4.5: Match found because attribute tags are found in all groups and there are no top-level tags.
Event tags: (a/b, Attribute/X, Attribute/Y), (c/d, Attribute/Y)
Search tags: Attribute/Y
Result: True

Example 4.6: Match found because a whole group is matched even though it doesn’t match the other

group
Event tags: (a/b, Attribute/X, Attribute/Y), (c/d, Attribute/X)
Search tags: a/b, Attribute/X, Attribute/Y
Result: True

MATLAB Syntax

[EEG, indices, com] = pop_epochhed(EEG)

[EEG, indices, com] = pop_epochhed(EEG, tagstring, timelimits)

[EEG, indices, com] = pop_epochhed(EEG, tagstring, timelimits, 'key1',

value1 ...)

38

Table 7. A summary of arguments for pop_epochhed.

5. Data Formats
HEDTools is structured and hence requires two items: a tag hierarchy and a map of field values. The tag

hierarchy is in XML format and HEDTools provides a schema for validation. The association of tags and

types of events is represented by a fieldMap.

5.1 XML tag hierarchy (HED)
HEDTools assume that rather than inventing tags at random, you will have a vocabulary of suggested tags

presented in hierarchical form as shown on the right in Figure 4. Internally, this hierarchy is represented

as an XML string.

Name Type Description

EEG Required
Input dataset. Data may already be epoched; in this case, extract

(shorter) subepochs time locked to epoch events.

tagstring
Required if

no GUI

A comma separated list of HED tags that you want to search for. All

tags in the list must be present in either the EEG.event.usertags and/or

the EEG.event.hedtags fields.

timelimits
Required if

no GUI

Epoch latency limits [start end] in seconds relative to the time-locking

event {default: [-1 2]}

'epochinfo' Name-Value
Propagate event information into the new epoch structure {default:

'yes'}.

'eventindices' Name-Value
 Extract data epochs time locked to the specified event numbers

(either an integer or a vector of integers.

'exclusivetag' Name-Value

A cell array of tags that nullify matches to other tags. If these tags are

present in both the EEG dataset event tags and the tag string then a

match will be returned. By default, this argument is set to

{'Attribute/Intended effect', 'Attribute/Offset'}.

'newname' Name-Value New dataset name {default: "[old_dataset] epochs"}

'timeunit' Name-Value

Time units (either 'seconds' or 'points'). If 'seconds',

event latencies are in seconds. If 'points', event latencies are in

frames. The default is 'points'.

'valuelim' Name-Value

Lower and upper bound latencies for trial data relative to the time-

locked event, given as [min max] or [max]. If one positive value is

given, use its negative as the lower bound. The given values are also

considered outliers (min max) {default: none}

'verbose' Name-Value ['yes'|'no'] {default: 'yes'}

39

Example 5.1: A snippet from the HED.
<?xml version="1.0" encoding="utf-8"?>

<HED version="5.2.3">

 <node>

 <name>Event</name>

<node position="1" predicateType="passThrough"

requireChild="true" required="true">

 <name>Category</name>

 <description>This is meant to designate the reason

 this event was recorded</description>

 ...

The XML hierarchy shown in Example 5.1 is from HED.xml maintained specifically to support tagging

of events in EEG experiments [1]. The Hierarchical Event Descriptor (HED) tags and supporting tools

[2][3][4] [5] provide an infrastructure for data mining across data collections, once the datasets have been

annotated.

HEDTools works with any XML file that conforms to the HED.xsd, the default XML schema

specification. The HED.xsd schema is quite general, and you can substitute any XML hierarchy that

conforms to the schema or build your own hierarchy from the ground up. You must take care in modifying

the schema itself, as HEDTools assumes certain standard fields. The default XML hierarchy and validating

schema are specified by the public constants DefaultXml and DefaultSchema in the fieldMap class defined

in helpers.

