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� RELAX is a fully automated EEG cleaning pipeline, freely available on GitHub, and easy to use through a graphical user interface.
� RELAX provided amongst the best performance out of a range of common EEG pre-processing pipelines at cleaning all artifact types.
� RELAX provided high values for the variance explained by the difference between outcomes in common experimental manipulations.
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Objective: Electroencephalographic (EEG) data are often contaminated with non-neural artifacts which
can confound experimental results. Current artifact cleaning approaches often require costly manual
input. Our aim was to provide a fully automated EEG cleaning pipeline that addresses all artifact types
and improves measurement of EEG outcomes
Methods: We developed RELAX (the Reduction of Electroencephalographic Artifacts). RELAX cleans con-
tinuous data using Multi-channel Wiener filtering [MWF] and/or wavelet enhanced independent compo-
nent analysis [wICA] applied to artifacts identified by ICLabel [wICA_ICLabel]). Several versions of RELAX
were compared using three datasets (N = 213, 60 and 23 respectively) against six commonly used pipeli-
nes across a range of artifact cleaning metrics, including measures of remaining blink and muscle activity,
and the variance explained by experimental manipulations after cleaning.
Results: RELAX with MWF and wICA_ICLabel showed amongst the best performance at cleaning blink and
muscle artifacts while preserving neural signal. RELAX with wICA_ICLabel only may perform better at dif-
ferentiating alpha oscillations between working memory conditions.
Conclusions: RELAX provides automated, objective and high-performing EEG cleaning, is easy to use, and
freely available on GitHub.
Significance: We recommend RELAX for data cleaning across EEG studies to reduce artifact confounds,
improve outcome measurement and improve inter-study consistency.

� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
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The MATLAB code can be downloaded from: https://
github.com/NeilwBailey/RELAX/releases. Instructions for
installing and using the pipeline can be found in the GitHub
wiki: https://github.com/NeilwBailey/RELAX/wiki. A
condition of use of the pipeline is that the version of the
pipeline used is referred to as RELAX_[pipeline], for
example ‘‘RELAX_MWF_wICA” or ‘‘RELAX_wICA_ICLabel”,
that the current paper be cited, as well as the dependencies
used, and that authors report the RELAX settings that were
planned a priori, as well as the settings that were
implemented (if these differ). These dependencies are likely
to include: EEGLAB (Delorme and Makeig, 2004), fieldtrip
(Oostenveld et al., 2011), the MWF toolbox (Somers et al.,
2019), fastICA (Hyvarinen, 1999), wICA (Castellanos and
Makarov, 2006), ICLabel (Pion-Tonachini et al., 2019), and
PREP (Bigdely-Shamlo et al., 2015).
The application of RELAX to studies of event-related
potentials (ERPs) is reported in our companion paper
(Bailey et al., 2022).
1. Introduction

Electroencephalography (EEG) allows investigators to non-
invasively measure voltage fluctuations generated by the brain. As
such, EEG is useful for uncovering functional relationships between
neural activity and cognition, as well as for assessing how neural
activity differs between healthy and clinical populations. However,
the voltage fluctuations detected by EEG electrodes are produced
not only by neural activity, but also by non-brain related ‘‘artifacts”.
These artifacts can be biological in origin, for example eye blinks,
movements, and muscle activity. Biological artifacts generate elec-
trical potentials that show stereotypical characteristics, making
them reasonably easy to identify (Fitzgibbon et al., 2016, Kleifges
et al., 2017, Muthukumaraswamy, 2013). Non-biological artifacts
are also often present. For example, voltage drift, which can be
caused by changes to scalp electrical impedances due to participant
sweat or electrical interference; 50 Hz or 60 Hz line noise generated
by the alternating current of electrical grids; and channel noise due
to disrupted electrical connection between electrodes and the scalp
(Pion-Tonachini et al., 2019). Because each EEG electrode records a
mixture of neural activity and artifacts with an unknown ‘ground-
truth’, it is difficult to precisely disentangle the neural activity from
artifacts when analysing EEG signals (Muthukumaraswamy, 2013).
To address this issue, amultitude ofmethods for pre-processing EEG
data have been developed (see Islam et al. (2016) and Ranjan et al.
(2021) for reviews, and Barban et al. (2021) and Robbins et al.
(2020) for comparisons across a range of cleaning methods). The
fundamental aim of artifact cleaning is to reduce the influence of
artifacts on the EEG data while leaving signals from neural activity
unaltered (Muthukumaraswamy, 2013).

Although existing EEG pre-processing methods seem adequate,
there are still several outstanding issues that may adversely affect
the results of EEG research. These limitations include:

1) The lack of a single gold-standard method or even best single
approach (Barban et al., 2021). A large part of the reason for
the lack of a gold-standard method is that, unfortunately,
the ‘ground-truth’ of EEG recordings (real brain signal with-
out any artifacts) is typically unknown
(Muthukumaraswamy, 2013). As such, while measures can
be used to infer the performance of a cleaning pipeline,
researchers cannot prove a pipeline leads to perfect signal
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extraction. As a result, certainty regarding the optimal pipe-
line is elusive. Simulated data that have artifact patterns does
provide the ability for researchers to know the ground-truth
signal (the simulated neural activity without artifacts)
(Urigüen and Garcia-Zapirain, 2015). Unfortunately, it is
likely that simulated data does not match real data in a num-
ber of different aspects, including synchronisation of activity
to stimuli, synchronisation between electrodes (Urigüen and
Garcia-Zapirain, 2015), or synchronisation between blink or
muscle artifacts and the neural activity that generates these
artifacts. Additionally, researchers have noted that typically,
realistic artifacts in simulated data are added from an artifact
template obtained by extracting real artifacts from recorded
data using an existing artifact cleaning method (Barban
et al., 2021, Urigüen and Garcia-Zapirain, 2015). The same
artifact cleaning method is then included in the testing of
how effectively artifacts are cleaned from the simulated data,
creating a potential bias towards that cleaning method
(Barban et al., 2021, Urigüen and Garcia-Zapirain, 2015). As
such, while the simulated data does provide a ground truth,
successful cleaning of this simulated data does not guarantee
effective cleaning of actual data, and real data provides the
most important final test of any cleaning method (Urigüen
and Garcia-Zapirain, 2015).

Additionally, newly-developed pipelines are also typically com-
pared against only a small number of existing methods, which fur-
ther limits the field’s ability to determine an optimal EEG pre-
processing pipeline. Similarly, few studies have examined a large
range of data cleaning quality metrics simultaneously (Robbins
et al., 2020). Demonstrating the superior cleaning of a single arti-
fact type (for example muscle activity) does not necessarily mean
the effect of other artifacts (for example blinks) are completely
mitigated, so evaluating cleaning efficacy for all artifact types
simultaneously is important. Additionally, very few EEG cleaning
studies have included an assessment of the most practically impor-
tant metric - whether cleaning increases the signal-to-noise ratio
so that experiments are more likely to detect real effects of interest
(Clayson et al., 2021a). While these reasons for the lack of a gold-
standard EEG cleaning pipeline are reasonable, the absence of con-
sistent cleaning methods across studies limits our ability to com-
pare findings across different studies, as cleaning methods can
vary considerably from study to study. This inconsistency has prac-
tical consequences, with research demonstrating variability in
experimental results when different cleaning pipelines have been
applied even to the same dataset (Robbins et al., 2020).

2) The majority of currently available EEG pre-processing
pipelines are only partially automated, leaving results vul-
nerable to potential bias or experimenter error/subjectivity,
as well as being time intensive (and often boring!). The lack
of full automation also means that significant technical
expertise is required to pre-process the EEG data, increasing
the barrier for entry to EEG research and decreasing the
potential for student projects to provide meaningful
contributions.

3) While fully automated pre-processing methods are available
(for example, The Harvard Automated Processing Pipeline
for Electroencephalography [HAPPE]; Gabard-Durnam et al.
(2018)), in our experience, these methods often do not
match our expert judgements, either over or under-
rejecting data, leading to reductions in signal (an issue that
is demonstrated in the results of the current study).

4) While current EEG pre-processing methods seem to be effec-
tive for most data, we have found that some data are not
effectively cleaned by existing approaches. In fact, the inspi-
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ration for the current work was our observation that using a
traditional independent component analysis (ICA) subtrac-
tion approach, some data had blink artifacts remaining after
cleaning, while other data were over-cleaned, leaving an
inverted blink signal in the EEG trace. This effect has also
been demonstrated in previous research (Dimigen, 2020).

5) Within cleaning pipelines, there are often many parameters
available for adjustment and no clear indication of which
parameter settings are optimal. This can lead to confusion
and wasted exploratory time for researchers. It also poses
the issue that multiple analyses could be undertaken to
obtain the desired result. If a well-intentioned researcher
assumes an effect is likely, it might seem sensible to apply
multiple EEG cleaning approaches to ensure null results
were not produced by inferior data cleaning, and to only
report the expected positive results. Researchers may do this
without realising their results might simply be dependent
on the cleaning approach used, reducing the replicability of
their results and potential producing false positive results.

To address these issues, we have developed a new EEG pre-
processing pipeline by combining and adapting pre-existing
approaches and iteratively testing all cleaning parameters in an
attempt to find the optimal artifact reduction approach which con-
currently preserves neural signal. We have called this pipeline
RELAX (short for ‘‘Reduction of Electroencephalographic Arti-
facts”). The pipeline removes extreme outlying electrodes and peri-
ods using objective methods derived from previous research. These
methods were also subjected to extensive informal testing to max-
imise outcome metrics, and to ensure a match with our expert
judgement. The key artifact reduction components of RELAX are
Multi-channel Wiener Filters (MWF) (Borowicz, 2018, Somers
et al., 2018) and/or wavelet enhanced ICA (wICA) (Castellanos
and Makarov, 2006) applied to artifacts detected by the machine
learning algorithm ‘ICLabel’ (Pion-Tonachini et al., 2019). These
two approaches are implemented to reduce blinks, muscle activity,
horizontal eye movement, voltage drift, and atypical artifacts as
effectively as possible while preserving neural signal. The pipeline
is implemented in EEGLAB (Delorme and Makeig, 2004), and is
fully automated, while also being modular so that the pipeline
can be easily adapted for optimal cleaning for a user’s intended
application (the pipeline is freely available on GitHub at https://
github.com/NeilwBailey/RELAX/releases). In the following sections
we present the results of the formal comparisons across multiple
versions of the RELAX pipeline and six commonly used alternative
pipelines, focused on data that is typically examined using the
power of neural oscillations as an outcome measure. We tested
each pipeline in its ability to clean multiple artifact types, as well
as its ability to provide data that maximised the detection of exper-
imental effects of interest in a large heterogenous EEG dataset. We
also undertook tests of cleaning efficacy in two independent data-
sets with different recording parameters to ensure generalisability.
Additional comparisons between different versions of the RELAX
pipeline (with specific parameters varied) are provided in the Sup-
plementary Materials (sections 5–7). Additionally, our companion
article explores the application of RELAX to data analysed using
event-related potentials (ERPs) as an outcome measure (Bailey
et al., 2022).
2. Methods

2.1. RELAX pipeline

The RELAX pipeline is implemented on raw continuous multi-
channel EEG data in EEGLAB format, and uses EEGLAB (Delorme
3

and Makeig, 2004) and fieldtrip (Oostenveld et al., 2011) functions,
implemented within MATLAB. The pipeline outputs cleaned con-
tinuous data, with extreme outlying periods and channels
removed, referenced to the robust average reference (Bigdely-
Shamlo et al., 2015) (note that other re-referencing options can
be implemented on this cleaned data). Both MWF and wICA clean-
ing methods are used in the RELAX pipeline (with the ability to use
only one of these methods available for selection in the graphical
user interface, and recommendations for specific use cases pro-
vided in the discussion). In the following, we provide a narrative
description of the RELAX pipeline, with a fully detailed explanation
in the Supplementary Materials (section 2, pages 5–10).

MWF has recently been proposed as an effective method for
cleaning EEG data (Borowicz, 2018, Somers et al., 2018). The
MWF toolbox uses a template of time windows of the continuous
EEG data that are identified as showing artifacts to determine arti-
fact patterns in the data that should be reduced, and periods iden-
tified as clean data to determine the patterns which should be
preserved (Somers et al., 2018). These templates of clean data peri-
ods and artifact periods are then transformed into covariance
matrices (Borowicz, 2018, Somers et al., 2018). Using the template
of clean and artifact periods, a low-rank approximation of the arti-
fact is constructed based on the generalised eigenvalue decompo-
sition (Somers et al., 2018). This approximation contains both
spatial and spectral information (Somers et al., 2018). The multi-
channel artifact signal estimate is produced by obtaining a solution
to the equation for the mean squared error between the artifact
and the clean data (which are both included in the equation), with
the optimal solution reflecting the minimum mean squared error
(Somers et al., 2018). The calculation of this minimum mean
squared error provides the artifact signal estimate value (Somers
et al., 2018). This artifact signal estimate produces a spatial filter,
which is extended into the temporal dimension by applying the
spatial filter to each channel with a ‘delay period’ – a positive
and negative time lag from each timepoint (typically 5–10 samples
in each direction), which turns the MWF into a finite impulse
response filter as well as a spatial filter, which cleans the data
based on both spatial and temporal information (Somers et al.,
2018). For a more detailed explanation, see Somers et al. (2018).
Because the MWF captures both spatial and temporal information
in its estimate of the artifact signal, the approach is highly effective
at removing artifacts even if they are non-stationary (unlike ICA
which only models stationary information) (Borowicz, 2018,
Somers et al., 2018). Previously, MWF cleaning has been imple-
mented within the MWF toolbox by manual identification of arti-
facts (Somers et al., 2019). This is time consuming and
vulnerable to inconsistency, mistakes, and subjective decisions,
so we have automated the template construction within the RELAX
pipeline.

