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Dynamical characteristics of a complex system can often be inferred from analyses of a stochastic

time series model fitted to observations of the system. Oscillations in geophysical systems, for

example, are sometimes characterized by principal oscillation patterns, eigenmodes of estimated
autoregressive (AR) models of first order. This paper describes the estimation of eigenmodes of

AR models of arbitrary order. AR processes of any order can be decomposed into eigenmodes
with characteristic oscillation periods, damping times, and excitations. Estimated eigenmodes and

confidence intervals for the eigenmodes and their oscillation periods and damping times can be

computed from estimated model parameters. As a computationally efficient method of estimating
the parameters of AR models from high-dimensional data, a stepwise least squares algorithm is

proposed. This algorithm computes model coefficients and evaluates criteria for the selection of
the model order stepwise for AR models of successively decreasing order. Numerical simulations
indicate that, with the least squares algorithm, the AR model coefficients and the eigenmodes

derived from the coefficients are estimated reliably and that the approximate 95% confidence
intervals for the coefficients and eigenmodes are rough approximations of the confidence intervals

inferred from the simulations.
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1. INTRODUCTION

Dynamical characteristics of a complex system can often be inferred from analyses
of a stochastic time series model fitted to observations of the system [Tiao and Box
1981]. In the geosciences, for example, oscillations of a complex system are some-
times characterized by what are known as principal oscillation patterns, eigenmodes
of a multivariate autoregressive model of first order [AR(1) model] fitted to obser-
vations [Hasselmann 1988; von Storch and Zwiers 1999, Chapter 15]. Principal
oscillation patterns possess characteristic frequencies (or oscillation periods) and
damping times, the frequencies being the natural frequencies of the AR(1) model.
By analyzing principal oscillation patterns of an oscillatory system, one can identify
components of the system that are associated with characteristic frequencies and
damping times. Xu and von Storch [1990], for example, use a principal oscillation
pattern analysis to identify the spatial structures of the mean sea level pressure that
are associated with the conglomerate of climatic phenomena collectively called El
Niño and the Southern Oscillation. In a similar manner, Huang and Shukla [1997]
distinguish those spatial structures of the sea surface temperature that oscillate
with periods on the order of years from those that oscillate with periods on the or-
der of decades. More examples of such analyses can be found in the bibliographies
of these papers.

Since the principal oscillation pattern analysis is an analysis of eigenmodes of an
AR(1) model, dynamical characteristics of a system can be inferred from principal
oscillation patterns only if an AR(1) model provides an adequate fit to the obser-
vations of the system. The applicability of the principal oscillation pattern analysis
is therefore restricted. Generalizing the analysis of eigenmodes of AR(1) models
to autoregressive models of arbitrary order p [AR(p) models], we will render the
analysis of eigenmodes of AR models applicable to a larger class of systems.

An m-variate AR(p) model for a stationary time series of state vectors vν ∈ Rm,
observed at equally spaced instants ν, is defined by

vν = w +
p∑
l=1

Alvν−l + εν , εν = noise(C), (1)

where the m-dimensional vectors εν = noise(C) are uncorrelated random vectors
with mean zero and covariance matrix C ∈ Rm×m, and the matrices A1, . . . , Ap ∈
Rm×m are the coefficient matrices of the AR model. The parameter vector w ∈ Rm
is a vector of intercept terms that is included to allow for a nonzero mean of the
time series,

〈vν〉 = (I −A1 − · · · −Ap)−1w, (2)

where 〈·〉 denotes an expected value. (For an introduction to modeling multivariate
time series with such AR models, see Lütkepohl [1993].) In this paper, we will
describe the eigendecomposition of AR(p) models of arbitrary order p. Since the
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analysis of eigenmodes of AR models is of interest in particular for high-dimensional
systems such as the ones examined in the geosciences, we will also discuss how the
order p of an AR model and the coefficient matrices A1, . . . , Ap, the intercept vector
w, and the noise covariance matrix C can be estimated from high-dimensional time
series data in a computationally efficient and stable way.

