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SECTION ONE 

Supplementary Background Points 

Note that while eye blinks, eye movements, and muscle activity show stereotypical 

characteristics (making them reasonably easy to identify) small amplitude examples of these 

artifacts can be more difficult to distinguish from ongoing EEG activity, and the full extent of 

their influence is difficult to know [1-3]. Additionally, non-stationary electrooculogram (EOG) 

artifacts have been suggested to be not fully addressed by ICA, which does not include 

temporal information in its modelling [4]. In contrast, wavelet ICA (wICA) has the advantage 

of not requiring artifacts to be stationary [5]. 

 

As mentioned in the main text, the multi-channel Weiner filter (MWF) approach performs well 

at reducing temporary artifacts that can be identified in limited time windows, such as muscle 

activity, eye movement / blinks, and electrode drift. After cleaning with the MWF, the data 

primarily contains only smaller artifacts and most of the brain activity is preserved [6], 

allowing for optimal application of the ICA algorithm. The use of wICA instead of the typical 

approach of subtracting independent components means that reducing artifact components 

with wICA has a reduced chance of removing probable brain activity as well as the artifact.  

 

Each step in our cleaning pipeline allows for the selection of multiple parameters, which can 

affect cleaning outcomes. During the design stage of our pipeline, we varied the selection of 

each of the parameters across the spectrum of potential values via considerable informal 

testing, to narrow down to the optimal outcomes in terms of metrics showing artifact 

reduction, the signal of identified non-artifact periods being as minimally altered as possible, 

and the variance explained by the experimental design being optimized across multiple large 

datasets and experimental designs. As such, we recommend use of the default parameters, 

but if future research demonstrates other parameters are superior, it is simple to adjust the 

selected parameters.  
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SECTION TWO 

RELAX pipeline methods 

Filtering 

Firstly, data were loaded from a “.set” file in EEGLAB, and the electrode locations were 
specified (these are set by the user). Unused electrodes were deleted (these are also set by 
the user). Following the deletion of unused electrodes, a record was taken of the labels of 
the included electrodes, to enable interpolation of bad electrodes at a later stage. Data were 
2nd order butterworth notch filtered from 47-53Hz (to address 50Hz line noise), and 4th 
order bandpass filtered from 0.25Hz to 80Hz (both are adjustable by the user).  

Bad Electrode Rejection  

Since both MWF and ICA are adversely affected by extreme outlying data, an initial step was 
undertaken to exclude extreme data, firstly by electrode, then by time period. For the bad 
electrode rejection step, first, PREP’s “findNoisyChannels“ function was used in an initial 

approach to remove bad electrodes [7].  
 
A secondary bad electrode rejection was then implemented, which involved first epoching 
the data into 1 second epochs with a 500ms overlap. Additionally, eye blinks were marked in 
the continuous data through a multi-step process (detailed below). Epochs including blinks 
were excluded from the initial epoching and collected as a separate list of epochs for 1 
second around the blink maximum (this ensured blinks were not excluded as extreme 
outliers). To detect blinks, firstly data were bandpass filtered using a fourth order butterworth 
filter from 1-25Hz. Then we averaged the pre-specified blink affected electrodes ('FP1'; 
'FPZ'; 'FP2'; 'AF3'; 'AF4'; 'F3'; 'F1'; 'FZ'; 'F2'; 'F4'). Blinks were marked as the maximum point 
within each time period that exceeded a value of the upper quartile + interquartile range 
(IQR) * 3 when all voltages were included.  
 
A matrix of electrodes x epochs was created for: i) the total voltage shift within the epoch, ii) 
for the maximum absolute voltage, (with each of these performed separately for both the 
typical epochs and the blink affected epochs) and iii) for the log-power log-frequency slope 
for each electrode. Cells in this electrode x epoch matrix that exceed 20 median absolute 
deviations (MAD) from the median in max - min voltage shift within the epoch, or 3 MAD 
from the median in max - min voltage within the epoch from the epochs contaminated by 
blinks were marked as extreme outliers. The log-power log-frequency slopes were computed 
for each epoch using fieldtrip’s ft_freqanalysis (set to mtmfft with hanning tapers for a 
frequency range of 1-75Hz with netpow2 padding for all time periods with a 0.05s resolution) 
then MATLAB’s polyfit function. Log-power log-frequency slopes steeper than -4 were 
marked as extreme outliers (this measure indicated epochs showing no brain activity, only 
voltage drift). Epochs with absolute voltages of more than 500 microvolts, or less than 2 
microvolts in max - min (suggesting a dead electrode) were also marked as extreme outliers. 
EEGLAB’s pop_rejkurt function was used to detect kurtosis values > 8, and 

pop_jointprob function was used to detect improbable voltage distributions >8 (with the 

same threshold for both single electrodes and all electrodes), and epochs with values 
exceeding these thresholds were marked as extreme outliers.  
 
Electrodes that showed extreme outlier epochs affecting more than 5% of the data were 
removed. However, we imposed a limit of rejecting 20% or fewer of the total number of 
electrodes. If data still contained more than 80% of the original electrodes after PREP’s 
noisy electrode rejection, then electrodes showing >5% of epochs contaminated by these 
extreme artifacts were rejected. If more electrodes than 20% were contaminated by extreme 
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artifacts in this manner, electrodes were ranked according to the number of epochs showing 
values that exceed the extreme thresholds, and the 20% of electrodes that showed the 
highest number of epochs marked as extreme outliers for the specific file were rejected.  
 

Next, within the remaining electrodes, a log-power log-frequency slope was computed from 7 

to 75Hz. Slopes >-0.59 are suggestive of muscle activity, as slopes from epochs within 

typical EEG recordings show values above this threshold, while almost no epochs within 

EEG recordings taken from people who have had their muscles pharmacologically paralysed 

show slopes above this threshold [8]. As such, using this threshold obtained from EEG 

recordings taken from individuals with paralysed scalps means that very little of the 

distribution of EMG free EEG activity would be marked as containing muscle activity. If fewer 

than 20% of electrodes had been rejected for being extreme outliers at this stage, electrodes 

that show more than 5% of epochs contaminated by muscle (log-power log-frequency slopes 

>-0.59) were marked for rejection. As with the extreme outlier detection steps, if the muscle 

activity electrode rejection step recommended electrode rejections such that more than 20% 

of total electrodes would end up being rejected, the electrodes were automatically ranked by 

the proportion of epochs showing muscle activity above the threshold, and only the most 

severely affected electrodes were rejected, within the limit of a total of 20% of all electrodes 

being rejected (including all three electrode rejection steps: PREP’s “findNoisyChannels“ 

function, the extreme period rejection methods, and the muscle activity rejection method). 

Extreme Outlier Marking 

After these bad electrode rejection steps, the extreme outlier rejection approaches were re-

computed (without the influence of bad electrodes, and not including the muscle activity 

detection method) and these extreme outlier detections were used to mark extreme epochs 

in the EEG data, using the same criteria as explained above (muscle activity was not marked 

at this stage, and was left to be cleaned by the MWF and wICA steps). The time periods for 

each of these extreme outlier epoch periods were marked with NaNs in the MWF cleaning 

template, which is used by MWF to identify artifact and clean periods, as well as periods to 

ignore in its model (marked with NaNs) (the MWF template is described further below). 

These extreme outlier periods were also rejected from the data completely prior to the ICA 

computation step (explained below). 

 
After the extreme outlier rejection steps, three steps of MWF cleaning were implemented to 

address different artifacts, firstly muscle activity, secondly blinks, and thirdly, horizontal eye 

movements and single electrode drift.  

MWF1 – Muscle Activity 

Firstly, a 1D matrix that represented a template of artifact periods (marked as 1), clean 

periods (marked as 0), and extreme periods (for the MWF cleaning to ignore, marked as 

NaN) was constructed, which matched the length of the continuous data file. NaNs were also 

applied into the first and last 5.5 seconds of the data, as these periods often contained 

artifacts, or were affected by filtering edge effects, so were ignored in the MWF templates 

and removed from the data prior to the wICA. The MWF template was constructed using the 

following approach: 
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To begin with, for each electrode, epochs that were affected by muscle activity were 
detected (defined by log-power log-frequency slopes >-0.59). This was achieved by 
performing a fast Fourier transform (ft_freqanalysis using the mtmfft setting, with a hanning 
taper) on each 1 second epoch, then computing the log-power log-frequency slope (using 
the MATLAB function “polyfit”) of data from 7 to 75Hz for each epoch separately [8]. In 

this electrode x epoch matrix, NaNs replaced all values <-0.59 (which reflected slopes not 
indicative of muscle activity, so these values were ignored by the algorithm), and the -0.59 
threshold was subtracted from all remaining values (so all values are made positive, with 0 
as the putative threshold value). The values from these computations for each electrode 
were summed within each epoch, to provide a value reflecting the amount that each epoch 
showed muscle activity exceeding the -0.59 threshold, cumulated across channels. From 
these values, to increase the resolution of the artifact template, we took advantage of the 
500ms overlap included in each epoch, which meant that the first half of the second epoch 
overlapped with the second half of the first epoch. Odd and even numbered epochs from the 
matrix of epoch x electrode slope data were separated. Then a template of data with the 
same duration as the continuous data was constructed from the single log-power log-
frequency slope values from each individual epoch for the odd and even numbered epochs 
separately. This was done by taking the single value by which each epoch exceeded the 
slope threshold and extrapolating this value across the 1000ms of timepoints that the epoch 
represented in the length of the continuous data (so epoch 1 lasted 1-1000ms, epoch 2 
lasted 500-1500ms, epoch 3 lasted 1000-2000ms etc.). The last 500ms of the matrix from 
the odd epochs, and the first 500ms of the matrix from the even epochs were marked as 
NaN, as no values were available in these periods from the odd and even epochs 
respectively. These two 1D matrices (which were of the same length as the continuous data 
and containing muscle slopes for the odd and even numbered epochs) were then averaged, 
creating a full-length mask of the cumulative amount by which each epoch exceeded the 
slope threshold, with 500ms resolution of the cumulative slope exceeding values within each 
time period (since the epochs overlapped by 500ms). The periods marked as extreme 
outliers in the previous section were marked as NaNs in this template. After this process, all 
time periods where an electrode showed a muscle slope that exceeded the -0.59 threshold 
were marked as part of the artifact template for cleaning by the first MWF step. If more than 
50% of the total time-period was marked as artifact, then only the 50% most severely 
affected time periods were marked as artifact, which was calculated from this 1D continuous 
data matrix. 
 

Our initial testing indicated that very brief artifact or clean template periods impaired the 

ability of MWF to clean the data. To ensure clean and artifact masked periods were of 

sufficient length, artifact periods shorter than 1200ms were padded with artifact marks (1’s) 

equally on each side to reach 1200ms in length. It has been recommended that it is better to 

be liberal in marking around artifacts, as the MWF cleaning is more effective when 

potentially clean periods are included as artifacts compared to when artifacts are marked as 

clean periods [6]. Clean periods that lasted less than 1200ms and had artifact markings on 

each side were also marked as artifacts. Finally, any periods remaining that were shorter 

than 1200ms after these two steps were marked with NaNs so they would not be included as 

artifacts or clean periods in the MWF template (but would still be cleaned by the MWF 

cleaning). 

 

To ensure the MWF approach had sufficient artifact example data to work with, we required 

a minimum of 5% of the data to be marked as artifact before MWF cleaning was applied. If 

less than 5% of the data was marked as artifact, the MWF cleaning step was ignored, and 

we left the artifacts for the later wICA cleaning step (note that if the wICA was not effective at 

cleaning these periods, that are typically excluded in an epoch rejection step). If more than 
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5% of the data was marked as artifact, the clean and artifact template was then submitted to 

the MWF cleaning, with a delay period set to 8. This delay period was a positive and 

negative time lag for 8 samples from each timepoint, which turns the MWF into a finite 

impulse response filter, allowing the MWF to clean the data based on both spatial and 

temporal information. The RELAX script was set to detect generalised eigenvector 

deficiency. This sometimes occurs when MWF cleaning is applied, particularly for longer 

delay periods when data has been filtered (which creates a degree of temporal dependence 

in the EEG data, reducing the rank of the data obtained when covariance is assessed across 

timepoints). Generalised eigenvector deficiency can impair the ability of the MWF to clean 

the data, so the reduction in delay period then repetition of the MWF cleaning ensures this 

does not lead to inadequate data cleaning. If generalised eigenvector deficiencies were 

detected, the algorithm went back to the data prior to the initial MWF application, reduced 

the delay period by a value of 1, then ran the MWF cleaning again. This approach was 

repeated up to 3 times, resulting in a minimum delay period of 5. The algorithm records the 

filename of all files that still show generalised eigenvector deficiency at the minimum delay 

period of 5. This enables the user to inspect these files and determine the reason for the 

issue or exclude the file as bad data if visual inspection indicates no usable EEG activity. 

None of the files included in our analyses showed this issue. Note also that if low frequency 

data is removed by using robust detrending [9] instead of filtering, no temporal dependence 

is created, and higher MWF delay periods can be used. However, the optimal parameter 

settings for robust detrending are not yet established, can vary considerably, and may be 

data dependent. As such, we have not implemented the method in our pipeline, but this is 

something we intend to explore further. 