Although MWF cleaning has the aforementioned advantages, it
requires a template of both artifact and clean data periods. As such,
it cannot address artifacts that are consistent through an entire
EEG recording (for example, persistent muscle activity in temporal
electrodes or line noise). To resolve this limitation, we tested
whether combining wICA and MWF together would address the
limitations of each technique when applied separately. wICA has
been suggested to address some of the limitations of a traditional
ICA subtraction artifact correction method (Castellanos and
Makarov, 2006, Inuso et al., 2007). Traditional ICA subtraction
methods iteratively models signals of putative source components
underlying EEG data to derive source signals that are maximally
independent (Delorme and Makeig, 2004). Artifactual components
are (mostly) independent of neural activity, so by using ICA,
researchers can subtract components identified as artifacts, leaving
behind only components that reflect neural activity (Delorme et al.,
2007). Scalp level EEG data is then reconstructed, resulting in a
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signal reflective of neural activity with artifact influences min-
imised (Delorme et al., 2007). However, ICA decomposition is
adversely affected by large amplitude artifacts, the presence of
which leads to components with a mixture of neural activity and
artifact (Akhtar et al., 2012, Anders et al., 2020). Additionally, ICA
is never a perfect model, so even without large amplitude artifacts
ICA components typically contain a mix of neural activity and arti-
fact (Castellanos and Makarov, 2006, Inuso et al., 2007). Due to this
mixing, subtraction of putative artifact components also removes
neural activity, while keeping putative artifact components fails
to clean the artifact (Akhtar et al., 2012). To remedy these limita-
tions, wICA uses wavelet thresholding of ICA components to detect
the oscillatory frequencies with the largest influence on the time
course of an ICA component (Castellanos and Makarov, 2006).
wICA then subtracts wavelet coefficients above a certain threshold
(assumed to reflect artifacts) from the component, leaving behind a
component with only the smaller amplitude (presumably neural)
activity (Castellanos and Makarov, 2006). As with the ICA subtrac-
tion method, this artifact reduced component data is then recon-
structed into scalp level EEG data. Previous research has
commonly applied wICA to all components (Castellanos and
Makarov, 2006). However, our experience indicated that applying
wICA to all components reduced considerable amounts of the neu-
ral signal as well as the artifacts (which can be seen in our results).
To prevent this over-cleaning, RELAX applies wICA cleaning only to
components that are identified as artifacts by the machine learning
algorithm ICLabel (Pion-Tonachini et al., 2019).

Now that we have introduced the techniques underpinning
RELAX, we provide below an abbreviated description of the steps
undertaken by the RELAX pipeline, with the full details provided
in the Supplementary Materials (section 2, pages 5–10). RELAX
implements the following:

1) removes extreme outlying electrodes and time periods using
methods adapted from previous research which exactly
matched our expert judgement (after extensive informal
testing). These methods were based on the median and Med-
ian Absolute Deviation (MAD) where possible, as this
approach produces thresholds that are robust against the
effect of more extreme outliers (Alday and van Paridon,
2021);

2) RELAX then performs three separate sequential MWF clean-
ing of: i) muscle activity, ii) blinks, and iii) horizontal eye
movements and drift;

3) Finally, RELAX re-references data to the robust common
average (Bigdely-Shamlo et al., 2015), and reduces remain-
ing artifacts using wICA, applied only to independent com-
ponents identified as artifacts by the machine learning
algorithm, ICLabel, which has been trained on large datasets
to match expert identification of artifact components (Pion-
Tonachini et al., 2019). An overview of the specific steps
included in our recommended version of the RELAX pipeline
is provided in Fig. 1, and an abbreviated explanation of the
full methods are provided in the following section.

2.1.1. Filtering and rejection of extreme outliers
Firstly, a fourth order acausal Butterworth bandpass filter was

applied from 1 to 80 Hz and a second order acausal Butterworth
notch filter was applied from 47 to 53 Hz (this can be easily
adapted for 60 Hz line noise). Note that ICA performs best after
data have been filtered with 1 Hz high-pass filters (Winkler
et al., 2015), our experience indicates MWF also performs best after
1 Hz high-pass filtering, and filtering out < 1 Hz data typically does
not affect oscillation measures of interest. However, high-pass fil-
ter settings for ERPs likely need to be < 0.3 Hz, with the exact opti-
mal high-pass filter setting still under debate (Maess et al., 2016,
4

Rousselet, 2012, Tanner et al., 2016). We address the issue of using
RELAX with high-pass filtering appropriate for ERPs in our com-
panion article (Bailey et al., 2022). After filtering, a multi-step pro-
cess was used to identify and remove bad electrodes. Firstly, the
‘‘findNoisyChannels” function from the ‘EEG Preprocessing Pipe-
line’ (PREP) was applied to provide an initial rejection of bad elec-
trodes (Bigdely-Shamlo et al., 2015). Then, although RELAX applied
MWF and wICA cleaning to continuous data, data were first seg-
mented to identify artifact periods (which were then marked in
the continuous data). To implement this, data were split into 1 sec-
ond epochs with a 0.5 second overlap. Within these epochs, RELAX
identified: 1) extreme outlying amplitudes unlikely to reflect data
periods with retrievable brain activity, which were identified using
MAD from the median, providing robust estimates even with
extreme outliers (Alday and van Paridon, 2021); 2) extreme drift;
3) extreme kurtosis; 4) extremely improbable voltage distribu-
tions; and finally 5) log-power log-frequency slopes indicative of
muscle activity (Fitzgibbon et al., 2016) were used to mark elec-
trodes for rejection if > 5 % of an electrode’s data showed contam-
ination with muscle activity. A limit of removing 20 % of electrodes
was imposed (a setting which can be adjusted by the user), and
if > 20 % of electrodes were marked for rejection, electrodes were
ranked in order of the total number of epochs showing extreme
artifacts and only the worst 20 % were rejected. Following the elec-
trode rejection step, the same extreme outlier detection
approaches were used to mark extreme periods in the EEG data
for exclusion. These periods were marked with ‘‘not a number”
(NaN) within the MWF template. The MWF toolbox ignores these
periods when constructing cleaning templates, so that the MWF
cleaning focuses on artifacts that are likely to contain retrievable
neural activity, rather than periods that may only reflect extreme
artifacts without the potential to retrieve underlying neural activ-
ity (Somers et al., 2019). These extreme outlier periods were also
rejected from the data completely prior to the ICA decomposition
for the same reason. Both electrode rejection and extreme outlying
period detections were transferred from the epoched data back to
the continuous data, which was cleaned in the following steps.

2.1.2. Multi-channel Wiener filtering
Following the extreme outlier rejection steps, three sequential

MWF cleaning steps were implemented to address (in chronologi-
cal order): 1) muscle activity, then 2) blink activity, then 3) both
horizontal eye movement and drift activity together. Note that
for some applications, skipping straight to wICA might be pre-
ferred, which is easily implemented in RELAX (these applications
are explored in the discussion). Firstly, to create a template for
the detection of muscle activity for MWF cleaning, the data were
separated into 1 s epochs with a 500 ms overlap. For each channel,
epochs affected by muscle activity were detected using a log-
power log-frequency slope threshold of > -0.59, a threshold chosen
because very little data within EEG recordings taken from people
who have had their muscles pharmacologically paralysed show
slopes above this threshold (Fitzgibbon et al., 2016). A more
detailed description of the empirical basis for this threshold (and
for alternative more liberal or stringent thresholds) is provided in
the Supplementary Materials (page 10). A full EEG data length 1D
template of muscle artifact periods (marked as 1) and clean periods
(marked as 0) was constructed, and the MWF cleaning was applied
using this template.

Secondly, to detect blinks, a copy of the data were bandpass fil-
tered using a fourth order Butterworth filter from 1-25 Hz (which
focused on this data on blink relevant frequencies). We then aver-
aged pre-specified blink affected electrodes (’FP10; ’FPZ’; ’FP20;
’AF30; ’AF40; ’F30; ’F10; ’FZ’; ’F20; ’F40 – this list can be easily adapted
to match a researcher’s EEG files – we recommend only including
electrodes that contain large and obvious blink artifacts, ideally



Fig. 1. Steps involved in the full RELAX pipeline. Abbreviations: Hz = hertz; s = seconds; PREP = EEG Preprocessing Pipeline; MAD = median absolute deviation; MWF = Multi-
channel Wiener filters; ICA = independent component analysis; IQR = inter-quartile range; AMICA adaptive mixture ICA; cudaICA = ICA performed using the cuda cores of a
graphic card; fastICA = fast fixed point algorithm ICA; wICA = wavelet enhanced ICA; NaN = not a number.
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no further back than the F line, and no more lateral than the 3/4
electrodes). Blinks were marked as the maximum point within
each time-period that exceeded the value of the upper quartile of
all voltages + the interquartile range (IQR) * 3. A blink artifact mask
for MWF cleaning was created by marking the 800 ms surrounding
all blink maximums as artifacts.

Third, drift and horizontal eye movements were identified and
cleaned with the MWF. For the drift identification step, a copy of
the data were re-referenced using PREP’s robust average re-
referencing approach (Bigdely-Shamlo et al., 2015) as we found
drift to be more accurately identified in average re-referenced data.
However, the re-referencing was only used at this stage to identify
drift, and re-referenced data were not used in the MWF cleaning as
our tests showed MWF performed better when implemented prior
to average re-referencing. Epochs that showed an amplitude at any
electrode > 10MAD from the median of all electrodes were deemed
to be affected by drift and marked as artifact periods in the tem-
plate for MWF cleaning (this approach was adapted from Nolan
5

et al. (2010), who used the standard deviation (SD) instead of
MAD to set the threshold). For detection of horizontal eye move-
ments, a list of the lateral electrodes affected by horizontal eye
movements is provided by the user. The RELAX pipeline selected
a single electrode from both the left and right side of the head from
this list, selecting the first electrode in the list if available, then
moving to the second electrode in the list if the first electrode
had been rejected, and so on until a horizontal eye movement
affected electrode from the list was available. Electrodes used in
the current study were ‘‘F700, ”FT700, ‘‘F500, ”T700, ‘‘FC500, ”C500, ‘‘TP700,
”AF300 for the left side, and ‘‘F800,”FT800,‘‘F600,”T800, ‘‘FC600, ”C600,
‘‘TP800, ”AF400 for the right side. While we have provided the user
with the ability to set their own electrodes, if the electrodes listed
here are available, they reflect good defaults, as the RELAX pipeline
with these default settings was extensively tested. If the default
electrodes are not available, we recommend prioritizing frontal
and maximally lateral electrodes first (such as F7 and F8), and only
including more posterior maximally lateral electrodes if these are
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not available (such as T7 and T8), followed by less lateral frontal
electrodes (such as AF3 and AF4). Periods where the selected elec-
trodes showed voltages > 2MAD from the median of their overall
amplitude, with an opposite voltage movement > 2MAD from the
median polarity shift in the electrode on the opposite side of the
head were assumed to reflect horizontal eye movements
(Rogasch et al., 2017). These periods were marked as artifact peri-
ods in the MWF template. A delay period of 8 samples was used for
all MWF cleaning. This delay period implemented a positive and
negative time lag for applying the MWF filter, which turned the
spatial MWF into a spatio-temporal finite impulse response filter.
RELAX was also set to detect generalised eigenvector deficiency,
which sometimes occurs with longer delay periods and can impair
the ability of the MWF to clean the data. If generalised eigenvector
deficiencies were detected, the algorithm reduced the delay period
by a value of 1 sample and ran the MWF again. This approach was
repeated up to three times, resulting in a minimum delay period of
5 samples. The full explanation of MWF template construction and
cleaning process is provided in the Supplementary Materials (Sec-
tion 2, pages 6–9).

2.1.3. Wavelet-enhanced independent component analysis
Following the three sequential MWF steps, wICA was used to

reduce artifactual ICA components identified by the machine learn-
ing algorithm ‘‘ICLabel” (Pion-Tonachini et al., 2019), then elec-
trode space data was reconstructed. Firstly, the MWF cleaned
data were average re-referenced using PREP’s robust re-
referencing method, which interpolates missing channels before
average re-referencing to prevent reference asymmetries, follow-
ing the re-removal of the bad channels to prevent rank issues in
ICA decompositions (Bigdely-Shamlo et al., 2015). The periods that
were marked as extreme outliers (which had previously been
marked as NaN for the MWF cleaning) were rejected at this stage.
ICA was then computed using either cudaICA (Raimondo et al.,
2012), AMICA (Palmer et al., 2012) or fastICA (Hyvarinen, 1999)
with the fastICA deflation setting applied to avoid non-
convergence issues. ICLabel was used to detect artifactual compo-
nents (defined by ICLabel as ‘‘more likely to reflect any artifact cat-
egory than to reflect a brain component”) (Pion-Tonachini et al.,
2019), and only these artifactual components were cleaned with
wICA before the continuous data were reconstructed back into
the scalp space. The above steps left cleaned and robust average
re-referenced continuous data which can then be epoched as
desired for different types of analyses.