In Section 2, it is shown that an m-variate AR(p) model has mp eigenmodes that
possess, just like the m eigenmodes of an AR(1) model, characteristic frequencies
and damping times. The excitation is introduced as a measure of the dynamical
importance of the modes. Section 3 describes a stepwise least squares algorithm for
the estimation of parameters of AR models. This algorithm uses a QR factorization
of a data matrix to evaluate, for a sequence of successive orders, a criterion for the
selection of the model oder and to compute the parameters of the AR model of
the optimum order. Section 4 discusses the construction of approximate confidence
intervals for the intercept vector, for the AR coefficients, for the eigenmodes derived
from the AR coefficients, and for the oscillation periods and damping times of the
eigenmodes. Section 5 contains results of numerical experiments with the presented
algorithms. Section 6 summarizes the conclusions.

The methods presented in this paper are implemented in the Matlab package
ARfit, which is described in a companion paper [Schneider and Neumaier 2000].
We will refer to modules in ARfit that contain implementations of the algorithms
under consideration.

Notation. A:k denotes the kth column of the matrix A. AT is the transpose,
and A† the conjugate transpose of A. The inverse of A† is written as A−†, and
the superscript ∗ denotes complex conjugation. In notation, we do not distinguish
between random variables and their realizations; whether a symbol refers to a
random variable or to a realization can be inferred from the context.

2. EIGENDECOMPOSITION OF AR MODELS

The eigendecomposition of an AR(p) model is a structural analysis of the AR coef-
ficient matrices A1, . . . , Ap. The eigendecomposition of AR(1) models is described,
for example, by Honerkamp [1994, pp. 426 ff.]. In what sense and to what extent an
eigendecomposition of an AR(1) model can yield insight into dynamical character-
istics of complex systems is discussed by von Storch and Zwiers [1999, Chapter 15].
In Section 2.1, a review of the eigendecomposition of AR(1) models introduces the
concepts and notation used throughout this paper. In Section 2.2, the results for
AR(1) models are generalized to AR(p) models of arbitrary order p. Throughout
this section, we assume that the mean (2) has been subtracted from the time series
of state vectors vν , so that the intercept vector w can be taken to be zero.

2.1 AR models of first order

Suppose the coefficient matrix A of the m-variate AR(1) model

vν = Avν−1 + εν , εν = noise(C), (3)

is nondefective, so that it has m (generally complex) eigenvectors that form a basis
of the vector spaceRm of the state vectors vν . Let S be the nonsingular matrix that
contains these eigenvectors as columns S:k, and let Λ = Diag(λk) be the associated
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4 · A. Neumaier and T. Schneider

diagonal matrix of eigenvalues λk (k = 1, . . . ,m). The eigendecomposition of the
coefficient matrix can then be written as A = SΛS−1. In the basis of the eigenvec-
tors S:k of the coefficient matrix A, the state vectors vν and the noise vectors εν
can be represented as linear combinations

vν =
m∑
k=1

v(k)
ν S:k = Sv′ν and εν =

m∑
k=1

ε(k)
ν S:k = Sε′ν , (4)

with coefficient vectors v′ν = (v(1)
ν , . . . , v

(m)
ν )T and ε′ν = (ε(1)

ν , . . . , ε
(m)
ν )T . Substi-

tuting these expansions of the state vectors vν and of the noise vectors εν into the
AR(1) model (3) yields, for the coefficient vectors v′ν , an AR(1) model

v′ν = Λv′ν−1 + ε′ν , ε′ν = noise(C ′), (5)

with a diagonal coefficient matrix Λ and with a transformed noise covariance matrix

C ′ = S−1CS−†. (6)

The m-variate AR(1) model for the coefficient vectors represents a system of m
univariate models

v(k)
ν = λkv

(k)
ν−1 + ε(k)

ν , k = 1, . . . ,m, (7)

which are coupled only via the covariances 〈ε(k)
µ ε

(l)∗

ν 〉 = δµνC
′
kl of the noise coeffi-

cients (where δµν = 1 for µ = ν and δµν = 0 otherwise).
Since the noise vectors are assumed to have mean zero, the dynamics of the

expected values of the coefficients

〈v(k)
ν 〉 = λk〈v(k)

ν−1〉

decouple completely. In the complex plane, the expected values of the coefficients
describe a spiral

〈v(k)
ν+t〉 = λtk〈v(k)

ν 〉 = e−t/τke(arg λk)it〈v(k)
ν 〉

with damping time

τk ≡ −1/ log |λk| (8)

and period

Tk ≡
2π

| arg λk|
, (9)

the damping time and the period being measured in units of the sampling interval of
the time series vν . To render the argument arg z = Im(log z) of a complex number
z unique, we stipulate −π ≤ arg z ≤ π, a convention that ensures that a pair of
complex conjugate eigenvalues is associated with a single period. For a stable AR
model with nonsingular coefficient matrix A, the absolute values of all eigenvalues
λk lie between zero and one, 0 < |λk| < 1, which implies that all damping times τk
of such a model are positive and bounded.