40

5.2 Tags are path strings
Tags are simply path strings from the HED hierarchy. Each path string or tag uses forward slashes (“/”)

to separate the components in the path. Commas (“,”) separate multiple tags for the same event. Do not

use commas within text such as descriptions. Users may group event tags with one level of parentheses

to make the annotation clearer. Example 5.2 shows an example of the annotation for a stimulus event that

consists of displaying a red circle in the center of the screen. The parentheses make it clear that the circle

is red and located at the center of the screen. If the event designated the display of multiple objects of

different colors, the parentheses would make the annotation more clear. The tagging also supports tag

groups with embedded tilde (“~”) characters to designate a sentence-like structure. You can use only one

level of parentheses containing at most two tildes separating the subject from the predicate and the

direct object.

Example 5.2: Tag path string representation.

Event/Category/Experimental stimulus,

(Item/2D shape/Ellipse/Circle, Attribute/Visual/Color/Red,

Location/Screen/Center)

Normally, a tag that is more specific (i.e., the added tag has an existing tag as a prefix in string form or

corresponds to an ancestor in the tag hierarchy) replaces a less specific tag. However, most HEDTools

functions take an optional PreservePrefix argument, which is false by default. If you set this argument to

true, HEDTools keeps both tags.

Example 5.3: When PreservePrefix argument is true, HEDTools keeps all versions of the tags.

Event/Category/Experimental stimulus

Event/Category/Experimental stimulus/Instruction/Attend

41

5.3 Field and tag map representations as a MATLAB structure
A field map (implemented by the MATLAB fieldMap class) associates field names with tag maps

(implemented by the MATLAB tagMap class). A tag map associates tags with a group of values identified

by a name (the “field”). The discussion of this section assumes type/subtype encoding (as illustrated in

the next example) to simplify the discussion. However, field maps and tag maps do not rely on a specific

representation.

Example 5.4: An experiment has two types of events, a stimulus and a user button press response, that

are encoded as STIM, RT, respectively. The stimulus consists of a circle presented in one of three positions:

to the left, center, or right of the screen. The positions are encoded by the researcher with numeric codes

1, 2, and 3 respectively. If the dataset is in EEGLAB format, an event such as a circle presented on the

left side of the screen at 162 ms after the experiment begins might be stored as a structure:

EEG.event(1) =

 type: 'STIM'

 stimpos: 1

 latency: 162.048

 urevent: 1

Only the .type and .stimpos fields of the .event substructure are relevant for tagging. The .urevent is an

EEGLAB-specific field that relates this event to the original event encodings, while .latency specifies the

time of this event in frames.

HEDTools creates a fieldMap object to hold the tag map information for each of the two fields or groups:

type and stimpos. The tag map for type contains the associations between each of its two values (STIM

and RT) and the corresponding tags.

Example 5.5: The structure representation of the field map corresponding to Example 5.4 is:

fMap =

xml: '<?xml version="1.0" ...'

map: [1x2 struct]

Each of the .map structures corresponds to a tag map structure as shown in the next two examples.

Example 5.6: The structure representation of the tag map stimpos corresponding to the field map of

Example 5.5:

fMap.map(1) =

field: 'stimpos'

values: [1x3 struct]

fMap.map(1).values(1) =

code: '1'

tags: {'Item/2D shape/Eclipse/Circle', 'Event/Description/Display

of circle on left side of screen'}

fMap.map(1).values(2) =

code: '2'

tags: {'Item/2D shape/Eclipse/Circle','Event/Description/Display

of circle in the center of the screen'}

42

fMap.map(1).values(3) =

code: '3'

tags: {'Item/2D shape/Eclipse/Circle','Event/Description/Display

of circle on right side of screen'}

The tag map for the type field has the form:

fMap.map(2) =

field: 'type'

values: [1x2 struct]

In summary, a field map is a collection of tag maps, each identified by a group or field name. Field maps

can be represented by a MATLAB structure that has two fields (.xml, and .map) at the top level. The .xml

is a string representation of the tag hierarchy used for this tagging. Internally, CTagger represents a field

map by a fieldMap object.

