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Supplementary Materials 

Section 1: Testing of Initial Pre-processing Parameter Settings - Methods 

Prior to our primary analyses, in order to determine which aspects of the data our primary analyses 

should focus on, we first examined the ERP data without any artifact cleaning to determine the ERP 

periods that showed potential experimental effects that seemed worth examining in our primary 

analyses. To achieve this, we tested the effect sizes produced by between condition comparisons of 

the data without the application of any artifact reduction method, but instead after the exclusion of 

extreme artifact data segments, electrodes, and periods affected by blinks after bandpass filtering 

the data (using a range of bandpass limits, described below). While we note that a primary message 

of our study is that the optimization of experimental effect sizes can be a misleading metric to assess 

optimal data cleaning due to the potential inflation of effect sizes by component-based artifact 

reduction methods, the issue is unlikely to apply when assessing effect sizes without implementing 

any component reduction method. As such, assessment of the effects of different filtering 

approaches and different extreme artifact rejection settings on effect sizes without the application 

of a component subtraction artifact reduction method is still a valid method to determine optimal 

settings. To determine effect sizes, we used a topographical ANOVA (TANOVA) (Koenig, Kottlow, 

Stein, & Melie-García, 2011). The TANOVA subtracts the values at all electrodes in the first condition 

from the mean at all electrodes from the second condition, followed by the calculation of the global 

field potential on this difference topography, which produces a global dissimilarity topography that 

reflects the overall difference between conditions including all electrodes after cleaning by each 

pipeline (Koenig et al., 2011). 

Within the Go/No-go data, there were significant and prominent between condition effects within 

the N2 window from 185 to 315ms and the P3 window from 315 to 500ms. Within the N400 data, 

there were significant and prominent between condition effect from 340 to 480ms. These time 

windows align with time windows for these ERPs used in previous research. As such, these periods 
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were used to test the effects of different filtering, extreme artifact rejection, and artifact cleaning 

approaches in our primary analyses. We note that the between condition effects were statistically 

significant for longer durations after artifacts were removed (in alignment with the intended goal of 

artifact reduction methods). Nonetheless, for our primary analyses we restricted our comparisons to 

the time-window that showed significant between condition differences prior to artifact cleaning. 

This ensured our primary comparisons were not biased by any particular artifact cleaning method, 

protecting our results against potential biases that might be caused by a scenario where a specific 

artifact reduction approach prolonged between condition ERP effects while other artifact reduction 

approaches did not.  

Next, in addition to the primary analyses reported in the main manuscript, we explored the pre-

processing settings that preceded the component-based artifact reduction. These pre-processing 

settings included commonly applied bandpass filtering, as well as EEG electrode and period rejection 

steps based on extreme outlying artifacts. Prior to applying artifact reduction methods, it is typical to 

filter the data and reject electrodes and data periods that are extremely contaminated with artifacts 

(under the assumption that any signals lying under the extreme artifact signals are likely to be 

irretrievable, or that the artifact is so severe its inclusion will adversely affect the performance of 

component-based artifact reduction approaches). Filtering the data reduces the contribution of 

extremely high frequency activity that is more likely to reflect muscle activity or artifacts than brain 

activity (Muthukumaraswamy, 2013) and extremely low frequency activity that is unlikely to contain 

a neural response to stimuli (Rousselet, 2012). High-pass filtering approaches are commonly 

implemented to reduce the confounding effects of very low frequency drift on ERPs (Rousselet, 

2012). However, filter settings are debated. Traditional perspectives suggest that setting high-pass 

filters to exclude frequencies above 0.25Hz can reduce the amplitude of late ERPs (Rousselet, 2012; 

Tanner, Morgan‐Short, & Luck, 2015). In contrast, recent research has suggested that high-pass 

settings of 0.5Hz or higher can more optimally detect effects of interest (Delorme, 2023). 