MWF2 – Blink Activity 

Secondly, a blink artifact mask was created by marking the 800ms surrounding all blink 

maximums as artifacts (recall that the continuous data were marked for blink maximums in 

the initial extreme outlier detection step, so these marks were used). Similar to the approach 

used for the muscle cleaning step, we ensured a minimum clean period between blinks of 

800ms and marked the clean periods that did not last this length as artifacts. This is because 

blinks are often brief, and unlikely to have lagging undetected edge effects, in contrast to the 

muscle detection, where muscle activity may extend for brief periods outside of the 1 second 

epochs used, yet not be detected due to the 1 second epoch used to calculate the log-power 

log-frequency slopes. Similar to the muscle artifact template, the NaNs from the extreme 

artifact step were added to the blink artifact template. As per the muscle activity cleaning, the 

MWF template was used to clean the data with a delay period of 8 (which was reduced up to 

three times in the case of generalised eigenvector deficiency). 

 

If less than 5% of data was marked as artifact in the blink cleaning step, the second MWF 

cleaning step was not performed, and instead the blink artifact mask was added to the third 

MWF cleaning round, which cleaned horizontal eye movements and drift. Blinks are 

characteristically more similar to horizontal eye movement and drift than muscle activity, so 

blinks could be included with the third MWF cleaning step, while muscle activity was not 

included as our initial testing suggested doing so decreased the efficacy of the third MWF 

cleaning step. The addition of muscle templates that were not included in the initial MWF 

cleaning step because less than <5% was marked as artifact was not implemented for 

muscle activity, as we deemed it to be acceptable to miss even two rounds of MWF 
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cleaning, since wICA-ICLabel cleaning alone also cleaned the data reasonably well 

(described later). As such, the RELAX pipeline has a useful redundancy in the cleaning 

process, with wICA cleaning remaining artifacts that MWF cleaning might have missed, while 

also not reducing the signal if no artifacts are detected. 

MWF3 – Horizontal Eye Movements and Single Electrode Drift 

Third, horizontal eye movements and single electrode drift were identified and cleaned with 

the MWF. In order to identify single electrode drift that was not resolved by initial filtering, 

data were low pass filtered using a fourth order acausal Butterworth filter at 5Hz (to ensure 

high power alpha oscillations were not inadvertently marked as drift) and re-referenced using 

PREP’s robust average re-referencing approach, which was only used for the detection of 

single electrode drift and construction of the artifact template at this stage, and not applied to 

the data prior to the 3rd MWF cleaning step. Epochs showing an amplitude at any electrode 

that was more than 10MAD from the median of all electrodes after this average re-

referencing were deemed to be affected by drift and marked as artifact periods (this was 

adapted from [10] who used SD instead of MAD to set the threshold). Periods where the pre-

specified horizontal electrooculogram (HEOG) affected lateral electrodes (defined shortly) 

showed more than 2MAD from the median of their typical amplitude, with opposite voltage 

movement polarity on the opposite sides of the head (reflecting horizontal eye movements) 

were assumed to reflect horizontal eye movements and were also marked as artifact periods 

[11]. The HEOG affected electrode can be set by the user, with an order of preference of 

electrode to be used by the algorithm specified by the user. A list of electrodes was used 

because the lateral electrodes that are often affected by HEOG are often also excluded as 

bad due to their proximity to temporal muscles, which generate large artifacts in these 

electrodes. In the current study, the electrodes were listed in order as: "AF7", "F7", "FT7", 

"F5", "T7", "FC5", "C5", "TP7", "AF3" for the left side, and "AF8", "F8","FT8","F6","T8", 

"FC6", "C6", "TP8", "AF4" for right side electrodes. As with the muscle cleaning template, 

artifact periods were padded if shorter than 1200ms. Clean periods that lasted less than 

1200ms and had artifact markings on each side were also marked as artifacts. Finally, any 

periods remaining that were shorter than 1200ms after these two steps were marked with 

NaNs (so they would not be included as artifacts or clean periods in the MWF template). 

Similar to the previous two MWF steps, the NaNs from the extreme artifact step were added 

to the horizontal eye movement and drift artifact template. Data were then cleaned with the 

MWF algorithm using this artifact and clean period template (and a delay period of 8, 

reduced 1 value at a time if necessary due to generalised eigenvector deficiency to a 

minimum of 5 as per the preceding MWF cleaning steps). 

wICA Applied to Artifact Components Identified by ICLabel 

After the data had been cleaned by the three sequential MWF steps, data were first average 

re-referenced using PREP’s robust re-referencing, which avoided asymmetry as a result of 

rejected electrodes affecting the average re-referencing, but still excluded the previously 

rejected electrodes from the data [7]. This approach also added the online reference back 

into the data prior to average re-referencing which prevents rank issues, then removed that 

online reference from the data [7]. As mentioned earlier, the periods that were marked as 

extreme outliers in the initial cleaning steps were rejected at this stage, along with the first 

and last 5.5 seconds of the data. ICA was then computed using one of three ICA algorithms, 

which each use different approaches to separating the scalp level signal into its putative 
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underlying source signals, and have shown differences in cleaning outcomes [12]. We tested 

the application of fastICA (with the deflation setting implemented to avoid non-convergence 

issues), cudaICA, or AMICA (all three methods were used, cudaICA results are reported in 

the main manuscript, and all results including fastICA and AMICA are reported in these 

supplementary materials). ICLabel was used to identify artifactual components (defined as 

components that ICLabel marked as more likely to be any of the artifact categories than to 

be produced by the brain). These artifactual components were then reduced with wavelet 

enhanced ICA (wICA) with the default settings (mult = 1, L=5, wave=’coif5’) [5]. The non-

artifactual components were left as they were, with no modification by wICA. Finally, after 

the wICA reduction of artifactual components, the continuous data was reconstructed back 

into the scalp space.  

 

The above steps left cleaned, continuous data, which could be epoched for different types of 
analyses. Some of our metrics required continuous data, so for these metrics we used this 
continuous data (for example, SER and ARR values, and the proportion and strength above 
threshold of 1 second epochs across the whole data that showed log-power log-frequency 
slopes reflective of muscle activity). Other metrics required epoched data (the total 
proportion of data rejected by cleaning, the variance explained by the experimental 
manipulation). In order to obtain the epoched data, we used a typical approach of 
interpolating the rejected electrodes back into the data (using EEGLAB’s “pop_interp” 

function with a spherical approach), and rejected epochs based on max-min voltage values 
>60 microvolts, or kurtosis / improbable data for all electrodes >3 or any electrode >5. 

Parameter Selection Notes 

The 2nd order Butterworth notch filtered from 47-53Hz, and 4th order bandpass filtered from 

0.25Hz to 80Hz filter settings can be adjusted by the user. We found that EEGLAB’s default 

filter seemed incompatible with the MWF cleaning (leading to common eigenvector 

deficiencies and cleaning artifacts being introduced into the data), so we do not recommend 

the use of EEGLAB’s default filter. It may be that a more sophisticated filtering approach 

such as robust detrending or the trial masked robust detrending could be superior 

(particularly as these methods would avoid eigenvector deficiencies as they do not create 

any temporal dependencies) [9, 13]. Unfortunately, our preliminary tests indicated robust 

detrending with 3 second windows and an order of 5 produced worse artifact cleaning and 

less variance explained by experimental manipulations than high pass filtering at 0.25Hz, 

even when we took advantage of the lack of temporal dependencies and used higher delay 

periods for the MWF cleaning. As such, we have not applied robust detrending in the current 

version of RELAX. 

 

With regards to the selection of a log-power log-frequency slope threshold used to detect 

muscle activity, the -0.59 threshold performed best in our piloting of the pipeline. This -0.59 

slope threshold reflects the point where the histogram of slopes from the paralysed scalp 

EEG recordings crosses the histogram of non-paralysed scalp recordings, such that only a 

minimum of non-muscle affected epochs will be included in the muscle cleaning template, 

while all muscle contaminated epochs would be included in the cleaning template [8]. 

However, the value can be adjusted to be more or less stringent. A -0.72 threshold would 

only accept log-power log-frequency slopes similar to the EEG data obtained from 

individuals who have their scalp muscles pharmacologically paralysed (and reject slopes 

outside of this paralysed scalp range), while -0.31 would avoid marking any data showing a 
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similar slope to the paralysed dataset as muscle activity [8]. Also, note that during the 

construction of RELAX we informally but extensively tested whether BLINKER [14] would be 

an effective objective tool for detecting eye blinks in our blink cleaning step of the MWF. 

Unfortunately, we found that BLINKER missed a considerable proportion of blinks, or 

alternatively sometimes marked large alpha oscillations as blinks. As such, we found that the 

IQR method to detect blinks performed better, so implemented the IQR method in our 

pipeline. 

 

In addition to the cleaning method explained above, we have provided a quick visual check 

of potential outlying data across all participants cleaned by RELAX. The code to produce the 

OutlierParticipantsToManuallyCheck values after the epoch rejection script takes the 

maximum value minus the minimum value from each epoch within each participant, then 

calculates the median amount of voltage shift within epochs for each participant at each 

electrode. This distribution is usually skewed (with some participants showing very large 

values due to large alpha activity, but most participants showing a smaller value), so the 

data is log transformed. The upper threshold for detecting outliers was set as ‘the 75% point 

in the distribution + 2 * IQR’ and the lower threshold was set as ‘the 25% point in the 

distribution - 2 * IQR’. A line graph of these values for each electrode and each participant is 

output after the epoching script to prompt users to visually inspect participant data that is 

specified as an outlier. We found the approach to provide a quick and simple prompt for the 

user to check whether outlying participant data might be just irretrievably corrupted (the code 

was written because one of the authors had one participant file with no neural activity in their 

data due to technical faults in the EEG session, but this issue was not initially detected by 

the cleaning pipeline, and the outlier check effectively highlighted this file for further 

inspection).  

 

Lastly, note that the canonical correlation analysis (CCA) method described for the 

comparison methods in the main text can be applied after MWF or wICA, but not after ICA 

subtraction, as CCA requires full rank data, and ICA subtraction reduces the rank of the 

data. 
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SECTION THREE 

Comparison Pipeline Description 

For the primary analyses (of the combined Sternberg and resting data), cudaICA was the 

ICA method used within the comparison pipelines, and for the other datasets (reported only 

in these supplementary materials), fastICA was used (as these data were processed on 

Apple Mac computers without cudaICA compatible graphics cards). 

 

The first comparison pipeline we included was the Harvard Automated Processing Pipeline 

for EEG (HAPPE [15]). This pipeline filters the data with a 1Hz high pass filter and uses 

CleanLine to remove 50 or 60Hz line noise [16]. It then uses a joint probability of the average 

log-power from 1 to 125 Hz to reject bad electrodes (with probabilities of >3SD from the 

mean), which is performed twice. wICA is then applied to all components. This wICA was 

proposed by the authors to reduce initial high amplitude artifacts, prior to another ICA run 

being conducted, upon which the Multiple Artifact Rejection Algorithm (MARA) is used to 

identify and reject remaining artifacts [17]. After both the wICA and ICA cleaning have been 

applied, bad electrodes are interpolated back into the dataset, and the data are re-

referenced to the average reference. A full description of the algorithm can be found in [15].  

 

The second comparison pipeline we included was the artifact subspace reconstruction 

(ASR) method [18], followed by ICA subtraction using ICLabel. ASR is an automatic 

approach similar to principal component analysis-based methods where components with 

large variance are rejected, but with an additional automatic identification of clean data to 

determine thresholds prior to this subtraction, followed by reconstruction of the original 

electrode space data. ASR is additionally non-stationary (i.e., it takes temporal information 

into account) in contrast to the stationary approach implemented with ICA. Further details of 

the ASR approach can be found in [18]. Since the ASR approach does not specify particular 

extreme outlier rejection steps prior to ASR cleaning, we applied our initial RELAX extreme 

outlying electrode and period rejection, prior to cleaning the data with ASR in order to 

maximise comparability. ASR also enables a number of parameter selections. Of particular 

importance is the “burst criterion”, which was set at SD = 20 as per the suggested optimum 

[18]. We set the “WindowCriterion” to 0.25, and the “WindowCriterionTolerances” to [-Inf 7] 

as per previous recommendations [18]. Additionally, we turned off the “BurstRejection” 

setting, as extreme outliers had already been rejected, and during initial piloting we found 

that leaving this parameter on lead to a very high number of data periods rejected following 

the ASR. Similarly, we turned off the “FlatlineCriterion”, “ChannelCriterion”, 

“LineNoiseCriterion”, and “HighPass” criterion, as all these had already been addressed by 

our earlier processing steps. After the ASR was implemented, ICA was computed, and 

components were rejected with ICLabel to maximize comparability with the RELAX 

pipelines.  

 

The third comparison approach we used is perhaps one of the most commonly implemented: 

simply rejecting outlying data first (as per the approach used in the initial steps of our RELAX 

pipeline), computing ICA, and subtracting the components identified as artifacts, then 

reconstructing the electrode space data [19]. We implemented this using ICLabel to identify 

artifactual components [19]. We refer to this pipeline throughout as ICA_subtract.  

 



13 
 

The fourth comparison method was identical to ICA_subtract, but instead of simple ICA 

subtraction on artifact components, it applied the wICA approach to all components (as per 

[5]). We refer to this pipeline throughout as wICA_all.  

 

A similar approach was used in our fifth comparison pipeline, but instead of applying wICA to 

all components, wICA was applied only to components identified as artifacts by ICLabel. 

Although a similar approach of applying wICA to only artifact components has been 

previously implemented [20, 21], as far as we are aware, this is the first time it has been 

tested by selecting components with ICLabel. We refer to this pipeline throughout as 

wICA_ICLabel.  

 

Our sixth comparison pipeline implemented only a sequential MWF cleaning identical to the 

MWF cleaning steps in our RELAX pipeline but did not apply any additional cleaning after 

the MWF stage (no wICA unlike the RELAX methods). This is similar to the approach used 

by [6], with the extension of applying their suggested sequential MWF cleaning to clean 

multiple different categories of artifacts. We refer to this pipeline throughout as MWF_only. 