2.2. Comparison pipelines

To optimize the RELAX pipeline, we tested six potential versions
of RELAX with various parameter variations applied. For brevity,
we present a summary of the variations of the RELAX pipeline
approaches in Table 1. To provide a robust assessment of the per-
formance of our RELAX pipeline, we also compared our pipeline to
six of the most commonly reported cleaning approaches. A full
explanation of each pipeline is provided in the Supplementary
Materials (Section 3, page 12), and in the references cited in the fol-
lowing summary: Firstly, we tested six potential versions of our
RELAX pipeline. These included using different ICA algorithms,
namely, 1) MWF_wICA_infomax, which used extended-infomax
computed in the cuda cores of graphics cards (cudaICA)
(Raimondo et al., 2012), 2) MWF_wICA_fastICA, which used the
fast fixed point algorithm ICA (fastICA) (Hyvarinen, 1999), or 3)
MWF_wICA_AMICA, which used adaptive mixture ICA (AMICA)
(Palmer et al., 2012). For brevity, we only report the results of
MWF_wICA_infomax in the main manuscript (described simply
as MWF_wICA hereafter), since infomax was used as the ICA
method for all other pipelines, and the MWF_wICA versions dif-
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fered only minimally depending on ICA method. We also tested:
4) MWF_ICA_subtract, which applied MWF cleaning, but then sub-
tracted artifactual ICA components instead of using wICA. Further,
we tested: 5) MWF_wICA_CCA, which applied MWF and wICA
cleaning, but excluded the cleaning of artifactual components
identified as muscle by ICLabel from the wICA step in MWF_wICA,
and cleaned muscle activity with the extended canonical correla-
tion analysis (CCA) instead (Janani et al., 2018), and finally: 6)
wICA_ICLabel, which excluded MWF cleaning completely and only
used wICA applied to artifactual components identified with ICLa-
bel (Pion-Tonachini et al., 2019). This pipeline is similar to those
used by Issa and Juhasz (2019) and Mammone et al. (2011), except
that our approach identified all artifacts instead of only identifying
eye movements (Issa and Juhasz, 2019), and used ICLabel to iden-
tify artifacts instead of using entropy and kurtosis measures
(Mammone et al., 2011). To help the reader assess the potential
of the RELAX pipeline for application to their data, we note here

that our recommendation is to use either ‘‘MWF_wICA” or

‘‘wICA_ICLabel”.
The comparison pipelines we tested were: 7) MWF_only, which

was identical to the MWF cleaning steps in our RELAX pipeline but
did not apply any additional cleaning after the MWF stage (Somers
et al. 2018). 8) MWF_CCA, which applied the sequential MWF
cleaning to the data, but instead of applying wICA to this MWF
cleaned data as per the RELAX methods, it used the extended
CCA to further clean any remaining muscle artifacts (Janani et al.,
2018). 9) ICA_subtract, which is probably the most commonly used
approach in EEG research – this pipeline computed ICA, then sub-
tracted the components identified as artifacts from the ICA unmix-
ing matrix using ICLabel, then reconstructed the electrode space
data (without any MWF cleaning applied) (Pion-Tonachini et al.,
2019). 10) The Artifact Subspace Reconstruction (ASR) approach
followed by ICA subtraction of artifacts identified by ICLabel
(Chang et al., 2019) (referred to as ASR). 11) The Harvard Auto-
mated Processing Pipeline for EEG (HAPPE) (Gabard-Durnam
et al., 2018). Finally, 12) wICA_all, which cleaned data by applying
wICA to all components after the ICA decomposition (Castellanos
and Makarov, 2006). For brevity, we present a summary of the
comparison pipeline approaches in Table 2, and the full description
in the Supplementary Materials.
2.3. Data

We examined the effectiveness of each cleaning pipeline pri-
marily on a large combination dataset (N = 213). The data we used
were specifically selected to be challenging to clean, as is often the
case for typical EEG data. Data were collected mostly by students,
with many data files collected while participants performed cogni-
tive tasks, which produced concentration related forehead and
temporal muscle activity, as well as blinks and eye movements.
The data also commonly contained bad electrodes, temporarily dis-
connected electrodes, and other atypical artifacts. As such, the data
provided a good ‘‘real world” test case for fully automated pre-
processing pipelines. In addition, we tested the approach on two
additional smaller datasets collected from separate laboratories,
with the total data analysed comprising two laboratories, three dif-
ferent EEG systems, and three different tasks (see Supplementary
Materials section 5 and 6, pages 54–71 for the results in these addi-
tional datasets, as well as our companion article for analysis of a
fourth task with RELAX applied to event-related potential analyses:
Bailey et al. 2022). All data were recorded from healthy adults with
all participants providing informed consent prior to participation.
The study was approved by the Ethics Committee of the Alfred
Hospital and Monash University. Tasks included the Sternberg task,
2-back task, and Colour-Wheel Recall task (all of which measure



Table 1
A summary of the steps involved in each variation of the RELAX pipeline. Abbreviations: Hz = hertz; s = seconds; PREP = EEG Preprocessing Pipeline; MAD = median absolute
deviation; MWF = Multi-channel Wiener filters; ICA = independent component analysis; IQR = inter-quartile range; AMICA adaptive mixture ICA; cudaICA = ICA performed using
the cuda cores of a graphic card; wICA = wavelet enhanced ICA.

MWF_wICA MWF_ICA_subtract MWF_wICA_CCA wICA_ICLabel

Filtering 1 Hz to 80 Hz, with 47–53 Hz notch
filter

1 Hz to 80 Hz, with 47–53 Hz
notch filter

1 Hz to 80 Hz, with 47–53 Hz notch
filter

1 Hz to 80 Hz, with 47–53 Hz
notch filter

Bad Channel
Rejection

PREP’s ’findNoisyChannels’, then for
each 1 s epoch, reject if > 5 % of data
shows extreme values (defined in
Fig. 1) or log-power log-frequency
slopes > -0.59

PREP’s ’findNoisyChannels’, then
for each 1 s epoch, reject if > 5 %
of data shows extreme values
(defined in Fig. 1) or log-power
log-frequency slopes > -0.59

PREP’s ’findNoisyChannels’, then for
each 1 s epoch, reject if > 5 % of data
shows extreme values (defined in
Fig. 1) or log-power log-frequency
slopes > -0.59

PREP’s ’findNoisyChannels’, then
for each 1 s epoch, reject if > 5 %
of data shows extreme values
(defined in Fig. 1) or log-power
log-frequency slopes > -0.59

Initial Outlying
Data Period
Rejection

After bad channels are rejected,
reject remaining 1 s epochs that
exceed the same thresholds as per
the bad channel rejection step

After bad channels are rejected,
reject remaining 1 s epochs that
exceed the same thresholds as
per the bad channel rejection
step

After bad channels are rejected,
reject remaining 1 s epochs that
exceed the same thresholds as per
the bad channel rejection step

After bad channels are rejected,
reject remaining 1 s epochs that
exceed the same thresholds as
per the bad channel rejection
step

Initial Artifact
Reduction

3 sequential MWF, cleaning muscle
activity first, then eye blinks, then
horizontal eye movement and drift

3 sequential MWF, cleaning
muscle activity first, then eye
blinks, then horizontal eye
movement and drift

3 sequential MWF, cleaning muscle
activity first, then eye blinks, then
horizontal eye movement and drift

None

Second
Artifact
Reduction

Artifactual ICA components reduced
using wICA. ICA computed with
fastICA, AMICA, or the cudaICA
implementation of the extended
infomax ICA (cudaICA results
reported in the main manuscript).
Artifacts identified by ICLabel.

ICA computed using cudaICA.
Artifacts identified by ICLabel,
and rejected.

ICA computed using cudaICA.
Artifactual ICA components except
for muscle activity reduced using
wICA (identified by ICLabel), then
extended CCA used to clean muscle
activity.

ICA computed using cudaICA.
Artifactual ICA components
identified by ICLabel. Artifacts
reduced using wICA.
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working memory), and recordings also included both eyes open
(EO) and eyes closed (EC) resting-state. For our primary analyses
we combined the datasets that used identical recording parame-
ters and would be analysed in similar ways, hence oscillatory anal-
ysis approaches were tested using a combined Sternberg and EO/
EC resting-state dataset (N = 213). This combination approach
was used to provide robust tests of cleaning quality with large
datasets.

The combination dataset comprising our primary analyses were
recorded using a Neuroscan Synamps2 amplifier with the SCAN 4.3
software interface (Compumedics, Melbourne, Australia) with a
64-channel Quickcap (excluding CB1 and CB2 electrodes) and a
sampling rate of 1000 Hz with a 0.01 Hz high-pass and 200 Hz
low pass filter. The ground electrode was located at AFz, and the
reference was located between Cz and CPz. The first combined
dataset we report included EEG recordings from participants com-
pleting a Sternberg task (data previously reported by Bailey et al.
(2020), and both EO and EC resting-state recordings (total
N = 213 after excluding participants who showed very little blink
or muscle artifact even prior to cleaning, EO resting-state N = 93,
EC resting-state N = 62, data not reported previously, and Stern-
berg N = 58). Blink metrics were not assessed for the EC resting-
state recordings, and 10 files were excluded from blink metric
analyses due to not enough blink-locked epochs remaining after
the exclusion of epochs that contained multiple blinks (N = 140).

An additional combination of 2-back task related data, as well
as EO and EC resting-state recordings, were assessed, reported in
the Supplementary Materials (section 5, pages 54–64) (N = 20
healthy adults providing one recording from each type of EEG
recording, for a total of 60 EEG files). In this dataset, data were
recorded using a Synamps2 amplifier running through the SCAN
4.3 software interface (Compumedics, Melbourne, Australia) with
44 Ag/AgCl electrodes embedded within an EasyCap (Herrsching,
Germany). The ground electrode was placed at AFz, and the refer-
ence was placed at CPz. A sampling rate of 1000 Hz was used for
these recordings, with an online bandpass filter between 0.1 to
200 Hz. Finally, one further dataset of Colour-Wheel Recall task
data was tested (N = 23) reported in the Supplementary Materials
(section 6, pages 65–71). These data were recorded using a Neu-
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roscan amplifier (Compumedics, Melbourne, Australia) with a 62-
channel EasyCap (Herrsching, Germany) and a sampling rate of
10 kHz, downsampled to 1000 Hz prior to cleaning. To reduce com-
putation time, MWF_ICA_subtract, MWF_CCA and MWF_wI-
CA_CCA were not tested on these two datasets, as our primary
analysis did not indicate these approaches were superior to
MWF_wICA.

Various cleaning quality metrics were calculated, using either
continuous or epoched data. Continuous data were required to
compute Signal-to-Error Ratio (SER) and Artifact-to-Residue Ratio
(ARR) values. However, other metrics required epoched data (the
total proportion of the epochs rejected by cleaning, and the vari-
ance explained by the experimental manipulation). To obtain the
epoched data, we interpolated rejected electrodes back into the
data (with EEGLAB’s ‘pop_interp’ function and the spherical setting
(Delorme and Makeig, 2004)), and applied a typical rejection of
epochs based on max–min voltage values > 60 microvolts, or kur-
tosis / improbable data for all channels > 3 or any channel > 5 to
remove any remaining artifacts (since no EEG cleaning pipeline
completely addresses all artifacts for all files). This enabled an
analysis of differences between the pipelines in the variance
explained by differences between commonly analysed experimen-
tal conditions (such as between working memory delay and probe
periods of the Sternberg task), as well as a measure of the propor-
tion of epochs that were removed by the overall cleaning process,
including extreme period rejection and outlier epoch rejection.
Less effective cleaning pipelines left more artifacts remaining after
cleaning, which were rejected by the final epoch rejection step,
providing less data available for analysis after cleaning.
2.4. Cleaning quality evaluation metrics

When assessing the performance of an EEG cleaning method,
there are three major challenges. Firstly, the ‘ground-truth’ of the
brain activity signal in isolation is impossible to ascertain in real
data, so assessments of cleaning efficacy and signal preservation
can only be estimates (Muthukumaraswamy, 2013). Simulated
data has been used to address this issue, but it also difficult to
ascertain how accurately simulations reflect real data and artifacts,



Table 2
A summary of the steps involved in each of the comparison cleaning pipelines. Abbreviations: Hz = hertz; s = seconds; PREP = EEG Preprocessing Pipeline; MAD = median absolute
deviation; MWF = Multi-channel Wiener filters; ICA = independent component analysis; IQR = inter-quartile range; AMICA adaptive mixture ICA; cudaICA = ICA performed using
the cuda cores of a graphic card; wICA = wavelet enhanced ICA, ASR = Artifact Subspace Reconstruction; HAPPE = Harvard Automated Processing Pipeline.

ICA_subtract MWF_only MWF_CCA wICA_all ASR HAPPE

Filtering 1 Hz to 80 Hz, with
47–53 Hz notch filter

1 Hz to 80 Hz, with
47–53 Hz notch filter

1 Hz to 80 Hz, with
47–53 Hz notch filter

1 Hz to 80 Hz, with
47–53 Hz notch filter

1 Hz to 80 Hz, with 47–
53 Hz notch filter

1 Hz high-pass,
CleanLine to
remove 50 Hz

Bad Channel
Rejection

PREP’s
’findNoisyChannels’,
then for each 1 s
epoch, reject if > 5 % of
data shows extreme
values (defined in
Fig. 1) or log-power
log-frequency
slopes > -0.59

PREP’s
’findNoisyChannels’,
then for each 1 s
epoch, reject if > 5 % of
data shows extreme
values (defined in
Fig. 1) or log-power
log-frequency
slopes > -0.59

PREP’s
’findNoisyChannels’,
then for each 1 s
epoch, reject if > 5 % of
data shows extreme
values (defined in
Fig. 1) or log-power
log-frequency
slopes > -0.59

PREP’s
’findNoisyChannels’,
then for each 1 s
epoch, reject if > 5 % of
data shows extreme
values (defined in
Fig. 1) or log-power
log-frequency
slopes > -0.59

PREP’s
’findNoisyChannels’,
then for each 1 s epoch,
reject if > 5 % of data
shows extreme values
(defined in Fig. 1) or log-
power log-frequency
slopes > -0.59

Rejects channels
with joint
probability > 3SD
from mean of
average log power
from 1-125 Hz.
Performed twice.