Furthermore, ICA performance is adversely affected when frequencies below 1Hz are included 
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(Winkler, Debener, Müller, & Tangermann, 2015), and we have demonstrated a similar performance 

reduction for MWF cleaning approaches (Bailey, Hill, et al., 2023). Furthermore, because filtering the 

data involves performing a mathematical transform on each timepoint based on the surrounding 

timepoints, filtering can introduce its own artifact contribution to the data, particularly when large 

amplitude spikes are present. As such, robust detrending has been suggested as an alternative to 

filtering the data (de Cheveigné & Arzounian, 2018).  

In an attempt to determine optimal filter settings for our data (which we could use in our primary 

analyses), we tested the effects of applying fourth order acausal Butterworth high-pass filters at 

0.25Hz, 0.5Hz, 0.75Hz and 1Hz to the ERP comparisons without any artifact reduction methods 

applied. We also tested the application of a second order polynomial robust detrending approach 

instead of any high-pass filter (de Cheveigné & Nelken, 2019). Additionally, to ensure the results of 

these tests were not simply related to artifacts remaining in the data, and to ensure the filter or 

robust detrending settings did not interact with the artifact cleaning approaches, we tested effect 

sizes provided by the same settings followed by artifact reduction using the wICA default cleaning 

within RELAX (Bailey, Hill, et al., 2023) for the Go Nogo dataset, and using our newly developed 

targeted wICA cleaning for the N400 dataset. The default wICA cleaning was applied to the Go Nogo 

dataset as our first test of potential interactions between filtering and artifact cleaning pipelines as a 

reasonable default cleaning approach to ensure our selection of filter settings was not biased 

towards a specific cleaning approach. However, after we had established filter settings with these 

initial tests, we used targeted wICA to test for potential interactions between filtering and cleaning 

within the N400 dataset. For these post-artifact reduction comparisons, we included all epochs, 

under the assumption that artifacts were effectively cleaned by the artifact reduction method. We 

note that these comparisons may be influenced by the effect size inflation that can be produced by 

artifact component reduction approaches. As such, we interpreted these results with caution, and by 

referring to the results that were produced without applying any artifact reduction to check for 
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alignment between the results following artifact reduction and the results that were robust to 

potential effect size inflation.  

Similar to the debate around filter settings, there is no agreed consensus on how contaminated by 

artifacts an EEG electrode or data period from the raw data should be before it is entirely rejected 

prior to any further artifact reduction. Our perspective has been that data periods that are so 

contaminated they are unlikely to contain retrievable neural data should be rejected, and electrodes 

that are contaminated by artifacts for a duration that is extensive enough that their inclusion would 

likely adversely affect ICA decompositions or lead to rejection of an excessive number of epochs 

should be rejected (Bailey, Biabani, et al., 2023). However, recent work has suggested that minimal 

electrode rejection and no rejection of data periods is an optimal approach (Delorme, 2023).  

To address this uncertainty, we tested the effect of different extreme outlying data exclusion 

settings prior to artifact reduction methods, on outcomes of between condition comparisons, and 

on the degree of ERP distortion produced by the artifact reduction methods applied after the 

extreme artifact rejection step. We tested four different approaches, which are summarised in 

Supplementary Table S1: 1) the minimal approach suggested by Delorme (2023), where electrodes 

that showed a correlation below r < 0.9 with any other electrode were excluded, as were electrodes 

that showed 50 or 60Hz line noise that was more than 4SD from the mean of all electrodes, but no 

data period exclusions were implemented; 2) the RELAX default electrode and extreme period 

rejections (which are reasonably aggressive). This approach first selects electrodes for deletion 

based on which electrodes are most severely contaminated by artifacts (with a maximum of 20% of 

electrodes able to be rejected). It then selects the worst data periods for rejection using the 

following methods: outlier detection within the distribution of voltage values (>8 SD from the mean), 

the kurtosis of voltage values (>8 SD from the mean), extreme voltage values (>500µV), extreme 

voltage shifts, and extreme log-power log-frequency slopes reflecting either high amplitude low 

frequency drift or very large amplitude high-frequency muscle activity within each 1 second period 
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of the data; 3) a more moderate stringency RELAX electrode and extreme period rejection approach, 

which involved less aggressive settings so fewer electrodes and data periods were rejected. This 

moderate approach allowed a maximum of 10% of electrodes able to be rejected, and set extreme 

rejection thresholds to >10 SD from the mean, and extreme voltage thresholds to > 1000µV; and 4) A 

light version of the RELAX electrode and extreme period rejection approach, which allowed a 

maximum of 10% of electrodes able to be rejected, and with minimally aggressive settings so even 

less data were rejected. The thresholds for rejections under this version were set to >12 SD from the 

mean and the extreme voltage threshold was set to > 1000µV. 
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Parameter RELAX default 