Whether an eigenvalue is real and, if it is real, whether it is positive or negative
determines the dynamical character of the eigenmode to which the eigenvalue be-
longs. If an eigenvalue λk has a nonzero imaginary part or if it is real and negative,
Published in ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001, Pages 27–57.
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the period Tk is bounded, and the AR(1) model (7) for the associated time series of
coefficients v(k)

ν is called a stochastically forced oscillator. The period of an oscilla-
tor attains its minimum value Tk = 2 if the eigenvalue λk is real and negative, that
is, if the absolute value | arg λk| of the argument of the eigenvalue is equal to π. The
smallest oscillation period Tk = 2 that is representable in a time series sampled at
a given sampling interval corresponds to what is known in Fourier analysis as the
Nyquist frequency. If an eigenvalue λk is real and positive, the period Tk is infinite,
and the AR(1) model (7) for the associated time series of coefficients v(k)

ν is called
a stochastically forced relaxator.

Thus, a coefficient v(k)
ν in the expansion (4) of the state vectors vν in terms of

eigenmodes S:k represents, depending on the eigenvalue λk, either a stochastically
forced oscillator or a stochastically forced relaxator. The oscillators and relaxators
are coupled only via the covariances of the noise, the stochastic forcing. The coeffi-
cients v(k)

ν can be viewed as the amplitudes of the eigenmodes S:k if the eigenmodes
are normalized such that ‖S:k‖2 = 1. To obtain a unique representation of the
eigenmodes S:k, we stipulate that the real parts X = ReS and the imaginary parts
Y = ImS of the eigenmodes S:k = X:k + iY:k satisfy the normalization conditions

XT
:kX:k + Y T:k Y:k = 1, XT

:kY:k = 0, Y T:k Y:k < XT
:kX:k. (10)

The normalized eigenmodes S:k represent aspects of the system under consideration
whose amplitudes v(k)

ν oscillate with a characteristic period Tk and would, in the
absence of stochastic forcing, decay towards zero with a characteristic damping
time τk. Only oscillatory modes with a finite period have imaginary parts. The
real parts and the imaginary parts of oscillatory modes represent aspects of the
system under consideration in different phases of an oscillation, with a phase lag
of π/2 between real part and imaginary part. In the geosciences, for example, the
state vectors vν might represent the Earth’s surface temperature field on a spatial
grid, with each state vector component representing the temperature at a grid
point. The eigenmodes would then represent structures of the surface temperature
field that oscillate and decay with characteristic periods and damping times. In a
principal oscillation pattern analysis, the spatial structures of the real parts and
of the imaginary parts of the eigenmodes are analyzed graphically. It is in this
way that, in the geosciences, eigenmodes of AR(1) models are analyzed to infer
dynamical characteristics of a complex system (see von Storch and Zwiers [1999,
Chapter 15] for more details, including the relationship between the periods of the
eigenmodes and the maxima of the power spectrum of an AR model).

Dynamical importance of modes. The magnitudes of the amplitudes v(k)
ν of the

normalized eigenmodes S:k indicate the dynamical importance of the various relax-
ation and oscillation modes. The variance of an amplitude v(k)

ν , or the excitation

σk ≡ 〈|v(k)
ν |2〉, (11)

is a measure of the dynamical importance of an eigenmode S:k.
The excitations can be computed from the coefficient matrix A and from the

noise covariance matrix C. The covariance matrix Σ = 〈vνvTν 〉 of the state vectors
Published in ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001, Pages 27–57.