A tag map is an association of tags with a group of values identified by a name (field). HEDTools

represents tag maps by a MATLAB structure that has two fields (.field, and .values) at the top level. The

.values field contains a structure with two fields (.code and .tags).

5.4 How tags are stored in a dataset
Tags can be stored in any dataset that is a MATLAB structure. HEDTools assumes that the dataset itself

is a structure and can store a representation of a field map in the etc.tags field of the dataset. One approach

is to write the entire structure to the dataset.

Example 5.7: Storing the field map structure of Example 5.6 in the dataset s as a structure.

s.etc.tags = fMap;

It is also possible to store multiple maps by making s.etc.tags a structure array. For datasets that have

events represented as a structure with fields, you can store the tags applicable to a particular event.

Example 5.8: The tag information stored in the individual event of Example 5.4.

EEG.event(1) =

type: 'STIM'

stimpos: 1

latency: 162.048

urevent: 1

hedtags: ... direct mapped tags as a string

usertags:'Item/2D shape/Eclipse/Circle'

The tags associated with a type value STIM as well as a stimpos value 1 are consolidated in

EEG.event(1).usertags to allow data-mining. CTagger extracts these tags from a field map that is also

maintained to allow revision and remapping. Tags from automated annotation at acquisition are stored in

.hedtags and are not able to be remapped. The true tags for a particular event consist of the union of the

tags in the .hedtags and .usertags fields.

43

5.5 The fieldMap object
The fieldMap class manages a collection of named groups and the mappings of their values to tags.

Example 5.9: Storing a collection of mappings in a fieldMap object.

f = fieldMap();

for k = 1:length(fMap.map)

 f.addValues(fMap.map(k).field, fMap.map(k).values, 'Merge');

end

The first statement creates an empty fieldMap object using the default XML. The loop adds the individual

group mappings to the object. You can create multiple fieldMap objects and save them separately from

the data. This allows you to maintain multiple tag mappings for different purposes.

MATLAB Syntax
fTags = fieldMap()

fTags = fieldMap('key1', 'value1', ...)

Table 8. A summary of arguments for fieldMap constructor.

Name Type Description

'Description' Name-Value Description of this object.

'PreservePrefix' Name-Value

If false (default), HEDTools combines tags of the same

field value that share prefixes and retains only the most

specific (e.g., /a/b/c and /a/b become just /a/b/c).

If true, then HEDTools retains all unique tags.

'XML' Name-Value
A string containing the HED tag hierarchy used to create

this object.

44

Table 9. A summary of the public methods of the fieldMap class.

Method Description

addValues Include values in this object based on update type.

clone Create a copy of this object.

getDescription Return the description of this object.

getFields Return the fields of this object.

getJson Return the JSON string version of this object.

getJsonValues Return a JSON array of the JSON of the tag maps for this object.

getMap Return the tagMap object associated with a specified field name.

getMaps
Return the tag maps for this object as a cell array of tagMap

objects.

getPreserveTagPrefixes Return the PreservePrefix flag.

getPrimaryField Return the primary field of the fieldMap.

getStruct Return this object as a structure array.

getTags Return the tag string associated with value event of field.

getValue Return the value structure corresponding to specified field and key.

getValues Return the values for field as a cell array of structures.

getXml Return a string containing the XML of the fieldMap.

getXmlEdited Returns true if the XML was edited through the CTagger.

merge Combine another fieldMap with this object based on update type.

mergeXml Merge an XML string with this object’s HedXML if valid.

removeMap Remove the tag maps associated with specified field name.

setDescription Set the description of the fieldMap.

setPrimaryMap
Sets the tag map associated with specified field name as a primary

field.

setXml Set the XML of the fieldMap.

setXmlEdited Set the XML of the fieldMap.

Table 10. A summary of the public static methods of the fieldMap class.

Method Description

loadFieldMap Load a field map from a .mat file that contains a fieldMap object.

saveFieldMap Save a field map to a .mat file.