(stringent) 

RELAX moderate RELAX light Minimal 

(Delorme) 

Maximum voltage shift within each 1s period 20 MAD from the 

median of all 

epochs 

25 MAD from the 

median of all 

epochs 

30 MAD from the 

median of all epochs 

N/A 

Maximum voltage shift within each blink affected period 8 MAD from the 

median of all 

epochs 

10 MAD from the 

median of all blink 

affected periods 

12 MAD from the 

median of all blink 

affected periods 

N/A 

Absolute voltage threshold 500µV 1000µV 1500µV N/A 

Improbable voltage distribution 8SD 10SD 12SD N/A 

Kurtosis 8SD  10SD 12SD N/A 

Proportion of time contaminated by muscle before an electrode 

can be rejected (log-power log-frequency slope for detecting 

muscle) 

0.05 (-0.59) 0.50 (-0.31) 0.50 (-0.31) N/A 

Proportion of time contaminated by extreme artifacts before an 

electrode is rejected 

0.05 0.25 0.40 N/A 
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Max proportion of electrodes that can be removed 0.20 0.10 0.10 N/A 

Line noise electrode rejection threshold N/A N/A N/A 4SD 

Correlation with other electrodes required N/A N/A N/A 0.9 

Supplementary Table S1. Extremely bad electrode and EEG data period rejection settings that were tested in our preliminary tests to determine the optimal 

settings for our primary analyses. MAD = median absolute deviation. 
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Testing of Initial Pre-processing Parameter Settings - Results  

Overall, results indicated that high-pass filtering the data at 0.5Hz was optimal for detecting 

differences in the Go/Nogo P3, while high-pass filtering at 1Hz was optimal for the Go/Nogo N2 

(Table S2). These settings were optimal both when the data were tested without any artifact 

reduction and when the data were cleaned with wICA, suggesting the effect of filter settings did not 

interact with the wICA artifact reduction method. However, within the N400 dataset, data without 

any artifact reduction applied suggested that high-pass filtering at 0.5Hz filtering was best, while if 

targeted wICA was used to reduce artifacts in the data, high-pass filtering at 0.75Hz performed best. 

To ensure the results of our primary tests were not biased by an interaction between the high-pass 

filter settings and the cleaning method, and in an attempt to minimize the potential adverse effects 

of filtering, we high-pass filtered all data at 0.5Hz prior to our primary comparisons. This is also in 

alignment with the optimal settings for the data before any artifact reduction method was applied 

for both the P3 and N400. However, we note that if artifact reduction methods are applied in future 

research, then high-pass filtering at 0.75Hz might be more effective for the N400. We also note that 

future research may find high-pass filtering at 1Hz is more optimal for examining the N2. 

We note that these results conflict with previous suggestion that high-pass filtering settings above 

0.25Hz adversely affect analysis of the P3 (Rousselet, 2012; Tanner et al., 2015). High-pass filtering 

above 0.3Hz has been suggested to reduce late-latency ERP amplitude and produce filter artifacts 

such that an ERP peak can be surrounded by a filter-artifact effect that shows an inverted polarity 

ERP (Tanner et al., 2015). This would argue against the application of high-pass filter settings at 