Initial
Outlying
Data
Period
Rejection

After bad channels are
rejected, reject
remaining 1 s epochs
that exceed the same
thresholds as per the
bad channel rejection
step

After bad channels are
rejected, reject
remaining 1 s epochs
that exceed the same
thresholds as per the
bad channel rejection
step

After bad channels are
rejected, reject
remaining 1 s epochs
that exceed the same
thresholds as per the
bad channel rejection
step

After bad channels are
rejected, reject
remaining 1 s epochs
that exceed the same
thresholds as per the
bad channel rejection
step

After bad channels are
rejected, reject
remaining 1 s epochs
that exceed the same
thresholds as per the
bad channel rejection
step

None

Initial
Artifact
Reduction

None 3 sequential MWF,
cleaning muscle
activity first, then eye
blinks, then horizontal
eye movement and
drift

3 sequential MWF,
cleaning muscle
activity first, then eye
blinks, then horizontal
eye movement and
drift

None ASR: automatic
detection of clean data
periods to determine
thresholds, followed by
rejection of components
with large variance
(similar to principal
component analysis),
then reconstruction of
the original electrode
space data.

wICA applied to all
components

Second
Artifact
Reduction

Artifactual ICA
components
subtracted (identified
by ICLabel)

None Extended canonical
correlation analysis to
clean muscle activity
(Janani et al., 2018).

All ICA components
reduced using wICA

Artifactual ICA
components rejected
(identified by ICLabel)

Artifactual ICA
components
rejected (identified
by MARA)
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so effective cleaning in simulated data may not translate to effec-
tive cleaning in real data (Kumaravel et al., 2022, Mumtaz et al.,
2021, Rošťáková and Rosipal, 2022). As such, we have limited our
analysis to real data, and used a combination of many artifact
cleaning metrics and signal preservation metrics. We deliberately
selected a complimentary combination of metrics, so some metrics
address the potential limitations of other included metrics. We
have also included metrics that simply aim to detect whether a
well-characterised artifact is still present after cleaning (rather
than trying to estimate the artifact signal and how much cleaning
reduces that signal). For example, one metric tested whether blink
periods are still associated with increased frontal voltage ampli-
tudes after cleaning, and another whether epochs still show log-
power log-frequency slopes that indicate muscle activity remains
after cleaning. This approach avoids the ‘ground-truth’ issue by
simply asking ‘‘are the well-known artifact characteristics still pre-
sent in the data after cleaning?”. Secondly, EEG data is contami-
nated by many different artifact types, all of which should be
cleaned effectively for optimal data analysis. To address this, we
have included artifact reduction metrics that address all common
artifacts. Thirdly, perhaps the most important metrics should
assess the impact of EEG data cleaning on the practical outcomes
of the research (Clayson et al., 2021a). As such, we have included
multiple metrics that assess whether cleaning by the different
pipelines leads to more variance explained by different experimen-
tal manipulations.

To ensure we assessed the different cleaning pipelines fully for
effectiveness at cleaning both the full range of potential artifacts,
and for preserving the neural signal (not over-cleaning the data),
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we tested the pipelines across six different types of cleaning qual-
ity metrics, for a total of 13 different metrics. All metrics are
explained in detail in the Supplementary Materials (section 3,
pages 13–18) and summarised in Table 3. Briefly, these metrics
included: the SER: a measure of the amount of signal left unaf-
fected during the clean EEG periods after cleaning. The SER is
obtained by dividing the expected value operator of the squared
signal amplitude in periods marked as clean in each electrode in
the raw EEG by the squared signal of the signal that was removed
by cleaning during the periods marked as clean the MWF tem-
plates (Somers et al., 2018). The individual electrode values are
then averaged across electrodes with weighting applied by the
artifact signal in each electrode proportional to the artifact signal
in all electrodes, so electrodes with larger artifact contribute more
to the SER measure (Somers et al., 2018). Secondly, we included a
measure of the extent to which all artifacts identified by our MWF
template were reduced – the ARR. The ARR was calculated by
obtaining the expected value operator of the square of the removed
artifact, divided by the expected value operator of the square of the
raw data from the artifact periods minus the removed artifact sig-
nal from the artifact periods (Somers et al., 2018). Effective clean-
ing reflects reductions in large artifact signals, such that the
denominator is small and high ARR values result from the division.
As such, high values for the SER and ARR indicate good perfor-
mance (Bertrand, 2015, Somers and Bertrand, 2016, Somers et al.,
2018). It is important to note that SER and ARR are complementary
metrics. To achieve the highest cleaning quality a pipeline should
produce both high SER and high ARR values; it would be easy to
obtain very high ARR values and very low SER values by being
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excessively stringent in artifact reduction and not concerned with
preserving the neural signal, but this would reduce the neural
activity of interest (Somers et al., 2018).

Additionally, we measured the ratio of blink amplitude to non-
blink periods after cleaning, referred to as the Blink Amplitude
Ratio (BAR) (Robbins et al., 2020). We examined BAR averaged
across the frontal electrodes affected by blinks (fBAR), and across
all electrodes (allBAR, reported in the Supplementary Materials,
section 4 page 25). For fBAR and allBAR, values near to 1 indicate
optimal performance, with activity that is time-locked to blinks
showing the same amplitude as non-blink activity after cleaning,
while values < 1 reflect overcleaning, and values > 1 reflect under
cleaning (Robbins et al., 2020). Next, we measured the number of
epochs showing log-power log-frequency slopes > -0.59 that indi-
cated the epoch was still contaminated by muscle activity
(Fitzgibbon et al., 2016), and the severity by which these slopes
exceeded the muscle threshold within epochs showing muscle
activity remaining after cleaning (these results are reported in
the Supplementary Materials, section 4, page 30). Higher values
reflect poorer performance for these metrics. The final cleaning
metric we assessed was the proportion of epochs that were
rejected through the cleaning process against the initial number
of epochs in the raw data. While this measure can be affected by
the raw data quality (with lower raw data quality requiring more
data rejection), comparisons of the number of epochs rejected by
different cleaning pipelines (applied to the same datasets) indicate
which pipelines are better at cleaning data (such that fewer bad
epochs need to be removed, and more epochs are available for
analysis). Providing higher quality data with more epochs for anal-
ysis can be more important for statistical power than recruiting
more participants (Kolossa and Kopp, 2018). As such, lower values
for the proportion of epochs rejected reflect better performance.

Next, and perhaps most importantly, we assessed the amount of
variance explained by a variety of experimental manipulations
after cleaning by each pipeline. We chose experimental manipula-
tions that are well established to provide differentiation of neural
activity in the comparison of two conditions, which assesses the
real-world applicability of the cleaning pipelines (Clayson et al.,
2021a). We assessed the variance explained by a comparison of
alpha oscillatory power between the working memory delay and
probe periods of the Sternberg task (Bailey et al., 2020) and alpha
power between EO and EC resting-state data (computation of
which is described in the Supplementary Materials, section 4,
pages 36–53). Within these metrics, higher values are likely to
reflect better performance, with cleaning pipelines that provided
higher values providing a better chance to detect statistically sig-
nificant differences within an experiment.

2.5. Statistics

In order to compare the effectiveness of artifact cleaning
between the cleaning pipelines across each of the metrics, we used
the robust repeated measures ANOVA function ‘‘rmanova” from
the WRS2 package in R (R Core Team v4.0.4) (Mair and Wilcox,
2020). These tests are robust against the normality and
homoscedasticity assumptions of traditional parametric statistical
tests, while still providing equivalent power (Mair and Wilcox,
2020). When the overall ANOVA was significant, pairwise compar-
isons of the cleaning pipelines were performed using the robust
post-hoc t-test function ‘‘rmmcp”. This applies multiple compar-
ison controls across the post-hoc tests within each omnibus
ANOVA using Hochberg’s approach to control for the family-wise
error (Mair andWilcox, 2020). However, experiment-wise multiple
comparison controls were not implemented as we deemed it was
more important to provide sensitivity to differences in cleaning
outcomes than to protect against false positive results when
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exploring a wide range of EEG cleaning methods for the optimal
approach (Bender and Lange, 2001). Additionally, we tested a large
number of metrics to demonstrate which pipelines provide the
best overall performance (rather than for a single artifact type).
We also used multiple datasets to provide an indication of how
replicable our results are across datasets. Experiment-wise multi-
ple comparison controls in this large number of comparisons
across this wide range of metrics and across multiple datasets
would severely reduce the sensitivity of our study to detect impor-
tant differences between cleaning approaches. It would have also
adversely encouraged us to reduce the number of metrics we
assessed, leading to a less well tested final pipeline. As such, we
emphasised sensitivity to detect meaningful differences between
pipelines over the potential for false positives. To visualise the
cleaning efficacy data, we provide raincloud plots with boxplot
medians and IQR marked for the reader to see the full data with
minimal distortion (Allen et al., 2019). This includes outliers, which
are important to note, as outliers indicate individual files in which
a cleaning method might not have adequately cleaned the artifact.

In addition to the robust statistics used to compare artifact
cleaning metrics, we have provided graphs of the amount of vari-
ance explained (np2) by the comparison between the two experi-
mental conditions for each pipeline for the comparisons of the
amount of variance explained by the experimental manipulation
(as well as the absolute values for each condition from each pipe-
line in the Supplementary Materials, section 4, pages 36–54). To
test for differences between pipelines in np2 for the experimental
manipulation, we tested the interaction between each pair of
pipelines and the two experimental conditions using the Randomi-
sation Graphical User Interface (RAGU) Global Field Potential (GFP)
test which measures overall neural response amplitudes
(Habermann et al., 2018, Koenig et al., 2011). We also used the
Topographical Analysis of Variance (TANOVA) with L2 norm tests,
which measures the distribution of neural activity after normalisa-
tion for amplitude (Habermann et al., 2018, Koenig et al., 2011).
We have provided heat maps displaying np2 values for each inter-
action in the Supplementary Materials (section 4, pages 36–55),
with the multiple comparison controls applied across the post-
hoc tests within each omnibus ANOVA for each measure using
the false discovery rate (FDR-p) (Benjamini and Hochberg, 1995).

We also provide a rank order of the means from each pipeline
for each cleaning efficacy and variance explained metric, with sig-
nificant differences noted (Table 4). We have also provided means
and SD tables, and specific details of post-hoc tests within a heat
map, including confidence intervals for t-test comparisons with
significant tests highlighted for all metrics in the Supplementary
Materials (section 4). Finally, we have provided scatter plots of
mean SER � ARR values for each pipeline across the different data-
sets, so that these two metrics can be considered together for each
cleaning pipeline.
3. Results

All metrics we tested showed a significant difference in the
omnibus ANOVA (all p < 0.01). A rank order of the means from each
pipeline (with significant differences as detected by the post-hoc t-
tests noted) can be viewed in Table 4. Due to the high number of
comparisons, for readability, we provide here a summary of only
the results that were most relevant to the evaluation of the pipeli-
nes for cleaning efficacy and the detection of differences between
well-established experimental conditions. Full details of our pri-
mary analyses are provided in the Supplementary Materials (sec-
tion 4, pages 20–53, Figures S1-S34). Additionally, the details of
the analyses of the non-primary datasets (the combined 2back,
EO and EC dataset and the Colour Wheel task dataset) are reported



Table 3
Description of cleaning quality evaluation metrics used for comparing pipelines. Not all results from the pipelines are included in the main manuscript but can be viewed in the
Supplementary Materials. Metrics denoted with an asterisk are only presented in the Supplementary Materials. RMS: Root Mean Square, TANOVA: topographical analysis of
variance.

Metric Name Summary of Metric Purpose Required
EEG Data
Type

Evaluation of Metric

The following metrics were implemented to assess the effectiveness of each pipeline at cleaning a range of potential EEG artifacts.
Data Cleaning Metrics Signal to Error Ratio

(SER)
Indicates how well the signal in clean EEG periods
preserved by the cleaning process

Continuous Higher values reflect better
cleaning

Artifact to Residue
Ratio (ARR)

Indicates the extent to which all artifacts were reduced Continuous Higher values reflect better
cleaning

Frontal Electrodes
Blink Artifact Ratio
(fBAR)

Indicates whether cleaning has effectively cleaned the
blink artifact in frontal electrodes (with the ability to
indicate over-cleaning).

Continuous Values �=1 reflect optimal cleaning,
values < 1 indicate overcleaning,
and values > 1 reflect under
cleaning.

All Electrodes Blink
Artifact Ratio
(allBAR)*

Indicates whether cleaning has effectively cleaned the
blink artifact in all electrodes (with the ability to indicate
over-cleaning).

Continuous Values �=1 reflect optimal cleaning,
values < 1 indicate overcleaning,
and values > 1 reflect under
cleaning.

Muscle Activity
Remaining After
Cleaning

Indicates the proportion of the data containing likely
muscle activity after cleaning

Continuous Higher values reflect poorer
performance in removing muscle
activity

Proportion of Epochs
Removed by Cleaning

Reflects the proportion of epochs rejected by the overall
cleaning process.