6 · A. Neumaier and T. Schneider

vν satisfies [Lütkepohl 1993, Chapter 2.1.4]

Σ = AΣAT + C. (12)

Upon substitution of the eigendecomposition A = SΛS−1 and of the transformed
noise covariance matrix C = SC ′S†, the state covariance matrix becomes

Σ = SΣ′S† (13)

with a transformed state covariance matrix Σ′ that is a solution of the linear matrix
equation Σ′ = ΛΣ′Λ† + C ′. Since the eigenvalue matrix Λ is diagonal, this matrix
equation can be written componentwise as

(1− λkλ∗l )Σ′kl = C ′kl.

For a stable AR model for which the absolute values of all eigenvalues are less than
one, |λk| < 1, this equation can be solved for the transformed state covariance
matrix Σ′, whose diagonal elements Σ′kk are the excitations σk, the variances of the
amplitudes v(k)

ν . In terms of the transformed noise covariance matrix C ′ and of the
eigenvalues λk, the excitations can hence be written as

σk =
C ′kk

1− |λk|2
, (14)

an expression that can be interpreted as the ratio of the forcing strength C ′kk over
the damping 1− |λk|2 of an eigenmode S:k.

The suggestion of measuring the dynamical importance of the modes in terms
of the excitations σk contrasts with traditional studies in which the least damped
eigenmodes of an AR(1) model were considered dynamically the most important.
That is, the eigenmodes for which the associated eigenvalue had the greatest abso-
lute value |λk| were considered dynamically the most important (e.g., von Storch
et al. [1995], Penland and Sardeshmukh [1995], von Storch and Zwiers [1999, Chap-
ter 15], and references therein). The tradition of viewing the least damped modes
as the dynamically most important ones comes from the analysis of modes of deter-
ministic linear systems, in which the least damped mode, if excited, dominates the
dynamics in the limit of long times. In the presence of stochastic forcing, however,
the weakly damped modes, if they are not sufficiently excited by the noise, need
not dominate the dynamics in the limit of long times. The excitation σk therefore
appears to be a more appropriate measure of dynamical importance.

2.2 AR models of arbitrary order

To generalize the eigendecomposition of AR models of first order to AR models of
arbitrary order, we exploit the fact that an m-variate AR(p) model

vν =
p∑
l=1

Alvν−l + εν , εν = noise(C),

is equivalent to an AR(1) model

ṽν = Ãṽν−1 + ε̃ν , ε̃ = noise(C̃),
Published in ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001, Pages 27–57.
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with augmented state vectors and noise vectors

ṽν =


vν
vν−1

...
vν−p+1

 ∈ Rmp and ε̃ν =


εν
0
...
0

 ∈ Rmp
and with a coefficient matrix [e.g., Honerkamp 1994, p. 426]

Ã =


A1 A2 · · · Ap−1 Ap
I 0 · · · 0 0
0 I · · · 0 0

0 0
. . . 0 0

0 0 · · · I 0

 ∈ Rmp×mp. (15)

The noise covariance matrix

C̃ = 〈ε̃ν ε̃†ν〉 =
(
C 0
0 0

)
∈ Rmp×mp

of the equivalent AR(1) model is singular.
An AR(1) model that is equivalent to an AR(p) model can be decomposed into

eigenmodes according to the above decomposition of a general AR(1) model. If the
augmented coefficient matrix Ã is nondefective, its mp eigenvectors form a basis of
the vector space Rmp of the augmented state vectors ṽν . As above, let S̃ be the
nonsingular matrix whose columns S̃:k are the eigenvectors of the augmented coeffi-
cient matrix Ã = S̃ΛS̃−1, and let Λ be the associated diagonal matrix of eigenvalues
λk (k = 1, . . . ,mp). In terms of the eigenvectors S̃:k of the augmented coefficient
matrix Ã, the augmented state vectors and noise vectors can be represented as
linear combinations

ṽν =
mp∑
k=1

ṽ(k)
ν S̃:k and ε̃ν =

mp∑
k=1

ε̃(k)
ν S̃:k. (16)

The dynamics of the coefficients ṽ(k)
ν in the expansion of the augmented state vectors

are governed by a system of mp univariate AR(1) models

ṽ(k)
ν = λkṽ

(k)
ν−1 + ε̃(k)

ν , k = 1, . . . ,mp, (17)

which are coupled only via the covariances 〈ε̃(k)
ν ε̃

(l)∗

µ 〉 = δµνC̃
′
kl of the noise coef-

ficients. The covariance matrix of the noise coefficients is the transformed noise
covariance matrix

C̃ ′ = S̃−1C̃S̃−† (18)

of the equivalent AR(1) model. Thus, the augmented time series ṽν can be de-
composed, just as above, into mp oscillators and relaxators with mp-dimensional
eigenmodes S̃:k.