0.5Hz to 1Hz. However, we note that despite the potential presence of the filter artifacts in our data, 

the maximum effect sizes for the N2, N400, and P3 at a single timepoint (at the ERP’s maximum) 

were larger when our data were high-pass filtered at 1Hz, 0.75Hz, and 0.5Hz respectively. While the 

inverted polarity filter artifacts demonstrated by Tanner et al. (2015) could produce an inflated 

effect size on either side of an ERP’s peak, we have not seen any evidence that a filter artifact could 
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enhance an effect size at the ERP’s peak, or adversely affect the ERP waveform for only a single 

condition and not another condition. Indeed, since filtering is achieved by multiplying each 

timepoint by a weighting transform function of the surrounding timepoints (de Cheveigné & Nelken, 

2019), it is unlikely (or perhaps even impossible) that a local maximum could be enhanced by 

filtering (and it is more likely for a local peak to be diminished). This suggests that although filtering 

artifacts may be an issue, it seems likely that at least in the two datasets we tested, the presence of 

low frequency drift that reduced the ERP effect was more of an issue, and that high-pass filter 

settings are optimal at 0.5Hz or higher. Furthermore, although the application of filters to EEG data 

has been suggested to be non-optimal (de Cheveigné & Nelken, 2019), high-pass filtering the data 

was associated with larger effect sizes for all datasets and ERPs than the robust detrending approach 

suggested by de Cheveigné and Arzounian (2018). 

One potential reason for our filtering result is that it may be possible that high-pass filter settings 

above 0.25Hz do reduce late ERP amplitudes, but also mitigate drift confounds that reduce detection 

of the between condition effects of interest. In particular, we note that our Go/No-go task displayed 

stimuli at 0.9Hz with a random 50ms jitter which commonly produced a low frequency oscillation 

that was synchronised to the stimulus presentation timing. Additionally, our data often showed 

prominent low frequency drift. Reducing the low frequency drift and slow oscillation synchronised to 

stimuli by using higher high-pass filter settings may have improved the ability to distinguish between 

the two conditions, despite potentially reducing the P3 amplitude. Delorme (2023) similarly reported 

improved performance with higher high-pass settings (>0.5Hz), suggesting that our findings are not 

an anomaly and perhaps conventional wisdom on high-pass filtering settings should be 

reconsidered. Given that our results indicated 0.5Hz high-pass filtering produced optimal effect sizes 

when no artifact reduction methods were applied for two out of the three ERPs, we applied the 

0.5Hz high-pass filtering in our primary analyses. This is with the exception of the DSS method, 

where we replicated the approach suggested by de Cheveigne (2023) as closely as possible (including 

applying robust detrending rather than filtering prior to cleaning).   
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Next, results indicated that applying extreme electrode and data period rejections with the 

moderate stringency or light stringency settings using RELAX provided larger effect sizes than other 

extreme rejection settings, depending on the dataset and ERP analysed (Table S3). Specifically, 

moderate stringency extreme rejections led to more variance explained for the Go Nogo P3, while 

light stringency settings led to (slightly) more variance explained for the Go Nogo N2, and more 

variance explained for the N400. We also tested the amount of ERP distortion that resulted from 

different extreme artifact rejection settings prior to applying a default wICA cleaning (for the Go/No-

go dataset) and prior to applying targeted wICA (for the N400 dataset). As per our primary 

comparisons, we achieved this by computing the RMSE between the ERP after extreme artifact 

rejections but prior to application of the wICA artifact reduction method to the ERP after both the 

same extreme artifact rejections and after wICA cleaning, with all ERPs obtained from a fronto-polar 

electrode (FPz in the Go/No-go data and FP1 in the N400 data). However, in contrast to our primary 

results (which report the RMSE values after only reducing eye movement artifact components), for 

these analyses, to provide a test that aligns with the real world application of artifact reduction 

methods, we used wICA to clean all types of artifacts (using RELAX’s wICA default for the Go/No-go 

dataset), or both eye movement and muscle artifacts (using targeted wICA for the N400 dataset). 