 

Our seventh pipeline used the sequential MWF cleaned data, but instead of applying wICA 

to this data as per the RELAX methods, it used the extended canonical correlation analysis 

(CCA) to further clean any remaining muscle artifacts [22]. CCA separates the EEG data into 

components that are not correlated with each other but are maximally autocorrelated at a lag 

of one datapoint. Muscle activity is characterised by a similar pattern to white noise, with a 

low autocorrelation (in contrast to neural activity, which shows voltage fluctuations at a 

slower rate with higher autocorrelation). As such, CCA is an effective method for identifying 

and removing muscle activity from EEG and has been suggested to be superior to ICA 

methods [23, 24]. Recently CCA has been improved through the use of the log-power log-

frequency slope thresholds identified by the comparison of paralysed and non-paralysed 

scalp EEG recordings to detect probable muscle contaminated components for removal [22]. 

This approach removes components with a one timepoint-lag autocorrelation of less than 

0.19 and log-power log-frequency slopes of more than -0.48 [22]. We use this extended CCA 

here and refer to this method throughout as MWF_CCA. 

 

Similarly, our eighth comparison pipeline was identical to MWF_wICA, except that muscle 

components were not cleaned in the wICA cleaning step. Instead, CCA was implemented 

after the wICA step in order to address any remaining muscle components. This method was 

referred to throughout as MWF_wICA_CCA. 

 

Lastly, we tested a few modifications of our RELAX pipeline. These included using different 

ICA algorithms, namely, infomax [25] (MWF_wICA_infomax), fastica [26] 

(MWF_wICA_fastICA), or AMICA [27] (MWF_wICA_AMICA), subtracting artifactual ICA 

components instead of using wICA (MWF_ICA_subtract), and low pass filtering at 45Hz prior 

to implementation of the ICA algorithm (MWF_wICA_45Hz) (which has been suggested to 

improve ICA decomposition [28]). 

Cleaning Quality Evaluation Metrics 

In order to ensure we assessed the different cleaning pipelines fully for effectiveness at 

cleaning both the range of potential artifacts, and the ability for the pipelines to not over-
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clean the data, we tested the pipelines across six different types of metrics. These metrics 

have all been used by previous research. 

The Signal-to-Error Ratio 

The Signal-to-Error Ratio (SER) and Artifact-to-Residue Ratio (ARR) are complimentary 

metrics that were used to assess any potential distortion of the clean EEG periods by the 

cleaning pipelines (SER), and the amount of artifact that was reduced by the cleaning 

approach (ARR). These measures have been used by previous research to compare 

cleaning effectiveness across MWF and ICA approaches [6, 29, 30].  

 

The SER was calculated from segments of the data marked as free of artifacts by the 

automatic artifact detection approaches implemented in the RELAX pipeline. The SER is 

calculated on each electrode (i) first by obtaining the expected value operator (which is 

analogous to the weighted average, where more probable values are given stronger weights 

when computing the average) of the square of the signal in the “raw” (not yet cleaned) data 

across all periods marked as clean (𝑦i), then dividing this value by the expected value 

operator of the square of the signal that was removed by the cleaning pipeline across the 

periods marked as clean, then multiplying this value by the log10 of 10 (𝑑̂i) (see Equation 

S1) [6, 29, 30]. Note that the “raw” data used in the calculation of the SER was obtained 

after data had been filtered and extreme outlying electrodes and periods had been rejected 

(and before any of the MWF cleaning steps were applied). In order to obtain a single 

measure for each cleaned dataset, the SER from each electrode is combined by weighted 

averaging over all electrodes (Equation S2) [6, 29, 30], with the weighting performed by the 

proportion of artifact power an electrode produces relative to the artifact power from all other 

electrodes (𝑝𝑖) (estimated by subtracting the power in the clean segments from the power in 

the artifact segments, Equation S3) [6, 29, 30]. This has the effect that electrodes containing 

the most artifact contribute the most to the final SER value for that dataset. This approach 

ensures SER values appropriately reflect the contribution of noisier electrodes and protects 

the measure against high SER values being produced by mostly clean data with a single 

electrode which is very noisy in artifact periods and inadvertently distorted by the cleaning 

process in the clean periods. 

 

Equation S1: 

 

𝑆𝐸𝑅𝑖 = 10𝑙𝑜𝑔10  
𝐸{(𝑦𝑖)2}𝐻𝑜

𝐸{(𝑑̂𝑖)
2

}
 (𝑓𝑜𝑟 𝑐𝑙𝑒𝑎𝑛 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠) 

 

Equation S2: 

 

𝑆𝐸𝑅 =  ∑

𝑀

𝑖=1

𝑝𝑖  𝑆𝐸𝑅𝑖 

 

Equation S3: 

 

𝑝𝑖 =  
𝐸{(𝑦𝑖)2} (𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠) −  𝐸{(𝑦𝑖)2} (𝑐𝑙𝑒𝑎𝑛 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠)

∑𝑀
𝑖=1 (𝐸{(𝑦𝑖)2} (𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠) −  𝐸{(𝑦𝑖)2} (𝑐𝑙𝑒𝑎𝑛 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠))
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Since the EEG periods that are marked as clean by the automated approach do not include 

blinks, muscle activity, horizontal eye movements and drift (nor do they include extreme 

artifacts, which were marked as NaNs in the clean/artifact template) these segments should 

be minimally modified by the cleaning pipelines. As such, high SER values are expected if 

cleaning has left the non-artifact periods undistorted, so high values indicate good 

performance [6, 29, 30].  

The Artifact-to-Residue Ratio  

The ARR was calculated from the periods of the data marked as artifact by the automatic 

artifact detection approaches implemented in the RELAX pipeline. As with the SER, the 

calculation of this measure was performed first on individual electrodes by obtaining the 

expected value operator of the square of the removed artifact (𝑑𝑖), divided by the expected 

value of the square of the total signal from the artifact periods (𝑦̂𝑖) from the “raw” (not 

cleaned) data (𝑦𝑖) (when ARR is calculated on real data where the true artifact signal is not 

known), then multiplying this total by the log10 of 10 (Equation S4) [6, 29, 30]. To obtain a 

single value for each dataset, the individual electrode values were then combined via 

weighting in the same manner as the SER (weighting via 𝑝𝑖). As such, the ARR provides 

large values when more artifact is removed relative to the original data (as denominator of 

the equation: the “raw” data minus the artifact: [𝑦𝑖 −  𝑑̂𝑖] will be as small as possible) and is 

valid when artifacts are high in amplitude relative to the clean data (as per the artifacts 

selected by the MWF artifact template in the current study, which are mostly based on 

outlying amplitudes or artifacts that are typically large in amplitude, and are comprised of eye 

movements, muscle activity, and drift). Note that the “raw” data used in the calculation of the 

ARR was obtained after data had been filtered and extreme outlying electrodes and periods 

had been rejected (and before any of the MWF cleaning steps were applied). 

 

Equation S4: 

 

𝐴𝑅𝑅𝑖 = 10𝑙𝑜𝑔10  
𝐸{(𝑑𝑖)2}

𝐸{(𝑦𝑖 −  𝑑̂𝑖)
2

}
 (𝑓𝑜𝑟 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠) 

 

The units for the SER and ARR measures are decibels (dB) and should be evaluated 

together - higher values for both simultaneously reflects successful cleaning, with high 

amounts of artifact power removed and clean periods undistorted. Low SER values and high 

ARR values are likely to indicate effective artifact removal but distortion of the clean signal, 

and low ARR values and high SER values are likely to indicate ineffective artifact removal [6, 

29, 30].  

 

It is worth noting that ICA approaches may detect and remove artifacts other than the most 

common artifacts captured by our MWF cleaning templates. As such, ICA approaches may 

seem to “distort” clean periods using the SER metric. As such, it is more appropriate to 

compare across pipelines that apply cleaning to all periods (such as those that implement 

ICA, ASR, or CCA), and perhaps not appropriate to compare those pipelines to the 

MWF_only approach (which does not detect artifacts in the clean periods at all). For this 

reason, we have used a number of metrics additional to the SER and ARR, in order to fully 

characterize artifact reduction (with the blink amplitude ratio, artifacts remaining showing 
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muscle activity, and variance explained by brain activity detected by ICLabel after cleaning) 

and preservation of signal (with the measures of variance explained by the experimental 

manipulation). 

 

Additionally, because the SER and ARR metrics are based on the variance in the clean and 

artifact periods, it is possible for the metrics to be biased by co-occurrence of low-powered 

brain signals during the artifact periods more commonly than the clean periods. At times the 

clean periods may have showed more alpha activity for example (and thus high variance), 

while the muscle affected periods show less alpha activity and only low powered muscle 

activity. In this case, sometimes the variance of the artifact periods may have been less than 

the variance of the clean periods, leading to very low ARR and very high SER values. In fact, 

because individual electrodes within this metric are scaled by the amount that the artifact 

period variance exceeds the clean period variance, with electrodes showing higher clean 

variance than artifact variance set to zero before the weighting based on amount of variance 

in each electrode (by dividing electrodes variance by the total of all electrodes), it is possible 

for all electrodes to be set to zero, and the SER and ARR to produce NaN values. As such, 

this metric is perhaps less ideal for evaluating files where only small amplitude muscle 

activity is present (but is well suited to evaluating blink activity or high-power muscle activity, 

which is almost always higher in amplitude than the non-blink/non-muscle periods). In order 

to address this issue, we have also used muscle activity artifact specific metrics (described 

in the following sections). 

The Blink Amplitude Ratio  

The third metric we used was the blink amplitude ratio (BAR) [31]. This metric provides a 

ratio of the absolute amplitude within periods marked as blinks to the periods on either side 

of the blink. When applied to cleaned data, the measure provides a good indication of 

whether the cleaning pipeline has effectively cleaned the blink (leading to values ~=1). 

Alternatively, the metric indicates if the blink has been under-cleaned (leading to values of 

>1), or the subtraction of a blink artifact component has included the influence of brain 

activity as well as blink related activity, so that the subtraction creates a negative deflection 

where the blink was previously (also leading to values >1 due to the absolute transform). 

The metric also indicates if blinks are over-cleaned so that both positive and negative signals 

have been reduced towards zero (leading to values <1). To compute BAR, we epoched data 

for 4 seconds centered on the blink maximum and excluded epochs that included more than 

one blink within this 4 second epoch (to prevent these additional blinks from influencing the 

baseline period). We baseline corrected the epochs by subtracting the average of the first 

500ms and last 500ms of the epoch. We then performed an absolute transform on all data in 

the epoch, then divided the mean of the 1 second centred on the blink maximum by the 

mean of the first 500ms and last 500ms of the epoch. For analysis, we examined both the 

frontal BAR (fBAR), which was the average BAR across electrodes FP1, FPz, FP2, AF3 and 

AF4, and the average BAR over all electrodes (allBAR).  

Log-frequency Log-power Slopes Indicating Muscle Activity 

Next, we examined the proportion of 1 second periods that contained any electrode with 

likely muscle activity after the cleaning pipeline, using the log-power log-frequency slope 

threshold of -0.59 [8]. We also examined the severity by which muscle activity slopes in 

these epochs exceeded the threshold by subtracting -0.59 from the log-power log-frequency 
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slope values from all epoch / electrode datapoints that exceeded this threshold, then 

averaging the remaining values. This provided a value reflecting the average amount the 

slopes exceeded the log-power log-frequency slope threshold of -0.59 in the epochs and 

electrodes that were not completely cleaned of muscle activity. It is worth noting that this 

measure could be a misleading metric of the impact of muscle related artifacts for a minority 

of cleaned files. The metric is calculated only from epochs that show muscle slopes above 

the threshold. As such, if only a single epoch is still affected, but that one epoch shows a 

very severe muscle artifact, the metric will provide a very high score for that file, but the 

impact of the artifact on experimental measures may be very low. However, across the large 

number of files included in our analysis, the effect of such outliers is minimal (particularly 

when using the robust statistics, which exclude these outliers when calculating statistical 

effects). 

ICA Variance Categorized by ICLabel 

We examined the amount of ICA variance attributed to components categorized as brain 

activity by ICLabel, computed by summing the amount of variance in the EEG data 

explained by components categorized as brain by ICLabel (after cudaICA, defined as 

components that were deemed by ICLabel to be more likely to be any artifact category than 

to be brain activity). Variance was calculated for each component individually using 

compvar (EEGLAB). An absolute transform was performed on the value of variance for 

each component to ensure all components provided a positive value for the amount of 

variance the component contributed to the data. This was done because compvar provides 

negative values if a component influences the data in the opposite direction to the overall 

trend. However, for our purposes we were only interested in the percentage of total variance 

of the data that was influenced by brain activity. As such, negative variance values were 

made positive with this absolute transform so that their influence would not reduce the sum 

of brain activity component variance or artifact activity component variance, and the total 

values from all components would be equivalent to 100%. Following this, the variance from 

all brain components was summed and the variance from all artifact components was 

summed. The summed variance for brain activity was divided by the sum of the total brain 

variance and total artifact variance and multiplied by 100 to obtain a percentage of the 

variance explained by brain activity (as determined by ICLabel). Note that methods that 

subtract components such as ICA_subtract and CCA were excluded from this measure, as 

component subtraction completely removed any variability from that artifactual component, 

so the contribution to variance from artifactual components would be 0 for these artifacts 

from these methods. Since this metric is only applicable for some pipelines, we only report 

the results of these analyses in the supplementary materials. It should be noted that infomax 

(with cudaICA) was used to compute the ICA artifact components for selection by ICLabel. 