45

5.6 The tagMap object
Internally, the fieldMap class uses the tagMap class to provide a common format for holding the tagging

information for one group of values. This class has static methods for translating to and from the other

formats and for merging tag maps.

Example 5.10: Representation of fMap.map(1) of Example 5.6 as a tagMap object.

t = tagMap('Field', 'stimpos');

for k = 1:length(fMap.map(1).values)

 t.addValues(fMap.map(1).values(k), 'Merge', false);

end

The first statement creates a tagMap object representing the tag-value mapping for the group of values

called stimpos. The second statement adds the actual mapping of tags to values.

MATLAB Syntax
tMap = tagMap()

tMap = tagMap('key1', 'value1', ...)

Table 11. A summary of arguments for tagMap constructor.

Name Type Description

'Field' Name-Value String identifying the group this map is associated with.

46

Table 12. A summary of the public methods of the tagMap class.

Method Description

addValue Add the tagList of tags to this object based on updateType.

clone Create a copy of this object.

getField Return the field name corresponding to this tagMap.

getJson Return a JSON string version of this tagMap object.

getJsonValues Return a JSON string version of this tagMap object.

getCodes Return the unique codes for this tagMap object.

getPrimary Return true if this tagMap object is a primary field.

getStruct Return this tagMap object in structure form.

getValue Return the value structure corresponding to specified code.

getValues Return the values of this tagMap object as a cell array of structures.

getValueStruct Return the values of this tagMap object as a structure array.

merge Combine the tagMap object info with this one.

setPrimary Set this tagMap object to the primary field.

Table 13. A summary of the public static methods of the tagMap class.

Method Description

json2Values Converts a JSON values string to a structure or empty.

values2Json Convert a value structure array to a JSON string.

47

5.7 The tagList object
Similar to how the fieldMap class uses the tagMap class, the tagMap class uses the tagList class. The

tagList class represents each individual value and the associated tags in the tagMap group. This class

also has static methods for translating to and from the other formats and for merging tag lists.

Example 5.11: Create a tagList representing a green square that belongs to tagMap group type.

 tMap = tagMap('Field', 'type');

tList = tagList('square');

tList.add({'Attribute/Visual/Color/Green','Item/2D

shape/Rectangle/Square'});

tMap. addValue(tList);

MATLAB Syntax
tList = tagList(code)

Table 14. A summary of arguments for tagList constructor.

Name Type Description

code Required A unique event code value associated with tags.

Table 15. A summary of the public methods of the tagList class.

Method Description

add Add valid tag or tag group to this tagList.

addList Add a list of tags or tag group to this tagList.

addString Add a string of valid tags or tag groups to this tagList.

clone Clone this tagList object by making a copy of the tag maps.

getCode Returns the code associated with this tagList.

getCount Returns the number of tags and tag groups in this tagList.

getJsonValues Returns a JSON string version of this tagList object.

getKeys Returns the keys for this tagList.

getStruct Returns this tagList as a structure array.

getTags Returns a cell array with all of the tags and tag groups in this tagList.

intersect Keep only the keys that are in this tagList and in the other tagList.

isMember Returns true if value is a valid tag or tag group in this tagList.

remove Remove the tag or tag group in this tagList corresponding to value.

removePrefixes Remove the tags in this tagList that are prefixes in existing groups.

setCode Sets the code associated with this tagList.

union Adds the tags given in another tagList to those of this tagList.

48

Table 16. A summary of the public static methods of the tagList class.

Method Description

deStringify Create a cell array representing a comma-separated string of tags.

getCanonical Return a sorted version of a valid tag or tag group.

getUnsortedCanonical Return an unsorted version of a valid tag or tag group.

removeGroupDuplicates Remove duplicates from a tag group based on prefix.

separateDuplicates Return a list of tags without duplicates from cellstr.

splitTildesInGroup Split the tildes in the cellstr tag group.

stringify Create a string from a cell array of strings or cellstrs.

stringifyElement Create string from cellstr or from string.

tagList2Json Convert a tagList to a JSON string.

validate Validate the input as a valid tag or tag group.

validateTag Validate a tag string.

validateTagGroup Validate a cellstr containing a tag group.