We note that including these other artifacts in the cleaning approach led to higher RMSE values than 

was the case for our primary analyses. These comparisons showed a significant difference between 

the different extreme artifact rejection settings for the N400 dataset: F(3, 26) = 3.476, p = 0.030, ηp² 

= 0.118, ηG² = 0.032 (see Table S4). Post-hoc t-tests within this N400 dataset indicated that the 

effect was driven by the RELAX moderate extreme artifact rejection settings performing better than 

the extreme artifact rejection settings proposed by Delorme (2023) (pHolm = 0.046), while other 

pairwise comparisons did not significantly differ (all pHolm > 0.010). However, there was no 

significant difference between the different extreme artifact rejection settings for the Go/No-go 

dataset, where RELAX’s wICA default approach was used to reduce artifactual components: F(3,63) = 

2.295, p = 0.115, ηp² = 0.035, ηG² = 0.002. 
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High-pass filter 

settings 

Go Nogo  

N2 

Go Nogo  

P3 

Relevant/Irrelevant 

N400 

No cleaning 

Robust detrending 21.98 26.37 7.65 

0.25Hz 22.36 24.51 15.49 

0.5Hz 24.71 30.07 18.67 

0.75Hz 25.71 30.01 17.92 

1Hz 29.42 29.49 18.21 

wICA 

Robust detrending 22.55 34.35 26.20 

0.25Hz 25.39 43.61 25.92 

0.5Hz 25.51 43.78 32.77 

0.75Hz 33.93 43.53 34.87 

1Hz 36.09 41.93 32.79 

Supplementary Table S2. ηp² effect sizes for TANOVA comparisons between Go and Nogo trials 

using different filter settings, followed by the exclusion of eye movement affected epochs and grand 

averaging to obtain ERPs (above), or the reduction of artifacts using wICA (for the Go/Nogo dataset, 

below) or targeted wICA (for the N400 dataset) and grant averaging to obtain ERPs from all epochs 

(including eye movement artifact epochs, as these were reduced by wICA cleaning). 

 

Extreme electrode 

and data period 

rejections 

Go Nogo  

N2 

Go Nogo  

P3 

Relevant/Irrelevant 

N400 

0.5Hz high-pass filter 
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RELAX defaults (high 

stringency) 

25.51 43.78 29.36 

RELAX moderate 

stringency 

29.31 44.41 32.77 

RELAX light stringency 29.48 43.88 35.48 

Minimal rejections 

(Delorme) 

27.73 42.76 29.15 

1Hz high-pass filter 

RELAX defaults (high 

stringency) 

36.09 41.93 These tests were not 

performed, as the 1Hz 

high pass filter setting 

was not optimal for 

the N400 ERP.  

RELAX moderate 

stringency 

35.83 41.95 

RELAX light stringency 36.14 42.34 

Minimal rejections 

(Delorme) 

24.86 34.47 

Supplementary Table S3. ηp² effect sizes for TANOVA comparisons between conditions after 

applying different extreme artifact rejection settings, followed by the reduction of artifacts using 

wICA (for the Go/Nogo dataset, above) or targeted wICA (for the N400 dataset, below) and grant 

averaging to obtain ERPs from all epochs (including blink affected epochs, as these were reduced by 

artifact cleaning). 

 

Extreme electrode and data period rejections Go/No-go  

Go Mean (SD) 

Nogo Mean (SD) 

Relevant/Irrelevant 

Relevant Mean (SD) 

Irrelevant Mean (SD) 

0.5Hz high-pass filter 
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RELAX defaults (high stringency) 1.598 (0.745) 

1.286 (0.623) 

0.868 (1.098) 

0.776 (0.817) 

RELAX moderate stringency 1.607 (0.731) 

1.286 (0.594) 

0.774 (0.774) 

0.726 (0.789) 

RELAX light stringency 1.616 (0.728) 

1.287 (0.591) 

1.104 (0.994) 

1.045 (0.884) 

Minimal rejections (Delorme) 1.519 (0.771) 

1.234 (0.693) 

1.149 (1.061) 

1.153 (1.057) 

Supplementary Table S4. Root mean square error values between the averaged ERP within each 

participant for each condition separately after applying different extreme artifact electrode and 

period rejections using either the default RELAX wICA settings (measured at FPz for the Go/Nogo 

dataset) or the targeted wICA settings which only addressed blinks and muscle activity (measured at 

FP2 for the N400 dataset). 