Epoched Higher values reflect a larger
proportion of epochs rejected by
the cleaning pipeline.

The following metrics were implemented to depict the ability of the different pipelines to differentiate experimental conditions by examining the interactions between
different pairs of pipelines and the condition of interest.

Variance Explained by
between condition
comparisons of Alpha
Oscillation Power

Resting data Root
Mean Squared (RMS)
test

Reflects the variance in alpha power overall neural
response strength explained by the difference between
eyes-open and eyes-closed resting

Epoched Higher values reflect better
performance

Resting data
Topographical
Analysis of Variance
(TANOVA) test

Reflects the variance in alpha power distribution
explained by the difference between eyes-open and
eyes-closed resting in alpha power TANOVA (normalised
within each participant for overall amplitude)

Epoched Higher values reflect better
performance

Working Memory
delay vs probe
periods RMS 250 to
150 ms

Reflects the variance in alpha power overall neural
response strength explained by the difference between
delay and probe periods in the Sternberg task

Epoched Higher values reflect better
performance

Working Memory
delay vs probe
periods TANOVA 0 to
750 ms

Reflects the variance in alpha power distribution
explained by the difference between delay and probe
periods in the Sternberg task immediately after stimuli
presentation

Epoched Higher values reflect better
performance

Working Memory
delay vs probe
periods TANOVA 750
to 2000 ms

Reflects the variance in alpha power distribution
explained by the difference between delay and probe
periods in the Sternberg task from 750 m to 2000 ms
after stimuli presentation

Epoched Higher values reflect better
performance
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in the Supplementary Materials (sections 4–5, pages 54–71, Fig-
ures S35-S60). Examples of the raw EEG trace and the EEG trace
after cleaning with each of the pipelines are also presented in the
Supplementary Materials (Figures S61-S71). In addition to the
results reported below, we also note that RELAX is quick to run -
performing MWF_wICA using fastICA without computing cleaning
quality metrics took 225 seconds, on a 60 electrode 7-minute EEG
file, recorded at 1000 Hz using an Intel Core i7-10875H CPU @
2.3 GHz, 32 GB RAM. Performing wICA_ICLabel without metrics
only took 140 seconds. Computing cleaning quality metrics only
added 25 seconds to the computation time.
3.1. Artifact cleaning metrics

3.1.1. Signal-to-Error Ratio and Artifact-to-Residue Ratio
SER and ARR values can be viewed in Fig. 2 (and Figures S1-S5 in

the Supplementary Materials). When SER and ARR values were
viewed together (Fig. 3), it was apparent that MWF_wICA and
MWF_wICA_CCA performed better than ASR in both metrics.
MWF_wICA and MWF_wICA_CCA also performed equally to ICA_-
subtract in SER, while at the same time performing better in the
ARR metric. MWF_ICA_subtract provided higher ARR values but
at the expense of lower SER values than MWF_wICA. MWF_ICA_-
subtract also provided similar SER and higher ARR values com-
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pared to ASR suggesting that MWF cleaning is superior to ASR as
an initial data cleaning step prior to using ICA to subtract artifacts.
HAPPE and wICA_all showed very high ARR values, but at the
expense of very low SER values. Inversely, MWF_only, MWF_CCA,
and wICA_ICLabel showed high SER values but lower ARR values
(MWF_only performed the best of these three pipelines, providing
high SER and a similar ARR value to MWF_CCA and wICA_ICLabel).
Finally, note that wICA_ICLabel outperformed ICA_subtract when
viewing SER and ARR concurrently. While these initial results
might suggest MWF_only is the best pipeline, the SER and ARR val-
ues should be viewed in the context of the other metrics we have
included, which indicate how much blink and muscle artifacts still
affect the data after cleaning, as well as the variance explained by
the experimental manipulations.
3.1.2. Blink amplitude ratios
MWF_wICA and MWF_wICA_CCA performed significantly bet-

ter than all other pipelines (while not differing from each other),
providing values closest to 1 for both fBAR (Fig. 4, and Figures
S6-S7 in the Supplementary Materials) and allBAR (reported in
the Supplementary Materials, section 3, page 25, Figures S8-S9).
This was with the exception of MWF_ICA_subtract and MWF_CCA,
which only performed significantly worse than MWF_wICA and
MWF_wICA_CCA for allBAR values (and did not significantly differ



Table 4
Rank order from best performance (on the left) to worst performance (on the right) (by mean). Note that for some metrics, better performance is reflected by lower values, for
example the proportion of epochs showing muscle activity remaining after cleaning, and these metrics are ordered from best performance (on the right) to worst performance (on
the left) rather than from larger to smaller values. Significant differences are highlighted for which pipelines performed significantly better than other pipelines using the
following notation for ease of understanding: better performance > worse performance (rather than higher values > lower values). Because sometimes pipeline 1 differed from
pipeline 2, but pipeline 3 did not differ from either 1 or 2, we have used the following notation: ^ = significantly higher than the pipeline marked with a ^^ within the same section
(while the others in the category are not significantly different from each other). * = significantly higher than the pipeline marked with a ** in the same category, and so on for the
following symbols: +@$!+. Please refer to Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipelines presented in this figure. Note that MWF_wICA_fastICA and
MWF_wICA_AMICA refer to the implementations of MWF_wICA that use the fastICA and AMICA ICA algorithms respectively.

Oscillation Dataset Cleaning Metrics

Signal to Error Ratio MWF_only > MWF_CCA > wICA_ICLabel > MWF_wICA_AMICA > MWF_wICA_fastICA*, MWF_wICA, ICA_subtract, MWF_wICA_CCA** >
ASR, MWF_ICA_subtract > HAPPE > wICA_all

Artifact to Residue Ratio HAPPE > wICA_all > MWF_ICA_subtract > MWF_wICA_fastICA, MWF_wICA,
MWF_wICA_CCA > MWF_wICA_AMICA > ASR > MWF_CCA > wICA_ICLabel > MWF_only, ICA_subtract

Frontal Blink Amplitude
Ratio

MWF_wICA_fastICA, MWF_wICA, MWF_wICA_CCA, MWF_ICA_subtract, MWF_wICA_AMICA > MWF_CCA@+, wICA_all*, ASR^@,
ICA_subtract^@@, HAPPE^**, MWF_only++, wICA_ICLabel^^@@

Proportion of epochs
showing muscle slopes
after cleaning

MWF_ICA_subtract > MWF_wICA > MWF_wICA_fastICA > MWF_wICA_AMICA > MWF_wICA_CCA > MWF_CCA > ICA_subtract > ASR,
wICA_ICLabel > MWF_only > HAPPE > wICA_all

Proportion of Epochs
Removed by Cleaning

HAPPE > wICA_all > MWF_wICA_fastICA^, MWF_wICA *, MWF_ICA_subtract*+^^, MWF_wICA_AMICA*, MWF_wICA_CCA^^**@,
MWF_CCA^^**++, MWF_only^^**++@@, ICA_subtract^^**++, wICA_ICLabel^^**++. ASR showed the highest mean value, but only
significantly differed from HAPPE due to the large variance in proportion of epochs removed for the ASR pipeline.

Variance explained in Alpha Oscillation Power Comparisons
Resting data Root Mean

Squared (RMS) Test
ASR*, MWF_wICA_fastICA*@, MWF_wICA *@, MWF_wICA_AMICA*@, MWF_ICA_subtract*+@@, MWF_wICA_CCA*, MWF_only*++,
MWF_CCA*++, HAPPE**^, wICA_ICLabel^^, ICA_subtract^^ > wICA_all

Resting data Topographical
Analysis of Variance
(TANOVA) Test

wICA_all > MWF_CCA > MWF_only > MWF_wICA *, MWF_wICA_AMICA*^, MWF_wICA_fastICA*+, MWF_wICA_CCA*+,
MWF_ICA_subtract*^^, wICA_ICLabel**^^, ASR, ICA_subtract**. HAPPE provided the lowest variance explained, but significantly
differed from all pipelines exceptMWF_CCA and MWF_only (which showed the 2nd and 3rd largest np2 values). This odd result may be
due to the multidimensional nature of interactions between pipeline and EO/EC conditions in the TANOVA, combined with the fact the
TANOVA compares the distribution of activity (rather than a single value). As such, the result may be due to a more similar match in
topographical difference between EO and EC conditions for HAPPE, MWF_CCA, and MWF_only compared to the other pipelines.

Working Memory delay vs
probe periods Root Mean
Squared Test from 250 to
1500 ms

HAPPE > wICA_all > ASR+, ICA_subtract*, wICA_ICLabel*, MWF_wICA ++**^, MWF_ICA_subtract@**++, MWF_only!@@**^^, MWF_CCA!

@@**++^^, MWF_wICA_AMICA **++, MWF_wICA_CCA@@**, MWF_wICA_fastICA++**!!

Working Memory delay vs
probe periods
Topographical Analysis of
Variance Test from 0 to
750 ms

HAPPE*, wICA_ICLabel^, ICA_subtract^, wICA_all+^^, MWF_only@**^^++, MWF_CCA@**^^++, ASR!**^^++@@, MWF_wICA_AMICA!**^^++@@,
MWF_wICA_fastICA**^^++@@!!, MWF_wICA_CCA**^^++@@, MWF_wICA **^^++@@, MWF_ICA_subtract**^^++@@

Working Memory delay vs
probe periods
Topographical Analysis of
Variance Test from 750 to
2000 ms

ICA_subtract, wICA_ICLabel > wICA_all > MWF_only > MWF_CCA > MWF_wICA_CCA, MWF_wICA, MWF_wICA_fastICA,
MWF_wICA_AMICA, MWF_ICA_subtract > HAPPE
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in fBAR values). HAPPE, MWF_only, and wICA_ICLabel were the
worst performers for fBAR, and MWF_only, ASR, ICA_subtract and
wICA_ICLabel were the worst performers for all_BAR. However,
all pipelines performed reasonably well with mean fBAR and all-
BAR values ranging from 1.015 to 1.077. Having said this, it is
important to note the presence of outliers, which indicated where
a pipeline did not clean blinks effectively for a specific EEG file.
Visual inspection of the raincloud plot indicated MWF_wICA and
MWF_ICA_subtract showed the fewest outliers.

3.1.3. Muscle activity remaining after cleaning
MWF_ICA_subtract outperformed all other pipelines in terms of

the proportion of epochs showing muscle activity remaining after
cleaning (essentially 0 for almost all EEG files, Fig. 5, and Figures
S10-S12 in the Supplementary Materials). MWF_wICA performed
the next best (with values of almost 0 for most EEG files, but some
outlying files showed more epochs contaminated by muscle activ-
ity), followed by MWF_wICA_CCA, then MWF_CCA then ICA_sub-
tract. ASR and wICA_ICLabel performed worse, followed by
MWF_only. This overall rank order was similar for the severity of
muscle slopes that exceeded the threshold after cleaning, with
MWF_ICA_subtract performing the best, followed by MWF_wICA
(reported in the Supplementary Materials, section 4, page 30, Fig-
ures S13-S14). Of note, both the HAPPE and wICA_all pipelines
showed considerably more epochs identified as containing residual
muscle activity after cleaning than other pipelines (>75 % of epochs
11
compared to < 10 % for other pipelines). Instead of reflecting gen-
uine residual muscle activity, this may reflect an overall flattening
of the spectra slope due to considerable removal of power in the
lower frequencies by these pipelines (producing log-power log-
frequency slope values more like muscle affected data). However,
these pipelines showed relatively more beta range power in the
power-frequency plot, a feature which is not present in the other
pipelines.
3.1.4. Proportion of epochs removed by all cleaning steps
HAPPE and wICA_all produced data that had the fewest epochs

removed by cleaning (Fig. 6, and Figures S17-S18 in the Supple-
mentary Materials). These pipelines also produced very low ampli-
tude cleaned data, so we suspect their high performance in this
metric is the result of producing cleaned data with no epochs that
exceeded the epoch rejection criteria in our final epoch rejection
cleaning step. MWF_wICA then MWF_ICA_subtract were the next
best performers, followed by MWF_wICA_CCA, MWF_CCA,
MWF_only, ICA_subtract and wICA_ICLabel. ASR showed the high-
est mean value (worst performance), but only significantly differed
from HAPPE (we suspect this was due to its high variance which
can be seen in Fig. 6). When we tested for post-hoc differences
between individual pipelines using a bootstrap pairwise t-test
(pairdepb in the WRS2 package), ASR showed a higher proportion
of epochs rejected than all other pipelines.



Fig. 2. Raincloud plots depicting Signal-to-Error (SER) and Artifact-to-Residue (ARR) values from the combined eyes open, eyes closed, and Sternberg data (N = 213) for each
of the cleaning pipelines. Please refer to Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipelines presented in this figure. Higher values in both metrics
concurrently reflects better cleaning (high SER reflects good signal preservation, high ARR reflects good artifact reduction).
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3.2. Variance explained by experimental manipulations

3.2.1. Variance explained by the difference between Eyes-Open and
Eyes-Closed Resting-State

Fig. 7 depicts Fourier frequency-power spectrum plots for EO
and EC resting-state, and Fig. 8 depicts the amount of variance
explained by the difference between EO and EC resting-state in
root mean squared (RMS; reflecting overall neural response
strength) alpha power and TANOVA tests (reflecting the distribu-
tion of neural activity) across the different cleaning pipelines (with
the full details of each comparison provided in Figures S19-S24 in
the Supplementary Materials). When comparing the difference in
EEG signals between resting-state conditions, all pipelines showed
the expected pattern of higher alpha-band power during EC com-
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pared to EO. For measures of the variance explained by the differ-
ence between EO and EC resting-states in the global strength of
alpha power across all electrodes (RMS), ASR showed the highest
np2 value, but did not significantly differ from MWF_wICA,
MWF_ICA_subtract, MWF_wICA_CCA, wICA_ICLabel, or ICA_sub-
tract. MWF_wICA also outperformed MWF_ICA_subtract, HAPPE
and wICA_all.