Given the use of a common ICA method for this metric across all pipelines, this approach 

may have biased the metric towards the pipelines using infomax and against the fastICA / 

AMICA pipelines. 

Proportion of Epochs Rejected 

We examined the proportion of total epochs that were rejected by the cleaning pipeline, after 

both excluding outlying data in the initial pre-cleaning steps and rejecting outlying epochs in 

the final stage prior to data analysis. In order to achieve this, we epoched the resting data 

into 5 second intervals with a 3 second overlap (a typical approach to enable analysis of 
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resting state oscillatory power or connectivity, with the overlap providing a buffer against 

edge effects so that the middle 2 seconds of the epochs that are analysed provide valid 

estimates of oscillatory power or connectivity). For the Sternberg task, we epoched data for 

15.8 seconds around the onset of the probe stimuli (10.3 seconds prior to 5.5 seconds after), 

in alignment with typical analyses involving this task [32]. For the cleaned data epochs, we 

rejected outlying epochs using a typical approach with an automated algorithm rejected 

epochs that still showed potential artifacts, as defined by kurtosis or improbable data with a 

value higher than 5 SD from the mean at any electrode or 3 SD from the mean for all 

electrodes (using the relevant EEGLAB functions pop_rejkurt and pop_jointprob), or 

epochs showing values outside of a -60 to 60 microvolt window [32]. We obtained these 

epochs for both the raw data (which did not have any epochs removed) and the cleaned 

data (after data had been removed by the cleaning process, and by the rejection of 

remaining outlying epochs). We then calculated the proportion of cleaned epochs available 

for analysis against the total number of epochs that were present in the raw data.  

Variance explained by Experimental Manipulations 

Lastly, we examined the amount of variance explained by a number of different experimental 

manipulations to test the real-world applicability of the pre-processing pipelines. Ideally, 

effectively cleaned EEG data should lead to data that still contains all of the brain signal, and 

none of the artifact. Data cleaned this effectively should in theory produce the largest 

amount of variance explained by different experimental manipulations. This is because we 

assume that non-neural artifacts are unrelated to different experimental manipulations (so 

their inclusion in the data would contribute noise to a comparison between two experimental 

conditions, reducing the variance explained), and neural activity is related to the 

experimental manipulation (so maintaining more of the neural activity leads to increased 

detection of the effect of the experimental manipulation on brain activity and thus more 

variance explained by the experimental manipulation). As such, the best cleaning pipelines 

should provide the maximal between condition effects [33]. 

 

In order to test the amount of variance explained by the different experimental 

manipulations, we used the randomization graphical user interface (RAGU) [34, 35], which 

analysed all electrodes and timepoints available for ERP or oscillatory power data using 

randomisation statistics (while controlling for multiple comparisons in both the temporal and 

spatial dimensions). This toolbox additionally provides the ability to test for differences in 

overall neural response strength (using the global field potential (GFP) or root mean squared 

(RMS) test) and separately to test for differences in the distribution of neural activity (using 

the TANOVA, which compares global field potential dissimilarity maps between conditions 

after the recommended L2 normalisation for differences in GFP or RMS). More details on 

this toolbox can be found in [34, 35]. Given the potential computation time when including all 

statistical tests, 1000 permutations were used for all tests within RAGU. 

 

We computed explained variance for data from each pipeline across a range of between 

condition effects. We selected experimental effect related neural activities that have been 

well validated by previous research, showing differences between two task-related or resting 

related conditions. We averaged the explained variance across time periods where the 

different conditions have been suggested to show the strongest or most robust differences in 

neural activity by previous literature. The specific conditions used were selected because of 
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their well-established effects on brain activity and the fact that the conditions selected are 

commonly of interest in EEG research. As such, effective cleaning should produce larger 

effect sizes, with higher levels of explained variance produced by more effective cleaning 

pipelines. We have provided statistical comparisons of the ability of the different pipelines to 

differentiate experimental conditions by examining the interactions between different pairs of 

pipelines and the condition of interest (for example between a working memory delay period 

and working memory probe period in the Sternberg task). We provide heat maps depicting 

the variance explained by this interaction for each pair of pipelines, marking the interactions 

that were significant. Significance values were corrected for multiple comparisons across all 

interaction comparisons within each metric using the Benjamini-Hochberg [36] false 

discovery rate (* indicates FDR-p < 0.05). We also provide indication of which pipeline 

provided larger values for variance explained using – and + symbols, which can be 

interpreted as the pipeline listed on the left of the heatmap having shown less (-) or more (+) 

variance explained in the comparison between the two experimental conditions than the 

pipeline listed at the bottom of the heatmap.  

 

Firstly, we examined the variance explained by the difference in upper alpha power (10 to 

12.5Hz), computed by Morlet wavelet analyses (with five oscillation cycles required to derive 

power estimates at each timepoint as per [32]) between the data time-locked from 500ms to 

2500ms after the onset of the working memory delay period in the Sternberg task (which is 

known to generate very large parietal occipital alpha) and time-locked from 0 to 2000ms 

after the onset of the working memory probe period (which does not produce significant 

alpha activity). No baseline correction was implemented, because the two periods being 

compared were from the same epoch, so would be affected equally by any ongoing alpha 

activity unrelated to task demands. For each pipeline, we calculated the explained variance 

for the RMS difference between these conditions averaged across the 250 to 1500ms period 

following stimulus onset, and for the TANOVA from 0 to 750ms and 750 to 2000ms, as all 

pipelines showed significant differences during these windows, with separate peaks in the 

TANOVA explained variance corresponding to these windows. Secondly, we examined the 

amount of variance explained within the averaged RMS and TANOVA by the difference 

between eyes closed resting (which produces high levels of alpha activity, particularly at 

parieto-occipital regions) and eyes open resting (which produces less alpha activity). 

Because resting alpha oscillations are not time-locked to external stimuli, we used fast 

Fourier transforms to calculate these values (and as such, the values are not comparable to 

the Sternberg alpha data which was computed using Morlet wavelet analyses). Values 

produced by a Fourier frequency-power are µV². In contrast, Morlet wavelet transform power 

is dependent on the settings used, so Morlet wavelet transform power values are defined in 

“arbitrary units” (a.u.). As such, the power values produced by these two transforms are on 

entirely different scales and are not comparable. Please see [37] for more details.   
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SECTION FOUR 

Results - Combined Sternberg, EO and EC resting data 

In this section, we provide figures depicting the results our comparisons, including post-hoc 

tests and raincloud plots in alternative formats (with either all outliers depicted, outliers 

removed for easier visualization of the data, or all pipelines present / some pipelines 

removed for alternative visualization of the data to that provided in the main text). We also 

provide mean / SD tables for data inspection. We have provided a rank order (by mean) of 

the best performing pipelines to worst performing pipelines, interpreted from the post-hoc 

tests which can be visualised in heatmap figures. Significant differences are highlighted for 

pipelines that performed significantly better than other pipelines using the following notation 

for ease of understanding: better performance > worse performance (it is important to note 

that we have used this better performance > worse performance approach rather than 

a higher values > lower values approach, as we hope that the consistency will help 

the reader understand each of the results in the context of all other results). Because 

sometimes pipeline 1 differed from pipeline 2, but pipeline 3 did not differ from either 1 or 2, 

we have used the following notation: ^ = significantly higher than the pipeline marked with a 

^^ within the same section (while the others in the category are not significantly different 

from each other). * = significantly higher than the pipeline marked with a ** in the same 

category, and so on for the following symbols: +@$!+. For each post-hoc figure, values reflect 

the 95% confidence intervals for the comparison between each pipeline listed on the left, 

and each pipeline listed along the bottom. Asterix’s indicate significant results after multiple 

comparison controls were applied using the robust post-hoc t-test function “rmmcp”, which 

uses Hochberg’s approach to control for the FWE (p < 0.05). Note that because the post-hoc 

t-test significant values were derived from the robust statistics, and the 95% confidence 

intervals were calculated in the usual parametric manner, sometimes the confidence 

intervals overlapped with 0 while at the same time the comparison was marked as 

significant. We interpreted significant differences from the p-value rather than the confidence 

intervals, but both can be visualised in the figures if the reader would prefer to interpret 

significance from the confidence intervals. 

Signal-to-Error Ratio 

Seven files were excluded specifically from the SER and ARR metrics due to the total artifact 

periods detected being insufficient for valid calculation of these metrics. There was a 

significant difference in SER values between the pipelines, with the robust ANOVA showing 

a significant effect: F(2.49, 306.76) = 303.851, p < 0.0001. The rank order of significant 

differences between individual cleaning pipelines from post-hoc t-tests was as follows: 

MWF_only > MWF_CCA > wICA_ICLabel > MWF_wICA_AMICA > MWF_wICA_fastICA*, 

MWF_wICA_infomax, ICA_subtract, MWF_wICA_CCA** > ASR, MWF_ICA_subtract > 

HAPPE > wICA_all. See Figure S1 for a raincloud plot depicting the distribution of the data. 
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Figure S1. Raincloud plot depicting SER values from the combined EO, EC, and Sternberg 

data (N = 203) for each of the cleaning pipelines. 

 
Figure S2. SER post-hoc test results for the combined Sternberg, EO, and EC resting data.  

Artifact-to-Residue Ratio 

There was a significant difference in ARR between the pipelines, with the robust ANOVA 

showing a significant effect: F(2.65, 326.36) = 1474.71, p < 0.0001. The rank order of 

significant differences between individual cleaning pipelines from post-hoc t-tests was as 

follows: HAPPE > wICA_all > MWF_ICA_subtract > MWF_wICA_fastICA, 
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MWF_wICA_infomax, MWF_wICA_CCA > MWF_wICA_AMICA > ASR > MWF_CCA > 

wICA_ICLabel > MWF_only, ICA_subtract (Figure S3). 

 

 
Figure S3. Raincloud plot depicting ARR values from the combined EO, EC, and Sternberg 

data (N = 203) for each of the cleaning pipelines. 

 

When SER and ARR values were viewed together (Figure S4), it became apparent that the 

MWF_wICA methods and MWF_wICA_CCA performed better than ASR in both SER and 

ARR. The MWF_wICA methods (which include MWF_wICA_infomax, MWF_wICA_fastICA, 

and MWF_wICA_AMICA) and MWF_wICA_CCA also performed equally to, or higher than 

ICA_subtract in the SER metric, while at the same time they performed better than 

ICA_subtract in the ARR metric. MWF_wICA_AMICA was slightly better at preserving signal 

but was slightly worse at removing artifact than the other MWF_wICA methods. 

MWF_ICA_subtract provided higher ARR values but at the expense of lower SER values 

than the MWF_wICA methods, although providing similar SER and higher ARR compared to 

ASR. HAPPE and wICA_all performed the best at removing artifacts (with very high ARR 

values), but this came at the expense of very low SER values. Inversely, MWF_only, 

MWF_CCA, and wICA_ICLabel showed high SER values but lower ARR values (with 

MWF_only performing the best of these three pipelines at providing high SER while 

producing a similar value for ARR). Note that wICA_ICLabel outperformed ICA_subtract with 

both higher SER values and higher ARR values. 
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Figure S4. A scatterplot depicting both SER and ARR values for the resting EO, EC, and 

Sternberg dataset from each cleaning pipeline. 

 
Figure S5. ARR post-hoc test results for the combined Sternberg, EO, and EC resting data. 
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Pipeline ARR Mean ARR SD SER Mean SER SD 

MWF_wICA_fastICA 11.786 4.391 3.675 1.941 

MWF_CCA 10.129 4.131 5.031 2.614 

wICA_all 24.021 3.923 0.687 0.276 

HAPPE 20.452 3.623 0.833 0.383 

MWF_ICA_subtract 12.021 4.517 3.250 1.865 

ICA_subtract 10.147 4.353 3.728 2.396 

MWF_wICA_CCA 11.698 4.372 3.625 1.931 

MWF_wICA_infomax 11.803 4.348 3.670 1.907 

wICA_ICLabel 9.985 4.237 4.546 2.528 

MWF_wICA_AMICA 11.614 4.317 3.791 1.965 

ASR 11.019 4.962 3.414 2.314 

MWF_only 9.802 3.987 5.431 2.722 

Table S1. SER and ARR mean and SD table for the combined Sternberg, EO, and EC 

resting data. 

Frontal Electrode Blink Amplitude Ratio 

There was a significant difference in fBAR between the pipelines, with the robust ANOVA 

showing a significant effect: F(3.78, 317.65) = 27.37, p < 0.0001. The rank order of 

significant differences between individual cleaning pipelines from post-hoc t-tests was as 

follows (from the best performing pipeline to worst performing pipeline): 

MWF_wICA_fastICA, MWF_wICA_infomax, MWF_wICA_CCA, MWF_ICA_subtract, 

MWF_wICA_AMICA > MWF_CCA@+, wICA_all*, ASR^@, ICA_subtract^@@, HAPPE^**, 

MWF_only++, wICA_ICLabel^^@@ (Figure S6). 
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Figure S6. Raincloud plot depicting fBAR values from the combined EO, and Sternberg data 

(N = 140) for each of the cleaning pipelines. 

 

Figure S7. Blink amplitude ratio, frontal electrodes post-hoc test for the combined Sternberg, 
EO, and EC resting data. 

Blink Amplitude Ratio for All Electrodes  

There was a significant difference in blink amplitude ratio in all electrodes between the 

pipelines, with the robust ANOVA showing a significant effect: F(3.19, 268.14) = 40.32, p < 

0.0001. The rank order of significant differences between individual cleaning pipelines from 
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post-hoc t-tests was as follows (from the best performing pipeline to worst performing 

pipeline): MWF_wICA_infomax, MWF_wICA_fastICA, MWF_wICA_AMICA, 

MWF_wICA_CCA > MWF_ICA_subtract^, wICA_all*, MWF_CCA^^, HAPPE**, 

MWF_only^^**, ASR^^** > ICA_subtract, wICA_ICLabel. See Figure S8 for a raincloud plot 

depicting the distribution of the data. 