However, because the augmented coefficient matrix Ã has the Frobenius struc-
ture (15), the augmented eigenmodes S̃:k have a structure that makes it possible
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8 · A. Neumaier and T. Schneider

to decompose the original time series vν into oscillators and relaxators with m-
dimensional modes, instead of the augmented mp-dimensional modes S̃:k. The
eigenvectors S̃:k of the augmented coefficient matrix Ã have the structure

S̃:k =


λp−1
k S:k

...
λkS:k

S:k


with an m-dimensional vector S:k (cf. Wilkinson’s [1965, Chapter 1.30] discussion
of eigenmodes of higher-order differential equations). Substituting this expression
for the augmented eigenvectors S̃:k into the expansions (16) of the augmented state
vectors and noise vectors and introducing the renormalized coefficients

v(k)
ν ≡ λp−1

k ṽ(k)
ν and ε(k)

ν ≡ λp−1
k ε̃(k)

ν ,

one finds that the original m-dimensional state vectors vν and noise vectors εν can
be represented as linear combinations

vν =
mp∑
k=1

v(k)
ν S:k and εν =

mp∑
k=1

ε(k)
ν S:k (19)

of the m-dimensional vectors S:k. Like the dynamics (17) of the coefficients ṽ(k)
ν in

the expansion of the augmented state vectors ṽν , the dynamics of the coefficients
v

(k)
ν in the expansion of the original state vectors vν are governed by a system of
mp univariate AR(1) models

v(k)
ν = λkv

(k)
ν−1 + ε(k)

ν , k = 1, . . . ,mp, (20)

which are coupled only via the covariances 〈ε(k)
µ ε

(l)∗

ν 〉 = δµν(λkλ∗l )
p−1C̃ ′kl of the

noise coefficients.
For AR(p) models of arbitrary order, the expansions (19) of the state vectors

vν and of the noise vectors εν and the dynamics (20) of the expansion coefficients
parallel the expansions (4) of the state vectors and of the noise vectors and the dy-
namics (7) of the expansion coefficients for AR(1) models. In the decomposition of
an AR(p) model of arbitrary order, the AR(1) models (20) for the dynamics of the
expansion coefficients v(k)

ν can be viewed, as in the decomposition of AR(1) mod-
els, as oscillators or relaxators, depending on the eigenvalue λk of the augmented
coefficient matrix Ã. The m-dimensional vectors S:k can be viewed as eigenmodes
that possess characteristic damping times (8) and periods (9). To obtain a unique
representation of the eigenmodes S:k, we stipulate, as an extension of the normal-
ization (10) in the first-order case, that the real parts X̃ = Re S̃ and the imaginary
parts Ỹ = Im S̃ of the eigenvectors S̃:k = X̃:k + iỸ:k of the augmented coefficient
matrix Ã satisfy the normalization conditions

X̃T
:kX̃:k + Ỹ T:k Ỹ:k = 1, X̃T

:kỸ:k = 0, Ỹ T:k Ỹ:k < X̃T
:kX̃:k. (21)

With this normalization of the eigenvectors S̃:k, the coefficients ṽ(k)
ν in the expansion

of the augmented state vectors ṽν indicate the amplitudes of the modes S:k. The
variances of these amplitudes, the excitations σk = 〈|ṽ(k)

ν |2〉 = |λk|2(1−p)〈|v(k)
ν |2〉,
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Multivariate Autoregressive Models · 9

are measures of the dynamical importance of the modes. In analogy to the exci-
tations (14) of modes of AR(1) models, the excitations of modes of AR(p) models
can be expressed as

σk =
C̃ ′kk

1− |λk|2
,

where C̃ ′kk is a diagonal element of the transformed noise covariance matrix (18).
Thus, an AR(p) model of arbitrary order can be decomposed, just like an AR(1)

model, into mp oscillators and relaxators with m-dimensional eigenmodes S:k. To
infer dynamical characteristics of a complex system, the eigenmodes of AR(p) mod-
els can be analyzed in the same way as the eigenmodes of AR(1) models. All results
for AR(1) models have a direct extension to AR(p) models. The only difference
between the eigendecomposition of AR(1) models and the eigendecomposition of
higher-order AR(p) models is that higher-order models possess a larger number of
eigenmodes, which span the vector space of the state vectors vν but are not, as in
the first-order case, linearly independent.