With regards to the distribution of alpha activity (TANOVA),
wICA_all showed the highest np2 value, followed by MWF_CCA,
MWF_only then MWF_wICA. ASR, wICA_ICLabel, ICA_subtract,
and HAPPE showed the lowest np2 values, with the later three of
these pipelines showing significant differences compared to all
other pipelines, with the unusual exception of HAPPE, which sig-
nificantly differed from all pipelines except MWF_CCA and



Fig. 3. A scatterplot depicting both mean Signal-to-Error (SER) and mean Artifact-
to-Residue (ARR) values for the resting-state eyes open, eyes closed, and Sternberg
dataset from each cleaning pipeline. Please refer to Tables 1 and 2 for an
explanation of the labels of the EEG cleaning pipelines presented in this figure.
Higher values in both metrics concurrently reflects better cleaning (high SER
reflects good signal preservation, high ARR reflects good artifact reduction).
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MWF_only (pipelines that showed the 2nd and 3rd largest np2 val-
ues). Interpreting interactions in the normalised distribution of
activity is complicated, but we suspect this finding might be due
to a more similar pattern of differences in the distribution of activ-
ity between the EO and EC activity for HAPPE, MWF_CCA and
MWF_only (while other pipelines may have showed a different
pattern to HAPPE, and more variance explained than HAPPE but
less than MWF_only and MWF_CCA). The distribution of activity
from each pipeline can be viewed in the Supplementary Materials
(Figures S22-23, pages 41–42).
Fig. 4. Raincloud plot depicting frontal blink amplitude ratio (fBAR) values from the com
Please refer to Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipeline
no longer larger in amplitude than the surrounding data. Values < 1 are likely to reflect ov
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3.2.2. Variance explained by the experimental manipulation in the
Sternberg task

Fig. 9 depicts the Morlet wavelet transform power-frequency
spectrum plots for the Sternberg delay and probe periods. Note
that while the values produced by Fourier frequency-power are
lV2, because Morlet wavelet transform power is dependent on
the settings used, Morlet wavelet transform power values are
defined in ‘‘arbitrary units” (a.u.), and the power values produced
by these two transforms are on entirely different scales and are
not comparable. Fig. 10 depicts the amount of variance explained
by the difference between the Sternberg delay and probe periods
in the Morlet wavelet transform alpha power RMS test across the
different cleaning pipelines (which compared overall neural
response strength from 250-1500 ms after the stimuli) and the
TANOVA from 0 to 750 ms and 750 to 2000 ms after the stimuli
(with the full details of each comparison provided in Figures
S25-S34 in the Supplementary Materials). All pipelines showed
higher alpha power during the Sternberg delay period than the
probe period, as expected. With regards to the alpha power RMS,
HAPPE showed the highest np2 value for the difference between
the two conditions, followed by wICA_all. ASR, ICA_subtract, and
wICA_ICLabel showed the next highest, significantly larger than
MWF_wICA, MWF_ICA_subtract, MWF_only, MWF_CCA, and
MWF_wICA_CCA. While the HAPPE and wICA methods provided
the largest np2 values, these two pipelines resulted in alpha power
values > 2 orders of magnitude lower than the other pipelines
(with a similar reduction in power across all other frequencies).
This aligns with HAPPE and wICA_all showing the lowest SER val-
ues, suggesting much of the neural activity signal was eliminated
by these methods. wICA_all and HAPPE also produced a different
topography of alpha activity to the other pipelines, with smaller
differences in alpha power between Sternberg retention and probe
conditions at PO7/8 electrodes, where differences are usually the
largest (see Figs. 9, 11 and 12 and Supplementary Materials Figures
S31-32, pages 41–52). As such, we suspect the application of wICA
to all components in these methods may remove prominent char-
acteristics of the EEG activity, so that although these methods
might provide more power to detect differences between experi-
bined eyes open, and Sternberg data (N = 140) for each of the cleaning pipelines.
s presented in this figure. Values of 1 reflect blink cleaning so that blink periods are
ercleaning, and values > 1 are likely to reflect blink artifact remaining after cleaning.



Fig. 5. Raincloud plot depicting the proportion of epochs showing log-power log-frequency values above the �0.59 threshold from the combined eyes open, eyes closed, and
Sternberg data (N = 213) for each of the cleaning pipelines. Note that this figure excludes HAPPE and wICA_all, as these pipelines showed median values > 0.75 and made the
scale of the graph such that it was difficult to visualise differences in the other pipelines. Note also that we have winsorized the data in the figure, as the outliers also made the
scale such that it was difficult to visualise differences in the other pipelines. The full data can be viewed in the Supplementary Materials Figure S11 (page 30). Please refer to
Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipelines presented in this figure. Lower values reflect more effective cleaning of muscle activity, with
values of 0 indicating no epochs containing muscle artifact remain after cleaning.

Fig. 6. Raincloud plot depicting the proportion of epochs in the data rejected from the combined eyes open, eyes closed, and Sternberg data (N = 213) for each of the cleaning
pipelines. Please refer to Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipelines presented in this figure. Lower values indicate that the cleaning pipeline
preserves more epochs of the data.
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mental conditions in some circumstances, they may do so by only
providing a partial characterization of the neural activity recorded
to the EEG data. However, despite the reduction in signal, both
HAPPE and wICA cleaned data still showed the typical pattern of
activity as the peak frequency, so if alpha power were computed
relative to the other frequencies, HAPPE and wICA may still show
similar results to the other pipelines (although the prominence of
14
alpha above other frequencies was reduced in HAPPE and wICA
compared to other pipelines).

With regards to comparisons of the distribution of activity
(assessed by the TANOVA), two separate time periods showed a
difference in the distribution of alpha activity between the Stern-
berg delay and probe period in all pipelines – first a large difference
from 0 to 750 ms, then a smaller difference from 750 to 2000 ms.
For the first time-period (0 to 750 ms), HAPPE, wICA_ICLabel and



Fig. 7. Frequency power plots depicting fast-Fourier transformed power averaged across PO7 and PO8 at each frequency from the eyes open (EO) and eyes closed (EC) resting-
state EEG recordings for each cleaning pipeline (shaded errors reflect 95% confidence intervals). Note the different scale required to see the power spectrum for HAPPE and
wICA_all. Please refer to Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipelines presented in this figure.
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ICA_subtract showed the best performance, significantly better
than wICA_all, which outperformed MWF_only, and MWF_CCA,
which outperformed ASR, MWF_wICA, MWF_wICA_CCA, and
MWF_ICA_subtract. However, it is worth noting that for this met-
ric, all pipelines produced np2 values between 0.24 and 0.28, so the
differences were not large. For the second time-period examined
with the TANOVA test (750 to 2000 ms), a different pattern was
15
apparent, with ICA_subtract and wICA_ICLabel performing the
best, followed by wICA_all, which performed better than
MWF_only, MWF_CCA, MWF_wICA_CCA, MWF_wICA, and
MWF_ICA_subtract. HAPPE showed the worst performance. How-
ever, similar to the earlier time-period, all pipelines produced
np2 values between 0.18 and 0.25, so the differences were not
large.



Fig. 8. The variance explained (np2) by differences in averaged alpha power between eyes open and eyes closed for root mean squared (RMS) and topographical analysis of
variance (TANOVA) tests for each of the cleaning pipelines. Please refer to Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipelines presented in this figure.
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Together, these findings demonstrate that different cleaning
pipelines can alter the EEG signal in differing ways. While the pat-
tern of change during different resting-state and task conditions is
broadly similar across pipelines, the choice of pipeline can alter the
overall effect size between conditions. Additionally, while most
pipelines showed a very similar distribution of alpha activity,
HAPPE and wICA_all showed a different distribution of activity to
all other pipelines, suggesting (alongside the alpha RMS, SER, and
ARR values) that these two pipelines may be overcleaning the data,
removing alpha power from specific electrodes such that the distri-
bution of activity after cleaning is significantly altered (see Figs. 11
and 12, and Supplementary Materials Figures S31-32, pages 51–
52).
4. Discussion

This study reports the results of comparisons between multiple
variations of our newly developed RELAX EEG cleaning pipeline
and six other commonly used pipelines. These comparisons were
made across a wide range of cleaning and signal preservation met-
rics. Considering the results of the comparisons across the cleaning
pipelines, across multiple datasets with different recording param-
eters, and taking account of the overall performance on both a
range of cleaning quality and signal preservation metrics, we con-
clude that the RELAX MWF_wICA pipeline provided the best per-
formance at cleaning the data (without ‘‘overcleaning” the data),
while also performing well at detecting experimental effects. Addi-
tionally, either the RELAX MWF_wICA or wICA_ICLabel methods
were amongst the highest performing pipelines in metrics assess-
ing the ability to detect experimental effects after cleaning with
the pipeline. MWF_wICA also provided high values for both signal
preservation (SER) and overall artifact reduction (ARR), with simul-
taneously higher values for both SER and ARR than ASR or ICA_sub-
tract across all datasets, indicating MWF_wICA was better at both
removing artifacts and preserving signal. While MWF_only or
wICA_ICLabel approaches maintained more of the signal as indi-
cated by higher SER values, these methods were also less effective
at reducing artifacts, as indicated by lower ARR values and poorer
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performance in the blink and muscle metrics. Blink and muscle
metrics also showed that MWF_wICA was better at cleaning these
artifacts than MWF_only, wICA_ICLabel, ICA_subtract, and ASR.
Additionally, the RELAX MWF_wICA methods resulted in the least
amount of data having to be removed by cleaning and outlying
epoch exclusion, except for HAPPE and wICA_all (which our results
indicate excessively reduce the neural signal as well as the arti-
facts). This means that the RELAX MWF_wICA method makes more
data available for inclusion in analyses than most pipelines, reduc-
ing the risk that participant data needs to be excluded for having
too few epochs for inclusion, or that results might be biased by
exclusion of epochs containing neural activity due to inferior
cleaning. Our companion article additionally indicated that
MWF_wICA produced data that showed amongst the highest
scores for reliability of ERPs across trials and participants, suggest-
ing cleaning with MWF_wICA provided amongst the most consis-
tency in detecting experimental effects (Bailey et al., 2022). The
inclusion of more high-quality epochs for analysis and more reli-
able data has been suggested by simulations to improve study
power even more than increasing sample size (Clayson et al.,
2021b, Kolossa and Kopp, 2018, Luck et al., 2021). For these rea-
sons, we recommend the use of the RELAX pipeline with
MWF_wICA as a default effective EEG cleaning pipeline when no
rationale exists to prefer another variation of RELAX. However, in
specific circumstances, the RELAX pipeline with the wICA_ICLabel
setting might be preferred (discussed in more detail below). Our
results also recommend MWF_wICA or wICA_ICLabel should be
preferred over the approach that is most used in the literature cur-
rently - ICA_subtract.

Our results indicate the value of combining multiple artifact
reduction approaches in a single EEG cleaning pipeline, which is
likely to address artifacts that a single method in isolation might
not clean completely. For example, muscle activity often appeared
to be inadequately addressed by MWF alone, and blinks were not
as effectively addressed by wICA_ICLabel alone, while the combi-
nation of both methods did effectively clean both artifacts (note
that it is easy to perform only MWF or only wICA_ICLabel cleaning
with RELAX, so users can test this on their own data). This is in



Fig. 9. Frequency power plots depicting Morlet wavelet transformed power averaged across PO7 and PO8 at each frequency from the working memory delay and probe
periods for each cleaning pipeline (shaded errors reflect 95% confidence intervals). Note the different scale required to see the power spectrum for HAPPE and wICA_all. Note
also that because Morlet wavelet transform power is dependent on the settings used, power values are defined in ‘‘arbitrary units” (a.u.). Please refer to Tables 1 and 2 for an
explanation of the labels of the EEG cleaning pipelines presented in this figure.
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alignment with some other research, where combination cleaning
approaches that performed CCA, ICA and independent vector anal-
ysis have also been demonstrated to be more effective than single
approaches (Barban et al., 2021). We suspect a benefit of the com-
bined MWF and wICA approach is that the combination provided a
useful backup (in case one step inadequately addressed an artifact,
the other step was still likely to reduce that artifact) while not
over-cleaning the data (if the MWF cleaning completely addressed
17
the blink artifact, ICLabel would not detect any blink artifact and
thus the wICA step would not further attempt to reduce blink arti-
facts leading to over cleaning). However, while adding CCA to the
MWF pipeline did improve the cleaning of muscle activity com-
pared to MWF_only, it also resulted in inferior blink correction
compared to MWF_wICA, suggesting that wICA applied to artifacts
detected by ICLabel is an optimal second step as it addresses all
artifacts rather than just muscle artifacts. Additionally, using CCA



Fig. 10. The variance explained (np2) by the difference in root mean squared (RMS – a measure of overall neural response strength) and topographical analysis of variance
(TANOVA – a measure of differences in the distribution of neural activity) tests comparing alpha activity between the delay and probe periods of the Sternberg task after
cleaning by each pipeline. Please refer to Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipelines presented in this figure.
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in addition to MWF_wICA (MWF_wICA_CCA) did not enhance per-
formance compared to MWF_wICA. As such, while the application
of specific multiple cleaning methods does seem to improve clean-
ing performance, it is not the case that adding more cleaning meth-
ods is always better. Additionally, our results suggested that both
when applied in isolation and after MWF cleaning, wICA_ICLabel
was better at preserving signal (higher SER values) than ICA_sub-
tract, while still providing similar artifact reduction (ARR values).
Since the SER reflects the ability of a pipeline to preserve signal
in periods that are not affected by artifacts, we suspect this high-
lights the manner in which subtracting an ICA component means
removing not only artifact, but neural activity that is mixed into
the component due to imperfect ICA decomposition. In contrast,
because of the wavelet thresholding used within wICA, only the
largest amplitude signal is removed by the wICA_ICLabel method
(and this largest amplitude signal from a component identified as
an artifact is likely to reflect the artifact, whereas the smaller
amplitude signal that is left in the data is more likely to reflect neu-
ral activity), while the clean data periods (which do not contain
this larger amplitude signal) are left unaffected (allowing wICA_I-
CLabel to produce higher SER values). Similarly, while subtraction
of ICA after MWF reduced the metrics assessing remaining muscle
activity to approximately zero, the method never led to higher
explained variance from the experimental tests and resulted in
lower variance explained in most metrics. As such, while subtract-
ing artifactual components with ICA is probably the most common
cleaning approach, we recommend the use of wICA to reduce arti-
factual components instead. Given these two points, our recom-
mended RELAX pipeline applies MWF cleaning then wICA
cleaning (but not CCA or ICA subtraction).