 
Figure S8. Raincloud plot depicting allBAR values from the combined EO, EC, and 

Sternberg data (N = 140) for each of the cleaning pipelines. 

 

Figure S9. Blink amplitude ratio, all electrodes post-hoc test for the combined Sternberg, EO, 
and EC resting data. 
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 fBAR allBAR 

Pipeline Mean SD Mean SD 

MWF_CCA 1.068 0.107 1.031 0.064 

ICA_subtract 1.064 0.092 1.064 0.073 

HAPPE 1.069 0.065 1.037 0.024 

wICA_ICLabel 1.076 0.095 1.066 0.073 

MWF_only 1.077 0.107 1.031 0.063 

MWF_ICA_subtract 1.020 0.072 1.021 0.061 

MWF_wICA_fastICA 1.018 0.073 1.020 0.060 

MWF_wICA_AMICA 1.015 0.069 1.019 0.060 

MWF_wICA_infomax 1.018 0.070 1.020 0.061 

wICA_all 1.059 0.073 1.022 0.021 

MWF_wICA_CCA 1.018 0.076 1.019 0.062 

ASR 1.052 0.097 1.051 0.074 

Table S2. Blink amplitude ratio mean and SD table for the combined Sternberg, EO, and EC 
resting data. 

Proportion of Epochs Showing Muscle Activity After Cleaning 

There was a significant difference between the pipelines in number of epochs with log-power 

log-frequency slopes indicating that muscle activity was remaining after cleaning, with the 

robust ANOVA showing a significant effect: F(1.05, 133.91) = 3931.25, p < 0.0001. The rank 

order of significant differences between individual cleaning pipelines from post-hoc t-tests 

was as follows (from the best performing pipeline to worst performing pipeline): 

MWF_ICA_subtract > MWF_wICA_infomax > MWF_wICA_fastICA > MWF_wICA_AMICA > 

MWF_wICA_CCA > MWF_CCA > ICA_subtract > ASR, wICA_ICLabel > MWF_only > 

HAPPE > wICA_all (Figure S10). It is worth noting that HAPPE and wICA produced data that 

showed slopes exceeding the muscle threshold for almost all epochs (and as such, were not 

depicted in Figure S10 so other pipelines could be compared, but can be viewed in Figure 
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S11). We suspect this is the result of removal of considerable low frequency data from the 

signal, such that slopes became flatter (and more similar to muscle affected log-power log-

frequency slopes). However, we note that these pipelines did show a bump in the beta 

frequency after cleaning (which the other pipelines did not show), so it is possible this 

reflects muscle activity remaining. 

 

 

Figure S10. Raincloud plot depicting the proportion of epochs showing log-power log-

frequency values above the -0.59 threshold from the combined EO, EC, and Sternberg data 

(N = 213) for each of the cleaning pipelines. Note that this figure excludes HAPPE and 

wICA_all, as these pipelines showed median values > 0.75 and made the scale of the graph 

such that it was difficult to visualise differences in the other pipelines. We suspect that 

applying wICA to all components (as both wICA_all and HAPPE do) reduces the activity 

contributed by the lower frequencies to the extent that the log-power log-frequency slope 

threshold used identifies most epochs as contaminated by muscle activity, when the shallow 

slope is actually because the low frequencies have been removed from the data. Note also 

that we have winsorized the data in the figure, as the outliers also made the scale such that 

it was difficult to visualise differences in the other pipelines. The full data can be viewed in 

Figure S11. 
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Figure S11. Raincloud plot of the proportion of epochs showing log-power log-frequency 

slopes that indicated muscle activity remaining after cleaning (including all pipelines and 

without winsorizing outliers) for the combined Sternberg, EO, and EC resting data. 

 

Figure S12. Post-hoc tests for the proportion of epochs showing log-power log-frequency 

slopes above the threshold after cleaning for the combined Sternberg, EO, and EC resting 

data. 
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Severity by which the Log-Power Log-Frequency Slopes Exceed the Muscle 

Threshold 

There was a significant difference between the pipelines in the severity by which the mean 

slope exceeded the log-power log-frequency threshold from epochs and electrodes that 

showed muscle activity remaining, with the robust ANOVA showing a significant effect: 

F(5.6, 716.85) = 170.4889, p < 0.0001. The rank order of significant differences between 

individual cleaning pipelines from post-hoc t-tests was as follows (from the best performing 

pipeline to worst performing pipeline): MWF_ICA_subtract^*, MWF_wICA_infomax*, 

MWF_wICA_fastICA*^^, MWF_wICA_CCA^^, MWF_wICA_AMICA^^**, MWF_CCA^^** > 

wICA_ICLabel^, MWF_only, ICA_subtract, ASR^^ > HAPPE > wICA_all. See Figure S13 for 

a raincloud plot depicting the distribution of the data.  

 

 
Figure S13. Raincloud plot depicting the severity by which the log-power log-frequency 

slopes exceeded the -0.59 threshold, when values were averaged across super-threshold 

epochs and electrodes from the combined EO, EC, and Sternberg data (N = 213) for each of 

the cleaning pipelines. 
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Figure S14. Post-hoc tests for the severity of the log-power log-frequency slopes exceeding 
the threshold in epochs that showed muscle activity remaining for the combined Sternberg, 
EO, and EC resting data. 
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 Proportion of 
epochs showing 
muscle slope 
after cleaning 

Slope steepness 
over muscle 
slope threshold 
in epochs 
showing muscle 
slopes after 
cleaning 

Pipeline Mean SD Mean SD 

ASR 0.01 0.013 0.179 0.116 

HAPPE 0.715 0.266 0.269 0.061 

ICA_subtract 0.006 0.007 0.15 0.117 

MWF_CCA 0.003 0.004 0.115 0.107 

MWF_wICA_CCA 0.003 0.004 0.107 0.104 

MWF_wICA_AMICA 0.002 0.003 0.11 0.112 

MWF_wICA_fastICA 0.002 0.003 0.083 0.089 

MWF_ICA_subtract <0.001 0.001 0.069 0.093 

MWF_wICA_infomax 0.002 0.002 0.084 0.093 

MWF_only 0.016 0.02 0.163 0.104 

wICA_all 0.976 0.035 0.341 0.074 

wICA_ICLabel 0.011 0.014 0.151 0.108 

Table S3. Means and SDs for the muscle related metrics for the combined Sternberg, EO, 
and EC resting data. 

ICA Variance Explained by Brain Components 

There was a significant difference between the pipelines in the percentage of ICA variance 

explained by components identified as brain activity with the robust ANOVA showing a 

significant effect: F(1.49, 189.39) = 1238.15, p < 0.0001. The rank order of significant 

differences between individual cleaning pipelines from post-hoc t-tests was as follows: 

MWF_wICA_infomax, wICA_ICLabel > MWF_wICA_fastICA, MWF_wICA_AMICA, 

MWF_only > wICA_all (note that pipelines using ICA subtraction were excluded from this 

metric) (Figure S15).  
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Figure S15. Raincloud plot depicting the amount of ICA variance explained by brain activity 

from the combined EO, EC, and Sternberg data (N = 213) for each of the cleaning pipelines 

available for assessment with this metric (note that pipelines using ICA subtraction were 

excluded from this metric). 

 
Figure S16. Variance explained by brain activity detected by ICLabel post-hoc tests for the 

combined Sternberg, EO, and EC resting data. 
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Pipeline Mean SD 

MWF_only 81.166 14.150 

MWF_wICA_infomax 95.090 4.896 

wICA_ICLabel 94.852 5.030 

MWF_wICA_AMICA 93.111 6.896 

MWF_wICA_fastICA 93.825 5.316 

wICA_all 42.401 18.283 

Table S4. Means and SDs for the amount of variance explained by brain activity detected by 
ICLabel for the combined Sternberg, EO, and EC resting data. 

Proportion of Epochs Removed by Cleaning 

There was a significant difference between the pipelines in the proportion of total epochs in 

the data that were rejected by the cleaning and outlying epoch rejection steps, with the 

robust ANOVA showing a significant effect: F(2.04, 258.98) = 73.9214, p < 0.0001. The rank 

order of significant differences between individual cleaning pipelines from post-hoc t-tests 

was as follows (from the best performing pipeline to worst performing pipeline): HAPPE > 

wICA_all > MWF_wICA_fastICA^, MWF_wICA_infomax*, MWF_ICA_subtract*+^^, 

MWF_wICA_AMICA*, MWF_wICA_CCA^^**@, MWF_CCA^^**++, MWF_only^^**++@@, 

ICA_subtract^^**++, wICA_ICLabel^^**++. ASR showed the highest mean value, but only 

significantly differed from HAPPE. ASR also showed a very large spread of datapoints, with 

broad confidence intervals when compared to all other pipelines, and the rejection of 75-

100% of the epochs for seven data files (whereas all other pipelines showed at most three 

data files with more than 75% of epochs rejected). We wondered if this suggested that the 

robust statistics used (rmmcp) were obscuring the pattern, so we performed post-hoc t-tests 

with bootstrap statistics (using pairdepb) and found that the ASR pipeline showed a higher 

mean proportion of the data rejected than all other pipelines (all p-bootstrap < 0.05) (Figure 

S17). 
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Figure S17. Raincloud plot depicting the proportion of epochs in the data rejected from the 

combined EO, EC, and Sternberg data (N = 213) for each of the cleaning pipelines. 

 

Figure S18. Proportion of epochs in the data removed by the cleaning pipeline, including 
epoch rejection of outliers after cleaning post-hoc test for the combined Sternberg, EO, and 
EC resting data. 
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 Proportion of Epochs Removed 

Pipeline Mean SD 

MWF_ICA_subtract 0.177 0.128 

wICA_all 0.136 0.114 

MWF_wICA_infomax 0.175 0.128 

MWF_only 0.187 0.128 

wICA_ICLabel 0.200 0.148 

MWF_wICA_CCA 0.181 0.125 

ICA_subtract 0.198 0.147 

ASR 0.212 0.207 

MWF_wICA_AMICA 0.175 0.125 

MWF_CCA 0.185 0.127 

MWF_wICA_fastICA 0.172 0.126 

HAPPE 0.028 0.039 

Table S5. Means and SDs for the proportion of epochs of the data removed by the cleaning 
pipeline (including epoch rejection of outliers after cleaning) for the combined Sternberg, EO, 
and EC resting data. 

Variance Explained by the Difference Between Eyes Open and Eyes Closed Resting 

Figure S19 depicts the amount of variance explained by the difference between eyes open 

and eyes closed resting in alpha power RMS (overall neural response strength) and 

TANOVA (distribution of neural activity) tests across the different cleaning pipelines. 

Statistical comparisons using the RMS and TANOVA tests of the overall interaction between 

pipelines and condition were highly significant for both measures (both p < 0.0001). Post-hoc 

testing of the interaction between each pair of pipelines and the two conditions indicated the 

following rank order of the ability of the pipelines to discriminate between the experimental 

manipulation in alpha RMS: ASR*, MWF_wICA_fastICA*@, MWF_wICA_infomax*@, 

MWF_wICA_AMICA*@, MWF_ICA_subtract*+@@, MWF_wICA_CCA*, MWF_only*++, 

MWF_CCA*++, HAPPE**^, wICA_ICLabel^^, ICA_subtract^^ > wICA_all. We suspect the fact 
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that only HAPPE and wICA_all showed significant differences to the other pipelines is a 

product of the low variance in alpha power across individuals within each condition in the 

HAPPE and wICA_all pipelines, combined with the relative high variance in alpha power 

across individuals within each condition in all other pipelines (see Figure S20).  

 

Post-hoc testing of the interaction between each pair of pipelines and the two conditions 

indicated the following rank order of the ability of the pipelines to discriminate between the 

experimental manipulation in the distribution of alpha power: wICA_all > MWF_CCA > 

MWF_only > MWF_wICA_infomax*, MWF_wICA_AMICA*^, MWF_wICA_fastICA*+, 

MWF_wICA_CCA*+, MWF_ICA_subtract*^^, wICA_ICLabel**^^, ASR, ICA_subtract**. 

HAPPE provided the lowest variance explained, but significantly differed from all pipelines 

except MWF_CCA and MWF_only (which showed the 2nd and 3rd largest np2 values). This 

odd result may be due to the multidimensional nature of interactions between pipeline and 

EO/EC conditions in the TANOVA, combined with the fact the TANOVA compares the 

distribution of activity (rather than a single value). As such, the result may be due to a more 

similar match in topographical difference between EO and EC conditions for HAPPE, 

MWF_CCA, and MWF_only compared to the other pipelines. The results also provide further 

suggestion of high variability in the data from the ASR pipeline, which despite showing the 

third lowest variance explained, did not significantly differ in the interaction between cleaning 

pipeline and condition for the majority of the other pipelines. 