The ARfit module armode computes the eigenmodes S:k of AR(p) models of
arbitrary order by an eigendecomposition of the coefficient matrix Ã of an equivalent
AR(1) model. It also computes the periods, damping times, and excitations of the
eigenmodes.

3. STEPWISE LEAST SQUARES ESTIMATION FOR AR MODELS

To analyze the eigenmodes of an AR(p) model fitted to a time series of observations
of a complex system, the unknown model order p and the unknown model param-
eters A1, . . . , Ap, w, and C must first be estimated. The model order is commonly
estimated as the optimizer of what is called an order selection criterion, a function
that depends on the noise covariance matrix Ĉ of an estimated AR(p) model and
that penalizes the overparameterization of a model [Lütkepohl 1993, Chapter 4.3;
the hat-accent Â designates an estimate of the quantity A]. To determine the model
order popt that optimizes the order selection criterion, the noise covariance matrices
C are estimated and the order selection criterion is evaluated for AR(p) models of
successive orders pmin ≤ p ≤ pmax. If the parameters A1, . . . , Ap, and w are not
estimated along with the noise covariance matrix C, they are then estimated for a
model of the optimum order popt.

Both asymptotic theory and simulations indicate that, if the coefficient matrices
A1, . . . , Ap and the intercept vector w of an AR model are estimated with the
method of least squares, the residual covariance matrix Ĉ of the estimated model is
a fairly reliable estimator of the noise covariance matrix C and hence can be used in
order selection criteria [Tjøstheim and Paulsen 1983; Paulsen and Tjøstheim 1985;
Mentz et al. 1998].1 The least squares estimates of AR parameters are obtained by
casting an AR model in the form of an ordinary regression model and estimating
the parameters of the regression model with the method of least squares [Lütkepohl
1993, Chapter 3]. Numerically, the least squares problem for the ordinary regression

1Although the residual covariance matrix of an AR model whose parameters are estimated with
the method of least squares is not itself a least squares estimate of the noise covariance matrix, we

will, as is common practice, refer to this residual covariance matrix as a least squares estimate.

Published in ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001, Pages 27–57.



10 · A. Neumaier and T. Schneider

model can be solved with standard methods that involve the factorization of a
data matrix [e.g., Björck 1996, Chapter 2]. In what follows, we will present a
stepwise least squares algorithm with which, in a computationally efficient and
stable manner, the parameters of an AR model can be estimated and an order
selection criterion can be evaluated for AR(p) models of successive orders pmin ≤
p ≤ pmax. Starting from a review of how the least squares estimates for an AR(p)
model of fixed order p can be computed via a QR factorization of a data matrix, we
will show how, from the same QR factorization, approximate least squares estimates
for models of lower order p′ < p can be obtained.

3.1 Least squares estimates for an AR model of fixed order

Suppose an m-dimensional time series of N + p state vectors vν (ν = 1− p, . . . , N)
is available, the time series consisting of p pre-sample state vectors v1−p, . . . , v0

and N state vectors v1, . . . , vN that form what we call the effective sample. The
parameters A1, . . . , Ap, w, and C of an AR(p) model of fixed order p are to be
estimated.