 

One potential caveat to these results is that extreme rejection settings for the Go/No-go dataset 

were tested using the default wICA, which our primary results demonstrated could inflate effect 

sizes because of imperfect source separation. However, our test of the RMSE between the ERPs 

before and after artifact reduction with the wICA default approach at a fronto-polar electrode 

suggested that the different extreme rejection settings were not associated with differences in the 

distortion of the ERP in the Go/No-go dataset (see Supplementary materials Table S4, Section 1). 

Additionally, when we tested the targeted wICA cleaning approach in the N400 dataset, our results 

indicated that the RELAX moderate extreme artifact rejection approach was associated with the 

least distortion of ERPs (see Supplementary materials Table S4, Section 1), performing significantly 

better than the approach suggested by Delorme (2023). As demonstrated by our primary analyses 

reported in the main manuscript, targeted wICA restricts artifact cleaning to only eye-movement 
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artifact periods and muscle activity frequencies, so the enhanced performance of the moderate 

extreme artifact rejection approach is unlikely to be due to the distortion of ERPs by component 

rejection. Instead, we suspect this result is caused by the less aggressive extreme rejection 

approaches including more high amplitude artifacts that exceed the thresholds for cleaning within 

the targeted wICA function, while not necessarily exceeding the criteria we set to exclude the raw 

epochs for the analysis of RMSE. As a result, these extreme artifacts may have influenced the raw 

ERP, and were cleaned by the targeted wICA, leading to a larger divergence between the raw and 

cleaned ERP and a higher RMSE.  

In contrast, the moderate extreme rejection settings may have excluded the EEG periods and 

electrodes that would contribute to the threshold being exceeded for targeted wICA to apply 

cleaning, leading to an increased match between the raw ERP and cleaned ERP. The effect on our 

results of including these extreme artefacts is uncertain, as our metrics do not capture their impact. 

As such, we cannot determine the effect of removing these artifacts prior to ICA decomposition in 

contrast to including and cleaning these extreme artifacts. However, given that these artifacts are 

selected based on the application of statistics to detect "extreme" outliers, we suggest it is better to 

assume they do not reflect retrievable neural activity and to exclude them, rather than assume they 

can be effectively cleaned without adversely affecting the performing of the artifact reduction 

methods. This approach of excluding more initial extreme artifacts does exclude more of the data, 

but it also reduces the differences between the pre-cleaned and post-cleaned data without leaving 

more artifacts in the data, an outcome that might be considered preferable and in alignment with a 

philosophy that minimally manipulating the data prior to analysis is desirable.  

Overall, given that a moderate to light stringency of extreme artifact rejection settings was 

associated with a larger between condition effect size, and the moderate stringency approach was 

associated with the least distortion of the ERP in the N400 dataset, we applied moderate stringency 

of extreme artifact rejection in our primary analyses. We also tentatively recommend that future 
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research apply a moderate to light stringency of extreme artifact rejection settings (Bailey, Biabani, 

et al., 2023; Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015; Nolan, Whelan, & Reilly, 2010). 

However, further research dedicated specifically to this issue is needed to explore extreme artifact 

rejection settings prior to ICA in more detail to determine the optimal approach.  
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Section 2: Comparison pipelines  

To determine the effects of component-based artifact reduction methods, we tested a range of 

pipelines after applying band-pass filtering the data using a fourth order Butterworth filter from 0.5 

to 80Hz, and notch filtering from 47 to 53Hz for the Go Nogo dataset and 57 to 63Hz for the N400 

dataset. We then applied the RELAX moderate stringency electrode and extreme artifact period 

rejections described in the previous section. Following the filtering and extreme artifact rejection 

steps, our targeted wICA method and eight comparator pipelines were tested. These included: 1) ICA 

subtract, 2) ICA subtract light, 3) wICA, 4) IVA, 5) MWF, 6) another novel method that we tested: 

canonical correlation analysis to clean muscle activity followed by generalised eigenvector 

decomposition to clean blinks (CCA GED), 7) DSS, and 8) a regression blink reduction method. The 