 

 
Figure S19. The variance explained (np2) by differences in averaged alpha power between 

eyes open and eyes closed for RMS and TANOVA tests for all of the pipelines. 
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Figure S20. Box plots for the alpha RMS values from eyes open and eyes closed resting 

recordings after cleaning by each pipeline. Above, with outliers included, and below, with 

outliers removed for better visualization of the difference between the cleaning pipelines. 
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Figure S21. Heat map of the variance explained (np2) by the interaction between each pair of 

pipelines and alpha power RMS during eyes open and eyes closed resting. Interactions that 

were significant (FDR-p < 0.05) are indicated with an *. We have also provided an indication 

of which pipeline of each pair provided larger values for variance explained using – and + 

symbols, which can be interpreted as the pipeline listed on the left of the heatmap having 

shown less (-) or more (+) variance explained in the comparison between the two 

experimental conditions than the pipeline listed at the bottom of the heatmap.  
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Figure S22. Resting alpha activity distributions from eyes open and eyes closed recordings 

after cleaning by each pipeline. All plots are on the same Fourier power scale so they can all 

be compared to all other pipelines. Note that wICA_all and HAPPE have considerably 

reduced the alpha power when viewed on the same scale as other pipelines, and that ASR 

has removed more of the activity in the eyes open resting condition than the other pipelines. 
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Figure S23. Resting alpha activity distributions from eyes open and eyes closed recordings 

after cleaning by each pipeline. All pipelines are on their own individual Fourier power scale 

so the pattern of alpha activity distributions can be viewed within each pipeline, but 

comparisons between pipelines are not possible from these plots. 

 

 

 
 

Figure S24. Heat map of the variance explained (np2) by the interaction between each pair of 

pipelines and the distribution of alpha power (TANOVA) during eyes open and eyes closed 

resting. Interactions that were significant (FDR-p < 0.05) are indicated with an *. We have 

also provided an indication of which pipeline of each pair provided larger values for variance 

explained using – and + symbols, which can be interpreted as the pipeline listed on the left 
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of the heatmap having shown less (-) or more (+) variance explained in the comparison 

between the two experimental conditions than the pipeline listed at the bottom of the 

heatmap.  

Variance Explained by the Difference in Alpha Power Between WM Periods 

We have provided below statistical comparisons of the ability of the different pipelines to 

differentiate experimental conditions by examining the interactions between different pairs of 

pipelines and a condition of interest – the Sternberg working memory retention period vs 

Sternberg working memory probe period. We have provided heat maps depicting the 

variance explained (np2) by this interaction for each pair of pipelines, marking the 

interactions that were significant (*). We have also provided an indication of which pipeline of 

each pair provided larger values for variance explained using – and + symbols, which can be 

interpreted as the pipeline listed on the left of the heatmap having shown less (-) or more (+) 

variance explained in the comparison between the two experimental conditions than the 

pipeline listed at the bottom of the heatmap.  

 

Most pipelines showed alpha RMS values of 800 to 1100 for the working memory probe 

period and 2000 to 3000 for the working memory delay period, while HAPPE and wICA_all 

showed values more than two orders of magnitude lower, with values of 39.38 / 56.78 for 

HAPPE and 9.73/12.33 wICA_all respectively (see Figure S25). Given HAPPE performs 

wICA_all as a first step, then applies ICA_subtract, it struck us as odd to observe that 

HAPPE showed higher values than wICA_all (we would have assumed two iterations of 

artifact removal would lead to smaller values than one). The only potential explanation we 

could think of is that the ICA artifact identification algorithm used on the wICA_all cleaned 

data in HAPPE “expects” alpha activity, and as such marked components for subtraction that 

end up reconstructing the alpha activity. However, this is only conjecture and would require 

testing. 

 

Figure S25 depicts the amount of variance explained by the difference between the working 

memory delay period and working memory probe period in alpha power RMS test across the 

different cleaning pipelines (which compared overall neural response strength from 250-

1500ms after the stimuli) and the TANOVA from 0 to 750ms and 750 to 2000ms after the 

stimuli. Statistical comparisons of the overall interaction between pipelines and condition 

were highly significant for all three measures (all p < 0.0001). Post-hoc testing of the 

interaction between each pair of pipelines and the two conditions indicated the following rank 

order of the ability of the pipelines to discriminate between the experimental manipulation in 

alpha RMS: HAPPE > wICA_all > ASR+, ICA_subtract*, wICA_ICLabel*, 

MWF_wICA_infomax++**^, MWF_ICA_subtract@**++, MWF_only!@@**^^, 

MWF_CCA!@@**++^^, MWF_wICA_AMICA **++, MWF_wICA_CCA@@**, 

MWF_wICA_fastICA++**!!. While the HAPPE and wICA methods explained considerable 

variance, the previous metric section indicated they also showed the lowest SER values 

(suggesting much of the signal was eliminated by these methods) and they reduced the 

alpha power in the signal by >2 orders of magnitude compared to the other pipelines (Figure 

S26). As such, we suspect these methods may enhance the differences between the WM 

delay period and probe periods by considerably reducing the alpha signal, and the high 

values of explained variance may be the result of low variability. 
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With regards to the TANOVA comparisons, two separate time periods showed a difference 

in the distribution of alpha activity between the WM delay and probe period in the Sternberg 

– first a large difference from 0-750ms, then a smaller difference from 750 to 2000ms. For 

the first time period (0 to 750ms), post-hoc testing of the interaction between each pair of 

pipelines and the two conditions indicated the following rank order of the ability of the 

pipelines to discriminate between the experimental manipulation in the distribution of alpha 

power: HAPPE*, wICA_ICLabel^, ICA_subtract^, wICA_all+^^, MWF_only@**^^++, 

MWF_CCA@**^^++, ASR!**^^++@@, MWF_wICA_AMICA!**^^++@@, 

MWF_wICA_fastICA**^^++@@!!, MWF_wICA_CCA**^^++@@, MWF_wICA_infomax**^^++@@, 

MWF_ICA_subtract**^^++@@. 

 

For the second time period examined with the TANOVA test (750 to 2000ms), a different 

pattern was apparent: ICA_subtract, wICA_ICLabel > wICA_all > MWF_only > MWF_CCA > 

MWF_wICA_CCA, MWF_wICA_infomax, MWF_wICA_fastICA, MWF_wICA_AMICA, 

MWF_ICA_subtract > HAPPE. We did not list ASR in this ranking, because although ASR 

ranked highly in terms of its variance explained (between wICA_all and MWF_only in terms 

of absolute value of variance explained for the comparison of the distribution of activity 

between probe and retention period alpha power), it only showed a significant difference 

compared to wICA_all and HAPPE, perhaps reflecting the high variability in results from this 

pipeline, similar to the result seen with the number of epochs marked for rejection. 

Unfortunately, we are not able to discern whether this variability reflects ground truth 

differences in individual alpha power (in which case the variability is valuable), or variability 

produced by the ASR cleaning (in which case the variability is artifactual). Additionally, while 

most pipelines showed a very similar distribution of alpha activity, HAPPE and wICA_all 

showed a different distribution of activity to all other pipelines, suggesting (alongside the 

alpha RMS, SER, and ARR values) that these two pipelines may be overcleaning the data, 

removing alpha power from specific electrodes such that the distribution of activity after 

cleaning is significantly altered (see Figure S29-32). 
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Figure S25. The variance explained (np2) by differences between alpha activity during the 

working memory delay and probe periods of the Sternberg task from each pipeline. 
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Figure S26. Alpha RMS from the working memory delay period (retention) and working 

memory probe period (probe) across each of the cleaning pipelines. Above, with outliers 

included, and below with outliers removed for better ability to distinguish the pipelines. 

 



46 
 

 

 
Figures S27. Raincloud plots for the alpha RMS working memory retention and probe 

periods for each pipeline. 
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Figure S28. Heat map of the variance explained (np2) by the interaction between each pair of 

pipelines and alpha power RMS during the Sternberg retention period vs the Sternberg 

probe period (from 250 to 1500ms after stimuli presentation). Interactions that were 

significant (FDR-p < 0.05) are indicated with an *. We have also provided an indication of 

which pipeline of each pair provided larger values for variance explained using – and + 

symbols, which can be interpreted as the pipeline listed on the left of the heatmap having 

shown less (-) or more (+) variance explained in the comparison between the two 

experimental conditions than the pipeline listed at the bottom of the heatmap.  
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Figure S29. Alpha power distribution during the early period (0 to 750ms) after the stimuli of 

the working memory delay (retention) and working probe periods from each of the cleaning 

pipelines. All plots are on the same Morlet wavelet transform power scale so they can all be 

compared to all other pipelines (note that because Morlet wavelet transform power is 

dependent on the settings used, power values are defined in “arbitrary units” [a.u.]). Note 

that wICA_all and HAPPE have considerably reduced the alpha power when viewed on the 

same scale as other pipelines. 
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Figure S30. Alpha power distribution during the early period (0 to 750ms) after the stimuli of 

the working memory delay (retention) and working probe periods from each of the cleaning 

pipelines. All pipelines are on their own individual Morlet wavelet transform power scale so 

the pattern of alpha activity distributions can be viewed within each pipeline (note that 

because Morlet wavelet transform power is dependent on the settings used, power values 

are defined in “arbitrary units” [a.u.]). As expected, the retention period showed more 

occipital / parietal alpha maximums, while the probe period showed more widespread alpha. 

Note the similarity in pattern across most pipelines, including ICA only and MWF only 

methods, implying different cleaning approaches still lead to similar patterns. ASR, HAPPE, 

and wICA_all were the most different to the other cleaning pipelines, with ASR removing 

most of the frontal alpha, and HAPPE and wICA showing less qualitative differentiation 

between the probe and retention period alpha, despite these pipelines showing the highest 

variance explained for the comparison between the two conditions. We suspect this may be 

the result of removal of significant amount of the variance by these pipelines, leading to 

highly precise estimates of the retention and probe alpha activity, which allow strong 

inferences about the differences in these periods (which no longer overlap after the removal 

of so much variance). However, we suspect this comes at the cost of distorting the 

distribution/characterization of the neural activity. 
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Figure S31. Alpha power distribution during the later period (750 to 2000ms) after the stimuli 

of the working memory delay (retention) and working probe periods from each of the 

cleaning pipelines. All plots are on the same Morlet wavelet transform power scale so they 

can all be compared to all other pipelines (note that because Morlet wavelet transform power 

is dependent on the settings used, power values are defined in “arbitrary units” [a.u.]). Note 

that wICA_all and HAPPE have considerably reduced the alpha power when viewed on the 

same scale as other pipelines. 
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Figure S32. Alpha power distribution during the later period (750 to 2000ms) after the stimuli 

of the working memory delay (retention) and working probe periods from each of the 

cleaning pipelines. All pipelines are on their own individual Morlet wavelet transform scale so 

the pattern of alpha activity distributions can be viewed within each pipeline (power values 

are defined in “arbitrary units” [a.u.]). As expected, the retention period showed more 

occipital / parietal alpha maximums, while the probe period showed more widespread alpha. 

As with the early period alpha, note the similarity in pattern across most pipelines, including 

ICA only and MWF only methods, implying different cleaning approaches still lead to similar 

patterns. Again, ASR, HAPPE, and wICA_all were the most different to the other cleaning 

pipelines, with ASR removing most of the frontal alpha, and HAPPE and wICA showing less 

qualitative differentiation between the probe and retention period alpha. 
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Figure S33. Heat map of the variance explained (np2) by the interaction between each pair of 

pipelines and alpha power TANOVA during the Sternberg retention period vs the Sternberg 

probe period (from 0 to 750ms after stimuli presentation). Interactions that were significant 

(FDR-p < 0.05) are indicated with an *. We have also provided an indication of which 

pipeline of each pair provided larger values for variance explained using – and + symbols, 

which can be interpreted as the pipeline listed on the left of the heatmap having shown less 

(-) or more (+) variance explained in the comparison between the two experimental 

conditions than the pipeline listed at the bottom of the heatmap.  

 
 

Figure S34. Heat map of the variance explained (np2) by the interaction between each pair of 

pipelines and alpha power TANOVA during the Sternberg retention period vs the Sternberg 

probe period (from 750 to 2000ms after stimuli presentation). Interactions that were 

significant (FDR-p < 0.05) are indicated with an *. We have also provided an indication of 

which pipeline of each pair provided larger values for variance explained using – and + 

symbols, which can be interpreted as the pipeline listed on the left of the heatmap having 

shown less (-) or more (+) variance explained in the comparison between the two 

experimental conditions than the pipeline listed at the bottom of the heatmap. 
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SECTION FIVE 

Analysis of a Combined EO, EC resting and 2back dataset  

In addition to the analyses of datasets reported in our main manuscript, we submitted a 

smaller dataset which included 60 files from 20 participants, each providing an EO and EC 

resting recording, and a 2back task recording. This dataset was analysed to demonstrate the 

results from our larger datasets generalised to datasets with different recording parameters. 

In this dataset, data were recorded from 44 Ag/AgCl electrodes embedded within an 

EasyCap (Herrsching, Germany) which was connected to a Synamps2 amplifier running 

through the SCAN 4.3 software interface (Compumedics, Melbourne, Australia). The ground 

electrode was placed at AFz, and the reference was placed at CPz. A sampling rate of 1000 

Hz was used for all recordings, with an online bandpass filter between 0.1 to 200 Hz.  

Signal-to-Error-Ratio 

There was a significant difference in SER between the pipelines: F(1.88, 101.79) = 85.74, p 

< 0.001. The rank order of significant differences between individual cleaning pipelines from 

post-hoc t-tests was as follows: MWF_only > wICA_ICLabel > MWF_wICA_AMICA^, 

MWF_wICA_infomax^, MWF_wICA_fastICA, ASR, ICA_subtract^^ > wICA_all, HAPPE. See 

Figure S35 for a raincloud plot depicting the distribution of the data. See Table S6 for means 

and SDs, as well as Figure S36 for a heatmap with confidence intervals for the post-hoc 

specification of which pipelines differed from which other pipelines, with significant 

differences highlighted. 

 
Figure S35. Raincloud plot depicting SER values from the combined EO and EC resting and 

2back data (N = 20, file N = 60) for each of the cleaning pipelines. 
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Figure S36. SER post-hoc tests for the combined 2back EO and EC resting dataset. 