An AR(p) model can be cast in the form of a regression model

vν = Buν + εν , εν = noise(C), ν = 1, . . . , N, (22)

with parameter matrix

B = (w A1 · · · Ap) (23)

and with predictors

uν =


1

vν−1

...
vν−p

 (24)

of dimension np = mp+ 1. Casting an AR model in the form of a regression model
is an approximation in that in a regression model, the predictors uν are assumed
to be constant, whereas the state vectors vν of an AR process are a realization of
a stochastic process. The approximation of casting an AR model into the form of
a regression model amounts to treating the first predictor

u1 =


1
v0

...
v1−p


as a vector of constant initial values [cf. Wei 1994, Chapter 7.2.1]. What are un-
conditional parameter estimates for the regression model are therefore conditional
parameter estimates for the AR model, conditional on the first p pre-sample state
vectors v1−p, . . . , v0 being constant. But since the relative influence of the initial
condition on the parameter estimates decreases as the sample size N increases, the
parameter estimates for the regression model are still consistent and asymptotically
unbiased estimates for the AR model [e.g., Lütkepohl 1993, Chapter 3].
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In terms of the moment matrices

U =
N∑
ν=1

uνu
T
ν , V =

N∑
ν=1

vνv
T
ν , W =

N∑
ν=1

vνu
T
ν , (25)

the least squares estimate of the parameter matrix B can be written as

B̂ = WU−1. (26)

The residual covariance matrix

Ĉ =
1

N − np

N∑
ν=1

ε̂ν ε̂
T
ν with ε̂ν = vν − B̂uν

is an estimate of the noise covariance matrix C and can be expressed as

Ĉ =
1

N − np
(V −WU−1WT ). (27)

A derivation of the least squares estimators and a discussion of their properties can
be found, for example, in Lütkepohl [1993, Chapter 3].

The residual covariance matrix Ĉ is proportional to a Schur complement of the
matrix

Γ =
(
U WT

W V

)
=

N∑
ν=1

(
uν
vν

)(
uTν vTν

)
,

which is the moment matrix Γ = KTK belonging to the data matrix

K =

 uT1 vT1
...

...
uTN vTN

 . (28)

The least squares estimates can be computed from a QR factorization of the data
matrix

K = QR, (29)

with an orthogonal matrix Q and an upper triangular matrix

R =
(
R11 R12

0 R22

)
.

The QR factorization of the data matrix K leads to the Cholesky factorization
Γ = KTK = RTR of the moment matrix,(

U WT

W V

)
= RTR =

(
RT11R11 RT11R12

RT12R11 RT12R12 +RT22R22

)
, (30)

and from this Cholesky factorization, one finds the representation

B̂ =
(
R−1

11 R12

)T and Ĉ =
1

N − np
RT22R22 (31)

for the least squares estimates of the parameter matrix B and of the noise covariance
matrix C. The estimated parameter matrix B̂ is obtained as the solution of a
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12 · A. Neumaier and T. Schneider

triangular system of equations, and the residual covariance matrix Ĉ is given in a
factored form that shows explicitly that the residual covariance matrix is positive
semidefinite.

If the moment matrix Γ = KTK is ill-conditioned, the effect of rounding errors
and data errors on the parameter estimates can be reduced by computing the pa-
rameter estimates (31) not from a Cholesky factorization (30) of the moment matrix
Γ, but from an analogous Cholesky factorization of a regularized moment matrix
Γ + δD2, where D2 is a positive definite diagonal matrix and δ is a regularization
parameter [e.g., Hansen 1997]. A Cholesky factorization of the regularized moment
matrix Γ + δD2 = RTR can be computed via a QR factorization of the augmented
data matrix (

K√
δD

)
= QR. (32)

Rounding errors and data errors have a lesser effect on the estimates (31) computed
from the upper triangular factor R of this QR factorization. The diagonal matrix
D might be chosen to consist of the Euclidean norms of the columns of the data
matrix, D = Diag

(
‖K:j‖2

)
. The regularization parameter δ, as a heuristic, might

be chosen to be a multiple (q2+q+1)η of the machine precision η, the multiplication
factor q2+q+1 depending on the dimension q = np+m of the moment matrix Γ (cf.
Higham’s [1996] Theorem 10.7, which implies that with such a regularization the
direct computation of a Cholesky factorization of the regularized moment matrix
Γ+δD2 would be well-posed). The ARfit module arqr computes such a regularized
QR factorization for AR models.

If the observational error of the data is unknown but dominates the rounding
error, the regularization parameter can be estimated with adaptive regularization
techniques. In this case, however, the QR factorization (32) should be replaced by
a singular value decomposition of the rescaled data matrix KD−1, because the sin-
gular value decomposition can be used more efficiently with adaptive regularization
methods [see, e.g., Hansen 1997; Neumaier 1998].