While the preceding paragraphs suggest that the cleaning met-
rics we tested strongly recommend the use of RELAX with the
MWF_wICA setting, our perspective is that the most important
metric for cleaning efficacy is whether a cleaning approach
enhances a researcher’s ability to detect experimental outcomes
(a view shared by other researchers) (Clayson et al., 2021a). Here,
the results do not indicate a single best cleaning approach for all
applications. This is consistent with previous research, which has
also been unable to recommend a single best pipeline for all situ-
ations (Barban et al., 2021). Encouragingly, except for the wICA_all
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and HAPPE pipelines, all the cleaning approaches we tested led to
broadly similar amounts of variance explained by the experimental
manipulation and similar patterns for outcomemeasures. This sug-
gests that as long as the confounding influences of artifacts are suf-
ficiently addressed and signal is sufficiently preserved, EEG
cleaning choices may not severely confound results across differ-
ent studies, at least providing effects in the same direction and of
similar magnitudes. However, we deliberately chose tasks that
provided well established reasonably sized differences between
the experimental conditions. Studies examining differences
between clinical groups or treatment conditions might show smal-
ler effect sizes than between condition comparisons, in which case
optimal pipeline selection might be more likely to influence
results. Indeed, some research has suggested that subtle effects
do not always replicate between different data cleaning
approaches, and that effect sizes vary across EEG cleaning pipelines
(Clayson et al., 2021a, Robbins et al., 2020, Rogasch et al., 2020). As
such, we recommend the use of RELAXMWF_wICA as a default due
to its superior artifact cleaning and signal preservation attributes.
However, for specific uses, the wICA_ICLabel setting might at times
be preferred.

In particular, the amount of variance explained by the experi-
mental manipulations indicated that the MWF_wICA pipeline did
not significantly differ from the most effective pipelines when
examining resting-state alpha power. However, the wICA_ICLabel
setting of RELAX performed more highly in alpha power measures
from the Sternberg task, and as such might be preferred for studies
focused on similar oscillatory outcome measures. Having said that,
because wICA_ICLabel did not clean blinks or muscle as effectively,
we recommend wICA_ICLabel only be used where enough trials are
collected (or enough participants) that lower reliability could be
acceptable, as research has suggested data quality is more impor-
tant for power than data quantity (Kolossa and Kopp, 2018). As
such, wICA_ICLabel might be preferred when using robust statis-
tics and methods that include all single trials in the statistical
inferences, where reduced cleaning can avoid the potential nega-
tive effects of arbitrary cleaning thresholds, and robust statistics
can account for the noisier data (Alday and van Paridon, 2021).
However, note that if an inadequately cleaned artifact is time-



Fig. 11. Alpha power distribution during the early period (0 to 750 ms) after the stimuli of the working memory delay (retention) and working probe periods from each of the
cleaning pipelines. All plots are on the same Morlet wavelet transform power scale so they can all be compared to all other pipelines [note that because Morlet wavelet
transform power is dependent on the settings used, power values are defined in ‘‘arbitrary units” (a.u.)]. Note that wICA_all and HAPPE reduced the power in all frequencies
by approximately 2 orders of magnitude. Please refer to Tables 1 and 2 for an explanation of the labels of the EEG cleaning pipelines presented in this figure.
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locked to a period of interest, even robust statistics might not
address its potential to confound results.

wICA_ICLabel might additionally be recommended for studies
examining connectivity between electrodes, as the effect of MWF
on connectivity measures is currently unknown. For researchers
interested in connectivity measures, it may be useful to note that
cleaning EEG data using wavelet enhanced ICA (wICA) to reduce
artifacts does not reduce the rank of the data, so might allow for
higher resolution of nodes when using connectivity analysis in
source space (in contrast to subtracting ICA components, which
does reduce the rank) (Castellanos and Makarov, 2006). Addition-
ally, for research examining gamma oscillations, it might be worth
considering that MWF_ICA_subtract removed essentially all mus-
cle activity, which is a potential confound in studies examining
gamma oscillations due to the overlap in frequencies between
muscle activity and gamma neural oscillations. However, note that
the ‘ground-truth’ of gamma oscillations was not determined, so
we cannot eliminate the possibility that MWF_ICA_subtract
removed neural oscillations as well as muscle.

In contrast to the preceding recommendations, while ASR pro-
vided high values for the variance explained between our experi-
mental conditions, there were no cases where it provided higher
performance than both wICA_ICLabel and MWF_wICA, and ASR
performed worse than MWF_wICA in all artifact reduction metrics.
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Our results also suggested high variability in some measures after
ASR cleaning, and our experience using ASR has suggested it pro-
duced inconsistent cleaning outcomes even when applied to the
same file (including a high number of periods removed as reflect-
ing extreme artifacts when using the default settings). Unfortu-
nately, we were not able to discern whether this variability
reflects ‘ground-truth’ differences (in which case the variability is
valuable), or variability produced by the ASR cleaning (in which
case the variability is artifactual), and our objective measures do
not address the cause of the variability.

Our results also indicated that HAPPE and wICA_all were asso-
ciated with very low SER values, and very low amplitude EEG activ-
ity after cleaning (including a reduction by > 2 orders of magnitude
for alpha power), indicating considerable reduction of the neural
activity signal. After cleaning with these pipelines, the majority
of epochs also showed log-power log-frequency slopes that were
indicative of residual muscle activity. It may be that this was not
because these pipelines inadequately cleaned muscle activity, but
rather they over-cleaned the neural activity signal in the lower fre-
quency ranges, so the cleaned slopes were flattened and no longer
displayed the 1/f power-frequency distributions of typical neural
activity (Donoghue et al., 2020). However, our power frequency
plots for wICA_all and HAPPE pipelines did show more power in
the beta frequency range relative to lower frequencies compared



Fig. 12. Alpha power distribution during the early period (0 to 750 ms) after the stimuli of the working memory delay (retention) and working probe periods from each of the
cleaning pipelines. All pipelines are on their own individual Morlet wavelet transform power scale so the pattern of alpha activity distributions can be viewed within each
pipeline (but comparisons of amplitudes between pipelines are not meaningful in this figure). Note that because Morlet wavelet transform power is dependent on the settings
used, power values are defined in ‘‘arbitrary units” (a.u.). As expected, the retention period showed more occipital / parietal alpha maximums, while the probe period showed
more widespread alpha. Note the similarity in pattern across most pipelines, including ICA only and MWF only methods, implying different cleaning approaches still lead to
similar patterns. ASR, HAPPE, and wICA_all were the most different to the other cleaning pipelines, with ASR removing most of the frontal alpha, and HAPPE and wICA
showing less qualitative differentiation between the probe and retention period alpha, despite these pipelines showing the highest variance explained for the comparison
between the two conditions. We suspect this may be the result of removal of significant amount of the variance by these pipelines, leading to highly precise estimates of the
retention and probe alpha activity, which allow strong inferences about the differences in these periods (which no longer overlap after the removal of so much variance).
However, we suspect this comes at the cost of distorting the distribution/characterization of the neural activity. Please refer to Tables 1 and 2 for an explanation of the labels
of the EEG cleaning pipelines presented in this figure.
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to other pipelines (Figs. 7 and 9), so it may be that these methods
simply do not adequately clean muscle activity. The combination
of low SER values, reduced power frequency amplitudes, and
altered activity distributions compared to the other pipelines sug-
gests that the wICA_all and HAPPE pipelines overclean the data,
removing elements of the neural signal. It is worth noting that
HAPPE was designed to address noisy data with large artifacts, so
our result perhaps highlights that it is not appropriate for typical
cognitive data without excessive noise (Gabard-Durnam et al.,
2018). As such, while the HAPPE and wICA_all methods did seem
to produce higher explained variance for several experimental out-
comes, we do not recommend their use, except perhaps in the case
of extremely noisy data, or where the outcome of interest is not
concerned with characterizing the data, but simply differentiating
two conditions (for example, brain-computer interface applica-
tions might usefully apply the wICA_all approach in real time using
very rapid ICA computation approaches).

Since it seems there is not a single best cleaning pipeline that
can be recommended, we have made RELAXmodular so that differ-
ent approaches can easily be implemented. Some default settings
can be recommended. For example, the results reported in our
companion paper indicated that the ICA methods infomax or fas-
tICA with the symmetric setting were the best performers within
RELAX (Bailey et al., 2022). If users can install cudaICA, this setting
is likely to be optimal, providing both speed and the best perfor-
mance (Raimondo et al., 2012). Traditional extended infomax can
also be used, but is slower (Lee et al., 1999). Otherwise, we have
20
left the default setting as fastICA with the symmetric setting
(Hyvarinen, 1999), which our companion paper has indicate is (just
slightly) better than the deflation setting (Bailey et al., 2022). We
have set this fastICA to repeat the ICA up to three times in the case
of a non-convergence issue which can adversely affect ICA decom-
positions, then to switch to the ‘defl’ setting if non-convergence
still occurs. Other defaults have been set after an extensive process
of informal testing to determine optimal cleaning and values for
the variance explained by different experimental manipulations.
If deviating from these defaults, then specific RELAX settings or
parameter variations used in future research should be justified,
primarily with reference to a previous demonstration of maximal
explained variance in a similar experimental design. Ideally, the
parameters selected should also be pre-registered to prevent ‘‘fish-
ing” for positive results. However, while we recommend the use of
methods that ensure ‘‘fishing” does not inflate the false positive
rate, it may also be useful to other researchers to report analyses
using multiple parameter selections. This would help guide future
research towards the optimal methods for particular use cases. It
may have the additional benefit of demonstrating robustness of
results to variations in cleaning methods, eliminating the possibil-
ity that a specific result is produced by or dependent on a specific
cleaning method. If researchers implement this approach, the a pri-
ori selected, primary, and ideally pre-registered cleaning method
should be specified so readers can be aware of which analysis
method was pre-planned, and understand the risk that positive
results were produced by multiple re-analyses. RELAX provides
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an output of the cleaning efficacy metrics used in the current
study, which should be reported so reviewers and readers can
determine the risk that remaining artifacts could confound conclu-
sions (perhaps in a Supplementary Materials section for the sake of
brevity). We have provided further discussion points in our Sup-
plementary Materials, section 7, pages 75–76).

4.1. Limitations

Despite our extensive testing, there are many limitations to the
conclusions we can draw from the current study. Firstly, while our
results are relatively comprehensive, we have only scratched the
surface of the full potential parameter space of cleaning options.
In particular, we note that we did not make comparisons with sig-
nal space projection approaches to cleaning EEG data (Tesche et al.,
1995, Uusitalo and Ilmoniemi, 1997), such as the source-estimate-
utilizing noise-discarding algorithm (SOUND) (Mutanen et al.,
2018). We have also only tested the cleaning pipelines on a small
number of datasets (although certainly with large sample sizes),
and only tested the cleaning pipelines on a minority of experimen-
tal tasks and experimental outcomemeasures (although more than
most cleaning studies - see also our companion article for exami-
nation of ERP related data, (Bailey et al., 2022)). In particular, we
did not test the effect of data cleaning approaches on connectivity
analyses or metrics that assess the 1/f aperiodic non-oscillatory
component of the data.