Artifact-to-Residue-Ratio 

There was a significant difference in ARR between the pipelines, with the robust ANOVA 

showing a significant effect: F(2.94, 102.8) = 449.203, p < 0.0001. The rank order of 

significant differences between individual cleaning pipelines from post-hoc t-tests was as 

follows: wICA_all > HAPPE > MWF_wICA_fastICA, MWF_wICA_infomax > 

MWF_wICA_AMICA > ASR > wICA_ICLabel, ICA_subtract > MWF_only. See Figure S37 for 

a raincloud plot depicting the distribution of the data. See Table S6 for means and SDs, as 

well as Figure S38 for a heatmap with confidence intervals for the post-hoc specification of 

which pipelines differed from which other pipelines, with significant differences highlighted. 

The combined resting and 2back datasets with reduced electrode montages showed an 

identical pattern to the combined Sternberg and resting dataset and combined Go Nogo 

datasets when SER and ARR values were viewed together, with ASR showing less SER and 

ARR, and ICA_subtract showing less ARR than the MWF_wICA methods. 
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Figure S37. Raincloud plot depicting ARR values for the combined 2back EO and EC resting 

dataset. 

 

Figure S38. ARR post-hoc tests for the combined 2back EO and EC dataset. 
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Figure S39: Scatterplot depicting the relationship between SER and ARR after cleaning for 

the combined 2back, EO and EC dataset. The HAPPE and wICA_all pipelines showed the 

strongest attenuation of activity within artifact periods. However, these pipelines also greatly 

reduced signal within the non-artifact periods. MWF_only provided the highest SER values, 

but also the lowest level of artifact reduction. The MWF_wICA methods appear to show a 

good trade-off between the amount of signal remaining in the data and the amount of artifact 

removed.   

 

  SER  ARR 

Pipeline   Mean SD   Mean SD 

ASR   4.307 2.835   8.457 4.485 

HAPPE   0.881 0.403   19.045 3.372 

ICA_subtract   4.623 3.671   7.968 4.03 

MWF_wICA_AMICA   4.876 3.121   9.161 4.355 

MWF_wICA_fastICA   4.853 3.311   9.298 4.408 

MWF_wICA_infomax   4.763 3.101   9.385 4.47 

MWF_only   7.415 3.68   6.822 4.452 

wICA_all   0.776 0.262   22.157 3.656 

wICA_ICLabel   5.66 4.168   7.85 3.933 

Table S6. Mean and SD values for the SER and ARR metrics for each cleaning pipeline from 

the combined 2back EO and EC dataset. 
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Blink Amplitude Ratio in Frontal Electrodes for the Combined 2back EO and EC 

Dataset 

There was a significant difference in blink amplitude ratio in frontal electrodes between the 

pipelines, with the robust ANOVA showing a significant effect: F(3.33, 69.96) = 5.2241, p = 

0.0019. The rank order of significant differences between individual cleaning pipelines from 

post-hoc t-tests was as follows: MWF_wICA_fastICA^, MWF_wICA_infomax^, 

MWF_wICA_AMICA, ASR, MWF_only^^ > wICA_ICLabel, ICA_subtract. wICA_all did not 

significantly differ from any pipeline (despite showing the lowest values in the raincloud plot). 

See Figure S40 for a raincloud plot depicting the distribution of the data. See Table S7 for 

means and SDs, as well as Figure S41 for a heatmap with confidence intervals for the post-

hoc specification of which pipelines differed from which other pipelines, with significant 

differences highlighted. 

 
Figure S40. Raincloud plot depicting fBAR values from the combined EO and EC resting and 

2back dataset. 
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Figure S41. fBAR post-hoc tests from the combined EO and EC resting and 2back dataset. 

Blink Amplitude Ratio Across All Electrodes for the Combined 2back EO and EC 

Dataset 

There was a significant difference in blink amplitude ratio in all electrodes between the 

pipelines, with the robust ANOVA showing a significant effect: F(3.24, 68.02) = 9.193, p < 

0.0001. The rank order of significant differences between individual cleaning pipelines from 

post-hoc t-tests was as follows: MWF_wICA_fastICA^, MWF_wICA_AMICA, 

MWF_wICA_infomax, ASR, MWF_only^^ > ICA_subtract, wICA_ICLabel. wICA_all did not 

significantly differ from any pipeline (despite showing the lowest values in the raincloud plot). 

See Figure S42 for a raincloud plot depicting the distribution of the data. See Table S7 for 

means and SDs, as well as Figure S43 for a heatmap with confidence intervals for the post-

hoc specification of which pipelines differed from which other pipelines, with significant 

differences highlighted. 
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Figure S42. Raincloud plot depicting allBAR values from the combined EO and EC resting 

and 2back dataset. 

 

Figure S43. allBAR post-hoc tests for the combined 2back, EO and EC dataset. 
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  fBAR  allBAR 

Pipeline   Mean SD   Mean SD 

ASR  1.041 0.059  1.035 0.055 

ICA_subtract  1.061 0.078  1.056 0.068 

MWF_wICA_AMICA  1.028 0.064  1.023 0.063 

MWF_wICA_fastICA  1.027 0.068  1.022 0.067 

MWF_wICA_infomax  1.028 0.062  1.026 0.065 

MWF_only  1.068 0.084  1.038 0.069 

wICA_all  1.032 0.028  1.023 0.016 

wICA_ICLabel   1.062 0.08   1.055 0.066 

Table S7. Blink Amplitude Ratio means and standard deviations for the combined 2back, EO 

and EC dataset. 

Proportion of Epochs Showing Muscle Activity Remaining After Cleaning from the 

Combined 2back, EO and EC Dataset 

There was a significant difference in number of epochs with muscle activity remaining 

between the pipelines: F(4.85, 121.26) = 36.96 , p < 0.001. The rank order of significant 

differences between individual cleaning pipelines from post-hoc t-tests was as follows: 

MWF_wICA_AMICA^, MWF_wICA_fastICA, MWF_wICA_infomax, ICA_subtract, 

wICA_ICLabel, MWF_only^^, ASR > wICA_all. See Figure S44 for a raincloud plot depicting 

the distribution of the data. See Table S8 for means and SDs, as well as Figure S45 for a 

heatmap with confidence intervals for the post-hoc specification of which pipelines differed 

from which other pipelines, with significant differences highlighted. 
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Figure S44. Raincloud plot depicting the proportion of epochs showing log-power log-

frequency values above the -0.59 threshold from the combined 2back, EO and EC dataset. 

 

Figure S45. Proportion of epochs showing muscle activity after cleaning post-hoc tests from 
the combined 2back, EO and EC dataset. 

Severity by which Log-Power Log-Frequency Slopes Exceeded the Threshold from 

the combined 2back, EO and EC dataset 

There was a significant difference in the mean severity by which the slope exceeded the log-

power log-frequency threshold from epochs and electrodes that showed muscle activity 
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remaining between the pipelines, with the robust ANOVA showing a significant effect: F(1, 

35) = 144.948, p < 0.0001. wICA_all performed worse than all other pipelines, but otherwise 

there were no differences across the pipelines. See Figure S46 for a raincloud plot depicting 

the distribution of the data. See Table S8 for means and SDs, as well as Figure S47 for a 

heatmap with confidence intervals for the post-hoc specification of which pipelines differed 

from which other pipelines, with significant differences highlighted.  

 

 
Figure S46. Raincloud plot for the slope above threshold in epochs that show slopes 

indicative of muscle activity after cleaning from the combined 2back, EO and EC dataset. 

 
Figure S47. Post-hoc tests for the slope above threshold in epochs that show slopes 

indicative of muscle activity after cleaning from the combined 2back, EO and EC dataset. 
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Proportion of epochs 
showing slopes that 

indicate muscle activity 
remaining after cleaning   

Severity of slope that 
exceeded muscle slope 

threshold in epochs 
showing muscle slopes 

after cleaning 

Pipeline   Mean SD   Mean SD 

ASR  0.218 0.087  0 0.001 

ICA_subtract  0.187 0.084  0 0 

MWF_wICA_AMICA  0.154 0.061  0 0.001 

MWF_wICA_fastICA  0.169 0.065  0 0.002 

MWF_wICA_infomax  0.171 0.088  0 0.001 

MWF_only  0.181 0.075  0.001 0.004 

wICA_all  0.358 0.079  0.184 0.108 

wICA_ICLabel   0.174 0.087   0.001 0.002 

Table S8. Means and SDs for muscle activity remaining after cleaning from the combined 

2back, EO and EC dataset. 
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SECTION SIX 

Analysis of a Colour-Wheel Recall task dataset  

Finally, one further dataset of Colour-Wheel Recall task related data was tested, which used 

different recording parameters to the datasets reported in the main manuscript (datasets 

were recorded using a Neuroscan amplifier [Compumedics, Melbourne, Australia] with a 62-

electrode EASYCAP and a sampling rate of 10kHz, downsampled to 1000Hz). To reduce 

computation time, MWF_wICA_45Hz, MWF_ICA_subtract, MWF_CCA and 

MWF_wICA_CCA were not tested on this data. 

Signal-to-Error-Ratio in the Colour Wheel Task dataset 

There was a significant difference in SER between the pipelines; F(1.56, 32.82) = 38.91, p < 

0.0001. The rank order of significant differences between individual cleaning pipelines from 

post-hoc t-tests was as follows: MWF_only > MWF_CCA > wICA_ICLabel > 

MWF_wICA_AMICA*, MWF_wICA_infomax*, MWF_wICA_fastICA, ICA_subtract, ASR** > 

HAPPE, wICA_all. See Figure S48 for the raincloud plot and S49 for the post-hoc tests. 

 

 
Figure S48. Raincloud plot depicting SER values for the Colour Wheel Task dataset. 
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Figure S49. Post-hoc tests for the SER values for the Colour Wheel Task dataset. 

Artifact-to-Residue-Ratio in the Colour Wheel Task dataset 

There was also a significant difference in ARR between the pipelines; F(3, 63.1) = 174.004, 

p < 0.0001. The rank order of significant differences between individual cleaning pipelines 

from post-hoc t-tests was as follows: wICA_all > HAPPE > MWF_wICA_fastICA*^+, 

MWF_wICA_AMICA^+, MWF_wICA_infomax^+, ASR**+, ICA_subtract^^, wICA_ICLabel++, 

MWF_CCA^^@, MWF_only^^@@. 
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Figure S50. Raincloud plot depicting ARR values for the Colour Wheel Task dataset. 

 
Figure S51. Post-hoc tests for the ARR values for the Colour Wheel Task dataset. 
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 ARR SER 

Pipeline Mean SD Mean SD 

ASR 8.17 2.068 2.732 1.132 

HAPPE 16.05 2.276 0.961 0.343 

ICA_subtract 7.507 2.455 3.122 1.424 

MWF_CCA 6.673 3.09 5.952 2.543 

MWF_wICA_AMICA 8.572 2.797 3.704 1.479 

MWF_wICA_fastICA 9.057 2.786 3.408 1.374 

MWF_wICA_infomax 9.079 2.522 3.374 1.2 

MWF_only 6.326 3.115 7.142 3.812 

wICA_all 19.53 3.708 0.935 0.385 

wICA_ICLabel 7.042 2.514 4.231 1.637 

Table S9. Means and SDs for the SER and ARR from the Colour Wheel task. 

 

 
Figure S52. Scatter plot depicting the relationship between SER and ARR values for the 

Colour Wheel task dataset from each pipeline. 
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Blink Amplitude Ratio in the Colour Wheel Task dataset 

A significant difference was found in fBAR between the pipelines; F(2.09, 41.79) = 3.923, p = 

0.026. However, after controlling for multiple comparisons, no single pipeline showed higher 

values than any other pipeline in the post-hoc tests. 

 

 
Figure S53. Raincloud plot depicting fBAR values for the Colour Wheel Task dataset. 

 
Figure S54. Post-hoc tests for the fBAR values for the Colour Wheel Task dataset. 
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Similarly, a significant difference was found in allBAR between the pipelines; F(2.28, 45.53) 

= 4.184, p = 0.018. However, very few differences were present in the post-hoc tests, with 

wICA_all performing better than ICA_subtract, wICA_ICLabel, and ASR, and 

MWF_wICA_infomax and MWF_wICA_AMICA, performing better than ICA_subtract, 

wICA_ICLabel, and finally, and MWF_wICA_fastICA performing better than ICA_subtract. 

  

 
Figure S55. Raincloud plot depicting allBAR values for the Colour Wheel Task dataset. 

 
Figure S56. Post-hoc tests for allBAR values for the Colour Wheel Task dataset. 
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Frontal Blink 
Amplitude Ratio 

All electrode Blink 
Amplitude Ratio 

Pipeline Mean SD Mean SD 

ASR 1.077 0.07 1.081 0.07 

ICA_subtract 1.273 0.486 1.19 0.253 

MWF_CCA 1.321 0.446 1.185 0.257 

MWF_wICA_AMICA 1.207 0.437 1.139 0.237 

MWF_wICA_fastICA 1.229 0.486 1.147 0.26 

MWF_wICA_infomax 1.184 0.43 1.123 0.226 

MWF_only 1.316 0.44 1.177 0.25 

wICA_all 1.02 0.019 1.017 0.014 

wICA_ICLabel 1.245 0.419 1.176 0.23 

Table S10. BAR value mean and SDs from the Colour Wheel Task dataset. 