ICA subtract, ICA subtract light, and wICA methods all used the PICARD algorithm to decompose data 

(Frank, Makeig, & Delorme, 2022). The ICA subtract, ICA subtract light, wICA, and IVA methods all 

selected artifact components for reduction using ICLabel. Artifact components were identified when 

the classification likelihood was maximum for an artifact category by ICLabel for the ICA subtract, 

wICA, and IVA methods. A 0.8 likelihood threshold of being a blink or muscle component was used 

for the ICA subtract light pipeline. Artifact components were replaced with zeros prior to 

reconstruction into the scalp space for the ICA subtract, ICA subtract light, and IVA pipelines. For the 

wICA pipeline, a wavelet transform was applied to the artifact components in an attempt to 

characterise the artifact contribution to the component time-series, which was then subtracted from 

the original component, before the data were reconstructed back into the source space (Bailey, Hill, 

et al., 2023).  

The independent vector analysis (IVA) pipeline involved applying the IVA algorithm developed by 

Anderson, Adali, and Li (2011) to a matrix of the EEG data with a single delay embedding version of 

that same EEG data, with the delay embedding separated from the original data by 8ms. This 

approach has been reported to lead to excellent separation of blink and muscle artifacts (Barban, 



17 
 

Chiappalone, Bonassi, Mantini, & Semprini, 2021). In particular, the inclusion of the autocorrelation 

in the IVA algorithm makes it highly effective at separating muscle components (Barban et al., 2021).  

MWF was implemented by obtaining a template of the artifact and non-artifact periods in the data, 

then applying the MWF algorithm to characterize and clean the artifact periods (Somers, Francart, & 

Bertrand, 2018). This was performed with artifact periods being identified using the RELAX default 

settings (Bailey, Biabani, et al., 2023). A delay period of 8 samples was implemented, meaning that 

for the muscle artifacts, the delay embedded matrix used for MWF cleaning spanned 17 samples 

(with delay embeddings constructed every sample for 8 samples on either side of the original data). 

However, when cleaning blink artifacts, we implemented a delay spread, whereby each delay 

embedding was separated from its neighbouring delay embedding by 16ms (rather than 1ms, as 

would be the case with MWF’s traditional application when data are sampled at a commonly used 

1000Hz sampling rate). This characterised a full 272 samples (and ~272ms given our 1000Hz 

sampling rate for our Go Nogo dataset and 1024Hz sampling rate for the N400 dataset). Our 

informal testing indicated that characterising this broader period provided superior blink artifact 

cleaning compared to the original version of the MWF with delay embeddings every consecutive 

sample. Our primary results indicated that MWF with a sparsely separated delay embedding showed 

the (distant) second best performance at protecting the ERP waveform from distortion by cleaning 

(with targeted wICA performing the best). As such, if researchers are concerned about the number 

of algorithm degrees of freedom involved in our targeted wICA cleaning method, using a delay 

spread version of the MWF approach might be the next best option. To enable researchers to use 

this method, we have made it possible to set staggered delay embeddings within the MWF cleaning 

approach in the RELAX pipeline. Users should note that the MWF application within RELAX relies on 

the MWF algorithm introduced by Somers, Francart and Bertrand (2018), which should be cited if 

the MWF cleaning approach within RELAX is used. 
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We also tested the denoising source separation (DSS) method. To achieve this, we first separated the 

data into 4 second epochs time-locked to the Go and Nogo stimuli, then applied polynomial robust 

detrending with an order of 2 rather than band-pass filtering (as robust detrending is applied prior to 

DSS by the author of the method - de Cheveigne (2023)). We also cleaned the line noise prior to DSS 

using Zapline (de Cheveigné, 2020). Then, in an initial approach to address blink activity, periods 

within high amplitude components detected by DSS that exceeded 3SD were replaced with the 3SD 

value, as recommended within the DSS approach. Next, data were cut into shorter epochs (-100 to 

1000ms surrounding stimuli) and cleaned with a repeat-biased DSS, keeping 10 components (de 

Cheveigné & Parra, 2014). This repeat-biased DSS separates the data into components using the 

repeated ERP information within the trials, principal component analysis, and a bias filter to obtain 

components that involve enhancements of the power from the neural signal of interest and 

reductions of power from the noise sources (which includes artifacts). These components are ranked 

by the ratio of the signal power to the noise power, and components below a specific signal to noise 

ratio can be deleted (components above 10 in the case of our data). This approach has been 

suggested to enhance signal to noise ratios while relying less on potentially inconsistent modelling 

(as is the case for the blind source separation methods such as ICA, wICA, and IVA) (de Cheveigné & 

Parra, 2014). 