Secondly,wehavenot testedRELAXonextremelynoisydata con-
taminated with large movement artifacts, nor scans of children/in-
fants, nor the elderly who often produce EEG data with more
artifacts, and which may contain different characteristics to the
datasets we tested, potentially requiring alternative artifact/signal
discrimination approaches.We note that ICLabelwas built sampling
fromadult data (Pion-Tonachini et al., 2019), and the log-power log-
frequency muscle slope thresholds were derived from adult data
(Fitzgibbon et al., 2016). Similarly, ICLabel was built from data con-
taining 32 or more electrodes, so we suspect data with less than 32
electrodesmightnot provide ICLabelwith sufficient data for optimal
artifact detection, leading to reduced cleaning performance (Pion-
Tonachini et al., 2019). All of our test data also included between
44 to 62 electrodes, so the efficacy of RELAX at cleaning high-
density EEG montages with > 100 electrodes is not certain. While
the principles used to exclude extremely bad epochs and channels
should still apply, itmay be thatwith densermontages a higher pro-
portion of data periods contain at least a single electrode that
exceeds the threshold suggesting the data period should be rejected.
The methods used to identify artifacts for MWF cleaning should not
differ in denser EEG montages, but the MWF cleaning will require
more memory and computational power. Additionally, ICLabel
was trained on data up to 128 electrodes, so should be able to be
implemented on denser EEG montages (Pion-Tonachini et al.,
2019). It is also worth noting that short EEG data periods may not
have enough samples for effective ICA computation, nor for identifi-
cation of artifacts for MWF cleaning. At least [Number of channels ^
2� (�30)] data points are recommended (�2.5minutes for 64 chan-
nel data recorded at 1000 Hz) (Miyakoshi, 2018). Additionally, our
test datasets all used anelectrodenear toCPz as theonline reference,
and re-referencingwas not performed until after theMWF cleaning.
Our preliminary tests suggested that the MWF cleaning step was
slightly more effective when CPz remained the reference electrode
thanwhendatawere re-referenced to the average electrode. Prelim-
inary testing indicated RELAXdidworkwith a linked ear referencing
montage, butwe did not formally test cleaning using other referenc-
ing montages. As such, if a different recording montage has been
used, we would suggest re-referencing to CPz or a nearby electrode
prior to submitting data for cleaningwith RELAX (remembering that
data cleanedwithRELAX is outputtedwith the robust commonaver-
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age reference implemented, and that data can be then re-referenced
to a user’s chosen referencing montage if desired).

Third, while automation of EEG data pre-processing prevents
the risk that subjectivity would affect the data compared to man-
ual pre-processing, there are also potential pitfalls. One particu-
larly risky pitfall is that some files may be corrupted during the
recording process and contain no neural related data whatsoever,
an issue that automated cleaning methods may not identify. This
issue occurred for one file we submitted to our pre-processing
pipelines. As such, we recommend that EEG recording technicians
exclude data files that appear to contain no usable signal before
submitting files to pre-processing. As a double-check, we have also
included in the pipeline a visual test of outlying median voltages
from each electrode in the cleaned data, which indicates if a partic-
ular file contains atypical data which should be manually checked
(a method that effectively identified our problem file).

Additionally, there is no way to be sure of the ‘ground-truth’ of
our tests of the amount of variance explained by different experi-
mental manipulations. As such, it may be possible that the higher
levels of explained variance are due to artifacts rather than actual
differences in neural activity. However, this seems an unlikely
explanation for our results for a number of reasons. First, the arti-
facts would have to be both time-locked to the stimuli in the case
of the Sternberg task (and the Go Nogo data reported in our com-
panion manuscript) and appear more strongly or more frequently
in one condition than the other. The only artifact that is likely to
fit this requirement is eye movement. However, all pipelines pro-
duce blink amplitude ratios ranging from 1.015 to 1.077, values
that are likely too small to produce much influence on differences
in variance explained between pipelines. Second, we think it is
unlikely that any artifact would increase the explained variance
by the experimental manipulation across multiple different tasks
and types of brain activity (especially considering the different
topographical patterns and underpinning mechanisms associated
with each measure). We suggest this is a particularly unlikely
explanation, since the measures used were selected because they
have been robustly characterised by previous research, which
demonstrated that the experimental manipulations lead to the pat-
terns of brain activity that we detected in the current study.
Finally, if the explained variance was due to the influence of arti-
facts, we would instead see an artifact pattern in the TANOVA for
one of the conditions from one of the cleaning pipelines (the most
obvious of which would have been a blink topography). No such
artifact topography was present in any of our pipelines or compar-
isons for the tests of experimental effects. While it may be that pre-
vious research that has demonstrated the expected effect of the
different experimental manipulations might have also been driven
by artifacts in the data, these artifacts would have to be consistent
across the range of cleaning pipelines that have replicated the
effect for the analyses we included (including the range of pipeli-
nes tested in our study, which almost all showed the expected
effects). Furthermore, in some cases, previous research has used
electrocorticography or fMRI in conjunction with EEG to demon-
strate that EEG measures relate to brain activity detected with
these other methods, providing confidence that artifacts are not
producing the result (Ahmad et al., 2016, Baumeister et al., 2014,
Iannaccone et al., 2015, Meltzer et al., 2007, Smith et al., 2013,
Zhang et al., 2018). The putative brain activity detected for many
of the metrics we included has also been shown to predict beha-
vioural performance, suggesting functional relationships that are
unlikely to be present for artifacts (Bashivan et al., 2014, Clark
et al., 2004, Karamacoska et al., 2018). As such, we suggest that
our results indicate that RELAX cleans artifacts in such a way that
the signal (brain activity) to noise (muscle, eye movement etc.)
ratio is maximised, and the higher explained variance values
reflect better detection of the effects of the experimental manipu-
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lation on the brain activity rather than artifacts remaining after
cleaning, providing a strong recommendation for the use of RELAX
when cleaning EEG data.

In order to address this ‘ground-truth’ issue, onepotential recom-
mendation could be to use simulated data that includes artifacts.
One method for adding artifacts to a ground truth-signal that has
been implemented in the past is to obtain an artifact signal that
has been removedby cleaning real data, then adding this artifact sig-
nal to simulated neural data (Hoffmann and Falkenstein, 2008).
Unfortunately, this can create a bias towards the cleaning method
used to remove those artifacts from the real data (Barban et al.,
2021, Hoffmann and Falkenstein, 2008, Urigüen and Garcia-
Zapirain, 2015). To avoid this bias, previous research has recom-
mended testing the cleaning efficacy of different methods onmulti-
ple versions of simulated data, constructed from the use of multiple
methods for extracting the artifact templates (Hoffmann and
Falkenstein, 2008). However, this approach might simply provide
multiple biased assessments of cleaning efficacy. As such, another
approach is to use real artifacts as templates to create artifact mod-
els that are distributed in a spatio-temporally realisticmanner, then
add these simulated artifacts (that are independent from the clean-
ing methods being tested) to the ground-truth data (Barban et al.,
2021). Unfortunately, regardless of the method used, these simu-
lated data constructionmethods still do not preserve certain aspects
of real data - for example, the synchronisation betweenneural activ-
ity and stimulus presentation, synchronisation between electrodes
(Urigüen and Garcia-Zapirain, 2015), or, perhaps most critically for
the testing of effective EEG cleaning methods, synchronisation
between the neural activity that elicits blink or muscle artifacts
and the timing of those artifacts. As such, while real data (as tested
in the current study) provides the most important final test of any
cleaning method, simulations may be an effective method to obtain
otherwisebiologically plausible artifactswith a ground-truthneural
signal enabling researchers to assess the match between cleaning
outcomes and the ground-truth data (Urigüen and Garcia-
Zapirain, 2015).

4.2. Potential improvements and future research

We tested many potential versions of RELAX, and informally
explored most parameter settings for optimal performance prior
to formal testing. However, there are potential improvements that
may be possible which are worth exploring in future EEG cleaning
pipeline development. These are discussed in full in the Supple-
mentary Materials (section 7, page 76), but include: 1) using an
adaptive threshold for the wICA cleaning (which we briefly tested
using an array of the level dependent settings within the MATLAB
function ‘wdenoise’, but found this approach to be less effective at
reducing blink artifacts); 2) using a less stringent amplitude
threshold for outlying epoch rejection after cleaning, or alterna-
tively, no epoch rejection and robust statistics for comparisons
(Alday and van Paridon, 2021); 3) taking temporal information into
account in the ICA computation (with Independent Vector Analysis
for example; (Barban et al., 2021), although we note that this is
slow and potentially complicated to implement); 4) adapting ICLa-
bel to identify artifactual components based on empirically estab-
lished objective methods, rather than its current design which
used expert consensus [for example, applying the objective
approach to identifying muscle components based on comparison
of paralysed vs non-paralysed scalp recordings provided by
Fitzgibbon et al. (2016)]; and 5) RELAX was designed for effective
cleaning without the need for electrocardiogram or electrooculo-
gram electrodes to maximise its applicability and consistency (in
our experience, these electrodes are more commonly noisy than
scalp electrodes). However, the inclusion of electrocardiogram or
electrooculogram electrodes may allow more accurate identifica-
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tion of the eye movement or cardiac artifacts and is worth explor-
ing in future research.

The current study also required a very large amount of compu-
tation and researcher hours, involving massive repeated iterative
testing of different cleaning parameters by multiple researchers
across multiple datasets and multiple outcome metrics. As such,
the comprehensiveness of a project like this is difficult to achieve.
Despite this difficulty, we would recommend examining an even
higher number of metrics and varying an even broader parameter
space in future pipeline development. To achieve this, we suggest
to the field that an online resource containing multiple large EEG
datasets could be collated for the purposes of testing EEG cleaning
pipelines (note that small scale examples that have been set up to
enable testing of cleaning approaches already exist (Barban et al.,
2021, Kappenman et al., 2021, Zhang et al., 2020), and large-scale
open access datasets are also available (van Dijk et al., 2022). The
cleaning efficacy of newly proposed pipelines could be compared
via these datasets across multiple metrics, and after cleaning, mul-
tiple neural activity measures of explained variance could be
assessed (for example, ERPs, oscillations, 1/f metrics, and connec-
tivity measures). A ‘leader board’ of the current optimal methods
could be established, so that new cleaning approaches would not
have to replicate pipelines that have already been tested to make
comparisons. An automated algorithm could iteratively test
parameter details that may affect cleaning quality (such as the
wICA threshold or outlier identification thresholds). It is also pos-
sible for different settings of different parameters to interact with
each other to influence cleaning performance. For example, lower
extreme outlier exclusion thresholds may improve wICA perfor-
mance more for higher wICA thresholds than lower thresholds.
As such, the potential parameter space might be practically infi-
nite. This being the case, automated EEG cleaning pipeline devel-
opment is much better performed by an automated system,
perhaps with many pipelines being tested concurrently to optimise
pipeline development as quickly as possible. If this were achieved,
the most optimal current pipeline could be automatically uploaded
to GitHub each time the testing system discovered an improve-
ment. Different outcome measures or experimental designs could
even have their own version of the most optimal pipeline
(Clayson et al., 2021a). As such, the system could reflect a ‘‘living”
gold-standard in EEG pre-processing. We unfortunately do not
have the resources to implement this approach, and we are not
able to share our data due to ethical approval criteria. We mention
it here in the hope that the field may be inspired to achieve this,
perhaps via large scale collaboration (we note that #EEGManyLabs
or #EEGManyPipelines could be good platforms for this discussion)
(Algermissen et al., 2021, Pavlov et al., 2021).

5. Conclusion

To conclude, we recommend future researchers use the RELAX
approach with the default MWF_wICA setting for cleaning EEG
data when no clear rationale exists to use another setting, as it pro-
vides the following benefits:

1) RELAX MWF_wICA provided the best or equivalent to the
best cleaning of all artifact types.

2) RELAX is fully automatic and quick to apply, saving consid-
erable time, and eliminating subjectivity throughout the
cleaning process.

3) The RELAX pipeline contains embedded cleaning quality
metrics, which can also be easily reported in publications.
This will enable researchers to evaluate the likelihood that
the specific cleaning parameters or remaining artifacts
might be influencing conclusions drawn from the data.
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4) The RELAX MWF_wICA approach maximises the number of
epochs included for analysis, thus reducing the possibility
of biasing the data based on epoch exclusion and increasing
the statistical power of the study.

5) RELAX MWF_wICA provided high levels of variance
explained by the experimental manipulation.

We have provided the source code and made the pipeline
straightforward to use and publicly accessible, with the only tech-
nical skills required being the installation of the MATLAB specific
and external dependencies. RELAX also does not require eye elec-
trodes (unlike regression approaches), so is applicable to a wider
range of datasets and robust against participant discomfort with
eye electrodes (Gómez-Herrero et al., 2006), as well as the some-
what common (in our experience) ‘‘bad eye electrode” issue.
RELAX is available for download from GitHub (https://github.-
com/NeilwBailey/RELAX/releases). Instructions for installing and
using the pipeline can be found in the GitHub wiki: https://github.-
com/NeilwBailey/RELAX/wiki. The pipeline is designed to run
within the commonly used EEGLAB software (implemented in
MATLAB) (Delorme et al., 2007). Finally, we note the acronym
‘‘RELAX” was also chosen as a prompt for researchers - while tech-
nological advances have the potential to reduce our workload, they
have typically made us simply more productive instead. Given the
stressors researchers are exposed to (Bowen et al., 2016), and the
reductions in health associated with that stress (Faragher et al.,
2005, Nixon et al., 2011), we recommend that at least part of the
time saved by using our pipeline could be spent on researcher
well-being, rather than simply further increasing productivity.

Recommendations for using RELAX when examining
oscillations:

1. Use RELAX_MWF_wICA as the default cleaning pipeline
(with fastICA on the symm setting, or cudaICA if it can
be installed)

2. Use RELAX_wICA_ICLabel if analysing task related oscilla-
tory power or connectivity, but only if data are relatively
clean, if using analysis methods that prevent remaining
artifacts confounding conclusions (for example single trial
analyses with robust statistics) and if a large number of tri-
als is available for analysis.

3. Consider using RELAX_MWF_ICA_subtract if analysing
gamma power (or if removing all muscle activity is
required)
See our companion article for recommendations related to
ERP analyses (Bailey et al., 2022).
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