6. Saving tags in the dataset
All of the higher-level functions call the writetags function to write the tag information to the dataset.

HEDTools writes the tags in two different ways: as a summary field map in the .etc.tags subfield of the

data and as individual event information. In the latter situation, it’s assumed that the events to be tagged

are in stored in the .event structure array and it writes a consolidated list of tags based on the actual values

of different fields for the ith event to the .event(i).usertags subfield.

Example 6.1: Write the tags encapsulated by the fieldMap object fMap into the data structure x.

x = writetags(x, fMap);

The writetags writes both the summary and individual event information, overwriting existing tagging

information. If x doesn’t have an .event structure, no individual event information is written. The fMap

object can come from anywhere. Thus, you can have multiple tagging schemes and merge them before

writing, or use one at a time. An advantage of keeping the mappings as summaries, separate from the

events is that you can edit your tags and rewrite for different uses.

MATLAB Syntax
eData = writetags(eData, fMap)
eData = writetags(eData, fMap, 'key1', 'value1', ...)

49

Table 17. A summary of arguments the writetags function.

Name Type Description

eData Required
A dataset structure that the tag information is to be written

to.

fMap Required A fieldMap object with the tag information.

'EventFieldsToIgnore' Name-Value A cell array containing the field names to exclude.

'PreserveTagPrefixes' Name-Value

If false (default), tags for the same field value that share

prefixes are combined and only the most specific is retained

(e.g., /a/b/c and /a/b become just /a/b/c). If true,

then all unique tags are retained.

50

7. Running the regression tests and examples
HEDTools uses the XUNIT unit-testing framework for its regression tests located in the tests directory.

For tests that require user input, the instructions appear in caps in the command window. The regression

tests use external data not located in the HEDTools repository. Download the test data archive

(HEDToolsTestArchive.zip) and unzip it. You will also need to edit the tests/setup_tests.m file and adjust

the values.testroot to contain the path of your unzipped archive. CTagger comes with examples contained

in the tagging_example.m script. The examples use external data not located in the HEDTools repository.

Download the example data archive (HEDToolsExampleArchive.zip) and unzip it. You will also need to

edit the exampleDir that points to the example data archive.

8. Status and availability
The base HEDTools is currently available and undergoing user testing.

9. Acknowledgments
The authors acknowledge helpful conversations with Christian Kothe, Nima Bigdely Shamlo, Alejandro

Ojeda, Arno Delorme, and Scott Makeig, all of University of California San Diego as well as Scott Kerick,

Jeanne Vettel of the Army Research Laboratories, Tony Johnson, Michael Dunkel, and Michael Nonte of

DCS Corporation, and Rob Geary and Andrew Moseley-Gholl of the University of Michigan. This

research was sponsored by the Army Research Laboratory and was accomplished under Cooperative

Agreement Number W911NF-10-2-0022. The views and conclusions contained in this document are those

of the authors and should not be interpreted as representing the official policies, either expressed or

implied, of the Army Research Laboratory of the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation

herein.

10. References
1. N. Bigdely-Shamlo, J. Cockfield, S. Makeig, T. Rognon, C. LaValle, M. Miyakoshi, and K. Robbins

(2016). Hierarchical Event Descriptors (HED): Semi-structured tagging for real-world events in large-

scale EEG, Frontiers in Neuroinformatics doi: 10.3389/fninf.2016.00042.

2. N. Bigdely-Shamlo, S. Makeig, and K. Robbins (2016). Preparing laboratory and real-world EEG data for

large-scale analysis: A containerized approach, Frontiers in Neuroinformatics 1 08 March 2016 |

http://dx.doi.org/10.3389/fninf.2016.00007. PMID: 27014048, PMCID: PMC4782059.