Next, we tested an additional component subtraction method that we developed in an initial 

attempt to address the imperfect source separation issue, which we refer to as CCA GED. This 

pipeline first applied an extended canonical correlation analysis to address muscle activity (Janani et 

al., 2018) then applied a generalised eigenvector decomposition (GED) to address blink activity. To 

achieve this, the pipeline used blink periods (identified by RELAX) to construct a signal covariance 

matrix and non-blink periods to construct a reference covariance matrix (Cohen, 2022). We then 

performed a GED to decompose data into components reflective of the maximal difference between 

the blink and non-blink periods. Component time-series that contained blink artifacts were identified 

as showing absolute amplitudes during blink periods that were significantly larger than non-blink 
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periods, tested using a one-way t-test of the ratio between the absolute amplitude within each blink 

period and the absolute amplitude of the overall data excluding blink periods, with the t-test testing 

for differences between this ratio and a value of 1. Components identified as reflecting blink artifacts 

were then replaced with zeros before scalp space data were reconstructed.  

Finally, for the N400 dataset that provided a VEOG electrode under the right eye, we tested an 

artifact aligned regression-based blink cleaning method, which involves subtracting beta weights 

from each electrode rather than subtracting an artifact component. To achieve this, we constructed 

a virtual VEOG electrode by subtracting the signal from the electrode under the right eye from the 

signal at FP2. We then applied the artifact aligned average method, averaging the data aligned to 

each blink maximum (detected by RELAX) to obtain a representation of the average blink activity at 

the reconstructed VEOG electrode and each EEG electrode. This artifact aligned average was used to 

obtain the beta weights with a least squares regression for the effect of the blink (measured with the 

virtual VEOG channel) on each EEG electrode, which were then used to correct the blink artifact in 

the continuous data (Croft & Barry, 2000).  
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Section 3: Supplementary Results – Muscle Artifact and Other Artifact Components 

 

Figure S1. Left: Event-related potentials (ERP) from the Go Nogo dataset at the FT7 electrode 

obtained from components that were identified as muscle artifacts using the ICA subtract method 

being projected back to the scalp space data only (top), and the artifact signal that was removed by 

the targeted wICA method (bottom). Note that because the targeted wICA method high-pass filtered 

the muscle artifact components at 15Hz before subtracting the muscle artifact components from the 

data, contribution from the P3 ERP is no longer mixed into the muscle artifact estimate, and the P3 

ERP contained in the muscle artifact component is therefore preserved in the data. In contrast, the 

ICA subtraction method removed the P3 ERP contribution along with the muscle activity. Although in 

this specific dataset, the P3 contribution captured within the muscle component was small in 

amplitude and did not differ between conditions (so its subtraction would have no effect on 

between condition comparisons at the scalp space), it is possible that the ERP caught within the 

muscle components might differ in other datasets, affecting between condition comparisons. Right: 
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The Go Nogo ERP constructed from the projection to scalp space data from only components that 

were identified as artifacts other than muscle or eye movements. Note that an ERP signal is mixed 

into these artifact components and is visible from 400 to 600ms post stimuli. Although this ERP 

signal mixed into the artifact component is only small in amplitude, the signal differed between the 

Go and Nogo conditions. As such, an artifact subtraction method that removed these artifact 

components would affect the scalp space comparisons. Given this result, and the difficulty with 

characterising and specifically reducing non-eye-movement and non-muscle artifacts, our targeted 

wICA approach does not reduce these additional artifact types. 
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