Muscle Activity Statistics for the Colour Wheel Task dataset 

There was a significant difference between the pipelines in the proportion of epochs showing 

muscle above the threshold after cleaning; F(1.64, 36.01) = 566.588, p < 0.0001. Post-hoc 

tests indicated that wICA_all and HAPPE performed more poorly than all other pipelines, but 

no other pipelines differed from any other pipeline. 
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Figure S57. Raincloud plot depicting the proportion of epochs showing muscle activity after 

cleaning for the Colour Wheel Task dataset. 

 
Figure S58. Post-hoc tests for the proportion of epochs showing muscle activity after 

cleaning for the Colour Wheel Task dataset. 

 

There was a significant difference between the pipelines in the severity by which the log-

power log-frequency slope exceeded the muscle threshold within epochs that exceeded the 

threshold; F(2.26, 42.86) = 15.214, p < 0.0001. For this metric, post-hoc tests indicated that 



72 
 

wICA_all performed more poorly than all other pipelines, followed by HAPPE which 

performed more poorly than all pipelines except wICA_all. No other pipeline differed from 

any other pipeline. 

 

 
Figure S59.  Raincloud plot for the severity by which the log-power log-frequency slopes 

exceed the threshold in epochs that show slopes indicative of muscle activity after cleaning 

for the Colour Wheel Task dataset. 

 
Figure S60. Post-hoc tests for the severity by which the log-power log-frequency slopes 

exceeded the threshold in epochs showing muscle activity after cleaning. 
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Proportion of 
epochs showing 
slopes that 
indicate muscle 
activity after 
cleaning 

Severity of slope that 
exceeded muscle 
slope threshold in 
epochs showing 
muscle slopes after 
cleaning 

Pipeline Mean SD Mean SD 

ASR 0.007 0.007 0.192 0.078 

HAPPE 0.816 0.218 0.266 0.049 

ICA_subtract 0.004 0.004 0.193 0.093 

MWF_CCA 0.014 0.022 0.174 0.099 

MWF_wICA_AMICA 0.019 0.034 0.185 0.163 

MWF_wICA_fastICA 0.027 0.048 0.158 0.057 

MWF_wICA_infomax 0.023 0.053 0.151 0.077 

MWF_only 0.077 0.112 0.202 0.144 

wICA_all 0.99 0.037 0.363 0.057 

wICA_ICLabel 0.028 0.048 0.182 0.085 

Table S11. Means and SDs for muscle metrics from the Colour Wheel Task dataset. 
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SECTION SEVEN 

Supplementary discussion points 

When considering the reduction of the influence of blinks, across all the pipelines, it is worth 

noting that the MWF_wICA methods perform the best across both frontal electrodes and all 

electrodes. wICA_ICLabel and ICA_subtract performed the worst. Our perspective is that 

this highlights the advantage of using a two-step process to address blink artifacts, providing 

redundancy (in case one step inadequately addresses the artifact, the other step is still likely 

to address it), while each step still provides discrimination between the influence of the 

artifact and brain activity not influenced by the artifact. As such, if the MWF cleaning 

completely addresses the blink artifact, ICLabel will not detect any blink artifact and thus will 

not attempt to clean periods that were affected by blinks in the raw data, preventing 

overcleaning. However, it seems that not all two-step cleaning approaches were as effective. 

In contrast to the results for MWF_wICA, the ASR method (which also applied ICA_subtract) 

appeared to inadequately correct for blinks. 

 

In terms of the amount of variance detected by ICLabel to be explained by brain activity after 

cleaning, the MWF_wICA methods and wICA_ICLabel performed the best, better than 

MWF_only and wICA_all. Additionally, while our data also indicated that 

MWF_wICA_infomax may perform better than MWF_wICA_fastICA and 

MWF_wICA_AMICA on this metric, this may be a product of the infomax algorithm being 

used both for cleaning and for detection of brain variance in the measure, the effect of which 

we are not sure, but which may have biased results towards that cleaning pipeline. 

 

MWF_only provided slightly lower ARR values (similar to MWF_CCA and wICA_ICLabel), 

but higher SER values than the MWF_wICA methods (and MWF_CCA and wICA_ICLabel). 

As such, if the aim of a study were to maximise SER (indicating minimal adjustment of EEG 

periods deemed to be clean by our initial artifact marking template), MWF_only could be 

recommended over MWF_wICA, MWF_CCA and wICA_ICLabel methods. However, 

MWF_only led to less variance explained by the experimental manipulation for working 

memory metrics and resting alpha RMS, a lower proportion of variance explained by brain 

activity after cleaning when measured by ICLabel, and MWF_only left more blink and muscle 

artifact than other methods, so may not eliminate artifacts as effectively, producing less 

reliable results (with less power to detect differences in experimental designs). Part of this is 

likely to be due to the fact that the MWF cleaning was only set up to clean blinks, muscle 

activity, horizontal eye movements and drift (and not other atypical artifacts), so may have 

left noise behind that reduced the ability to detect the experimental effects compared to the 

more effective cleaning pipelines. Part of the explanation is also likely to be due to the 

benefits of the double artifact reduction approach used by the methods that applied both 

MWF cleaning and then wICA or CCA, increasing the cleaning efficacy in these pipelines 

compared to MWF_only. We think it is beneficial to apply wICA after MWF, both to catch 

atypical artifacts, and to address artifacts that MWF cleaning alone might have not cleaned 

completely (muscle activity seems to be the most significant example of activity that MWF 

cleaning missed in many cases). 

 

Conversely, wICA_all and HAPPE provided very high ARR values, but at the expense of 

also providing very low SER values. These methods lead to power-frequency slopes that 
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were very shallow, which would typically suggest muscle activity remaining after cleaning 

due to a high proportion of high frequency power. We suspect the shallow slopes may be 

driven more by the removal of low brain activity by these methods, as a result of applying 

wICA to all components (leading to the removal of considerable brain activity from the data 

as many components are primarily brain activity rather than artifact). Consistent with this 

interpretation, wICA_all and HAPPE provided much smaller values for many measures of 

variance explained by the experimental manipulation (with a few specific counter-examples 

to this trend that may have been produced by the almost complete elimination of alpha brain 

activity in the low strength activity condition). However, it is also worth noting that wICA_all 

and HAPPE both showed more power in the beta frequencies relative to the total spectrum 

than other pipelines, so it may also be that wICA_all and HAPPE are inadequately cleaning 

muscle activity, despite over-cleaning the signal. 

 

For researchers interested in connectivity measures, it may be useful to note that cleaning 

EEG data using wICA to reduce artifact components (and only the artefactual contribution of 

the artifact component, in theory) does not reduce the rank of the data, so might allow for 

higher resolution of nodes when using connectivity analysis in the source space (in contrast 

to subtracting ICA components, which does reduce the rank) [5]. We think that it is also 

worth noting that although the difference was small, our results seemed to suggest that 

applying ICA or wICA in a pipeline reduced the difference in the distribution of alpha activity 

between eyes open and eyes closed resting compared to the analogous method that did not 

apply ICA or wICA (MWF_only > all MWF_wICA methods and MWF_CCA > 

MWF_wICA_CCA). However, we could see no obvious reason for this, and note that 

inspection of the power-frequency plots from parieto-ocipital electrodes indicates that the 

ICA_subtract and wICA_ICLabel pipelines led to the largest values for alpha power, 

suggesting these methods were the best at preserving the alpha oscillations in these 

electrodes where the alpha signal is most prominent. 

Limitations and Potential improvements 

It is worth noting that the SER and ARR metrics may be biased towards pipelines that 

cleaned the same time periods as those used to calculate ARR (for example, those that 

used MWF). The periods used to calculate SER and ARR were contained blinks, horizontal 

eye movement, muscle activity and voltage drift. However, atypical artifacts (that do not 

belong to these categories) were not included in the artifact templates for computation of the 

SER and ARR cleaning efficacy metrics, potentially biasing these metrics against cleaning 

methods that address atypical artifacts (such as ICA_subtract and ASR), and towards 

methods that do not clean atypical artifacts (such as MWF_only, which may explain the high 

SER values for this pipeline). As such, to provide a fair assessment of each of the pipelines, 

we have also included other metrics such as remaining muscle, blink amplitude ratio, epochs 

remaining after cleaning and epoch rejection, the variance explained by neural activity after 

ICA component selection by ICLabel, the reliability of extracted ERPs, and the variance 

explained by the experimental manipulation (as a pragmatic measure of high practical 

importance). These other methods aligned with the SER and ARR metrics in suggesting 

MWF_wICA was amongst the best performing pipeline at cleaning artifacts. 

 

Our data was all sampled at 1000Hz. Higher sampling rates may require more of a 

computer’s resources and slow down the cleaning pipeline. However, 1000Hz is a 
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sufficiently high sampling rate for the study of essentially all ERP or oscillation analyses. 

Sampling rates as low as 250Hz are still cleaned effectively be our pipeline (however, we 

have not tested the pipeline on sampling rates lower than this). Additionally, the MWF 

cleaning of large files can use all a computer’s RAM if the computer has <8GB of RAM. We 

recommend using a computer with more RAM (much of our data was processed using 32GB 

of RAM) or reducing the sampling rate of the data if “out of memory” errors occur. 

 

There are a number of potential improvements we think are worth exploring in future artifact 

cleaning pipeline development. Firstly, taking into account temporal data when performing 

the ICA strikes us as potentially valuable. This can be achieved by using independent vector 

analysis [38] instead of more traditional ICA methods. Previous research has suggested this 

indeed does lead to improved artifact reduction [12]. However, in our preliminary tests of an 

independent vector analysis approach, we were unable to work out how to obtain sensible 

decompositions or cleaned data using these methods, so we suggest that more explanatory 

or tutorial publications on these methods would be helpful. 

 

Another potential improvement is that using adaptive wICA thresholds rather than a fixed 

threshold may improve the separation of signal and artifact, leading to improved cleaning 

with higher levels of signal left after cleaning. Currently, RELAX implements wICA with a 

fixed threshold (mult = 1). Lower thresholds may reduce the potential neural activity in a 

component (the low amplitude activity within a component) by a larger amount, whereas 

higher thresholds reduce this low amplitude activity within the component by less. Adaptive 

wICA thresholds have been implemented in previous research and researchers have 

suggested the default threshold removes too much of the signal [39]. We were unable to find 

an evidence-base for an optimal threshold, so we used the default approach. We also 

experimented with using a data driven approach to set the threshold, with level dependent 

Bayes as suggested in the updated version of HAPPE (HAPPILEE) [40]. However, we found 

this approach to perform more poorly than the standard threshold (generally not cleaning 

artifacts as well as standard wICA applied to artifact components). Ideally, we think the 

threshold should be based on the type of artifact, and perhaps even the confidence that 

ICLabel provides that the component is an artifact, with components that are more likely to 

be artifact being more heavily reduced by the wICA approach. wICA could even be adapted 

to specifically focus on the frequencies that should be minimized in a specific artifact 

component, for example high frequencies for muscle activity components.  

 

Additionally, although we used 60 microvolts as our epoch rejection criteria after cleaning, 

we noticed that for some participants with very large alpha activity, some epochs were 

rejected that did not appear from visual inspection to be contaminated with artifacts, but 

rather just showed very high alpha power. We would suggest perhaps using 100 microvolts 

as the criteria for remaining artifacts. We also noticed that all data cleaning methods seemed 

to reduce the amplitude of the higher-powered alpha oscillation periods. We suspect this 

might be due to a mixing of alpha activity into the MWF artifact cleaning templates and the 

ICA artifact components. It may be that adjusting the wICA threshold or having fewer MWF 

cleaning steps could address this at least in part, but we suggest future research explore 

more sophisticated methods to address the discrimination of signal and artifact to avoid 

cleaning signal from the data. 
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RELAX was also designed to clean data without the need for electrodes dedicated to 

recording eye movements or electrocardiogram data. The intention was to maximise 

consistency, given that in our experience, eye electrodes are more commonly excluded as 

bad than scalp electrodes. However, while the eye movement identification function in 

RELAX is highly effective, it is likely that when available, eye electrodes would provide 

superior identification of eye movements. As such, future research could explore including 

eye electrodes to identify eye movements if they are available, while using the default 

RELAX settings when they are not. Similarly, while ICLabel identifies electrocardiogram 

artifact components without specific electrodes, it may be that these components could be 

more effectively identified if information from electrocardiogram electrodes is provided, an 

adjustment that future research could also explore. 

 

Finally, we note that for future cleaning pipeline development, in order to optimise a cleaning 

pipeline, some measures need to be considered together. For example, a pipeline is only 

superior to previous pipelines if SER and ARR measures are both higher concurrently, or if 

SER is higher while ARR remains the same (or vice versa). Blink amplitude ratio should be 

as close to 1 as possible and as few epochs showing muscle slope and as small muscle 

slopes as possible in epochs that do show muscle activity remaining. However, if these 

measures are reduced and at the same time the variance explained by the experimental 

manipulation is reduced, the pipeline is not an improvement over previous pipelines (unless 

it can be demonstrated that the variance explained by the experimental manipulation in a 

previous pipeline was due to an artifact alone, and not brain activity). 
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SECTION EIGHT 

Cleaned dataset examples 

 
Figure S61. Raw data example 

 

 
Figure S62. MWF_wICA_infomax cleaned example 
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Figure S63. MWF_ICA_subtract cleaned example 

 

 
Figure S64. ICA_subtract cleaned example 

 



80 
 

 
Figure S65. wICA_ICLabel cleaned example 

 

 
Figure S66. wICA_all cleaned dataset 
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Figure S67. MWF_only cleaned example 

 

 
Figure S68. MWF_CCA cleaned example dataset 
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Figure S69. MWF_wICA_CCA cleaned dataset 

 

 
Figure S70. ASR cleaned dataset 
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Figure S71. HAPPE cleaned dataset 
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