3. HEDTools repository: https://github.com/VisLab/HEDTools.

4. HED tags main site: http://www.hedtags.org/.

5. HED tags schema: https://github.com/BigEEGConsortium/HED/wiki/HED-Schema.

http://visual.cs.utsa.edu/software/hedtools/hedtools-1.0.0/hedtools-unit-test-data/view
http://visual.cs.utsa.edu/software/hedtools/hedtools-1.0.0/hedtools-examples-data/view
http://dx.doi.org/10.3389/fninf.2016.00007
https://github.com/VisLab/HEDTools
http://www.hedtags.org/
https://github.com/BigEEGConsortium/HED/wiki/HED-Schema

	Table of Figures
	Table of Tables
	1. Getting Started with HEDTools
	1.1 Overview
	1.2 Requirements
	1.3 Installation
	1.3.1 Running as a standalone application
	1.3.2 Running with .set data file types
	1.3.3 Running as a plugin to EEGLAB

	2. Annotating Data
	2.1 Tagging a single dataset
	Figure 1. Tagging the current dataset from the EEGLAB Edit Menu.
	Figure 2. pop_tageeg menu.
	Figure 5. Adding a new tag to the HED.
	Figure 6. Specifying HED version.
	Figure 7. Saving the HED.
	Figure 8. Saving the dataset tags.
	Figure 9. Specifying a fieldMap description.
	Figure 10. Saving a new dataset.
	Table 1. A summary of arguments for pop_tageeg.

	2.2 Tagging a directory of datasets
	Figure 11. Tagging a directory of datasets from the EEGLAB File Menu.
	Figure 12. pop_tagdir menu.
	Figure 13. Save multiple datasets.
	Table 2. A summary of arguments for pop_tagdir.

	2.3 Tagging an EEGLAB study
	Figure 14. Tagging a study and its associated datasets from the EEGLAB File Menu.
	Figure 15. pop_tagstudy menu.
	Table 3. A summary of arguments for pop_tagstudy.

	3. Validating Data
	3.1 What the validation checks for
	3.2 Validating a single dataset
	Figure 16. Validating the current dataset from the EEGLAB Edit Menu.
	Figure 17. pop_validateeeg menu.
	Table 4. A summary of arguments for pop_validateeeg.

	3.3 Validating a directory of datasets
	Figure 18. Validate a directory of datasets from the EEGLAB File Menu.
	Figure 19. pop_validatedir menu.
	Table 5. A summary of arguments for pop_validatedir.

	3.4 Validating an EEGLAB study
	Figure 20. Validate an EEGLAB study from the EEGLAB File Menu.
	Figure 21. pop_validatestudy menu.
	Table 6. A summary of arguments for pop_validatestudy.

	4. Extracting data epochs by HED tags
	Figure 22. Extracting data epochs by tags from the EEGLAB Edit Menu.
	Figure 23. pop_epochhed menu.
	Figure 24. pop_epochhed search bar.
	Table 7. A summary of arguments for pop_epochhed.

	5. Data Formats
	5.1 XML tag hierarchy (HED)
	5.2 Tags are path strings
	5.3 Field and tag map representations as a MATLAB structure
	5.4 How tags are stored in a dataset
	5.5 The fieldMap object
	Table 8. A summary of arguments for fieldMap constructor.
	Table 9. A summary of the public methods of the fieldMap class.
	Table 10. A summary of the public static methods of the fieldMap class.

	5.6 The tagMap object
	Table 11. A summary of arguments for tagMap constructor.
	Table 12. A summary of the public methods of the tagMap class.

	5.7 The tagList object
	Table 14. A summary of arguments for tagList constructor.
	Table 15. A summary of the public methods of the tagList class.
	Table 16. A summary of the public static methods of the tagList class.

	6. Saving tags in the dataset
	Table 17. A summary of arguments the writetags function.

	7. Running the regression tests and examples
	8. Status and availability
	9. Acknowledgments
	10. References