3.2 Downdating the least squares estimates

To select the order of an AR model, the residual covariance matrix Ĉ must be
computed and an order selection criterion must be evaluated for AR(p) models of
successive orders pmin ≤ p ≤ pmax. Order selection criteria are usually functions of
the logarithm of the determinant

lp = log det ∆p

of the residual cross-product matrix

∆p = (N − np)Ĉ = RT22R22.

For example, Schwarz’s [1978] Bayesian Criterion (SBC) can be written as

SBC(p) =
lp
m
−
(

1− np
N

)
logN,

and the logarithm of Akaike’s [1971] Final Prediction Error (FPE) criterion as

FPE(p) =
lp
m
− log

N(N − np)
N + np

.
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(These and other order selection criteria and their properties are discussed, for
example, by Lütkepohl [1985; 1993, Chapter 4].) Instead of computing the residual
cross-product matrix ∆p by a separate QR factorization for each order p for which
an order selection criterion is to be evaluated, one can compute an approximation of
the residual cross-product matrix ∆p for a model of order p < pmax by downdating
theQR factorization for a model of order pmax. (For a general discussion of updating
and downdating least squares problems, see Björck [1996, Chapter 3].)

To downdate the QR factorization for a model of order p to a structurally similar
factorization for a model of order p′ = p− 1, one exploits the structure

K = (K1 K2), K1 =

 uT1
...
uTN

 , K2 =

 vT1
...
vTN


of the data matrix (28). A data matrix K ′ = (K ′1 K2) for a model of order p′ = p−1
follows, approximately, from the data matrix K = (K1 K2) for a model of order p
by removing from the submatrix K1 = (K ′1 K

′′
1 ) of the predictors uν the m trailing

columns K ′′1 . The downdated data matrix K ′ is only approximately equal to the
least squares data matrix (28) for a model of order p′ because in the downdated data
matrix K ′, the first available state vector v1−p is not included. When parameter
estimates are computed from the downdated data matrix K ′, a sample of the same
effective size N is assumed both for the least squares estimates of order p and the
least squares estimates of order p′ = p− 1, although in the case of the lower order
p′, the pre-sample state vector v0 could become part of the effective sample so that
a sample of effective size N + 1 would be available. The relative loss of accuracy
that this approximation entails decreases with increasing sample size N .

A factorization of the downdated data matrix K ′ follows from the QR factoriza-
tion of the original data matrix K if one partitions the submatrices R11 and R12

of the triangular factor R, considering the m trailing rows and columns of R11 and
the m trailing rows of R12 separately,

R11 =
(
R′11 R′′11

0 R′′′11

)
, R12 =

(
R′12

R′′12

)
.

With the thus partitioned triangular factor R, the QR factorization (29) of the data
matrix becomes

K = (K ′1 K
′′
1 K2) = Q

 R′11 R′′11 R′12

0 R′′′11 R′′12

0 0 R22

 .

Dropping the m columns belonging to the submatrix K ′′1 , one obtains a factorization
of the downdated data matrix

K ′ = (K ′1 K2) = Q

 R′11 R′12

0 R′′12

0 R22

 = Q

(
R′11 R′12

0 R′22

)
where

R′22 =
(
R′′12

R22

)
.
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14 · A. Neumaier and T. Schneider

This downdated factorization has the same block-structure as the QR factorization
(29) of the original data matrix K, but the submatrix R′22 in the downdated factor-
ization is not triangular. The factorization of the downdated data matrix K ′ thus
is not a QR factorization. That the submatrix R′22 is not triangular, however, does
not affect the form of the least squares estimates (31), which, for a model of order
p′ = p− 1, can be computed from the downdated factorization in the same way as
they are computed from the original QR factorization for a model of order p.

From the downdated factorization of the data matrix, one can obtain, for the
evaluation of order selection criteria, downdating formulas for the logarithm lp =
log det ∆p of the determinant of the residual cross-product matrix ∆p. The factor-
ization of the downdated data matrix leads to the residual cross-product matrix

∆p′ = R′T22R
′
22 = RT22R22 +R′′T12 R

′′
12,

from which, with the notation

Rp = R′′12,

the downdating formula

∆p−1 = ∆p +RTpRp

for the residual cross-product matrix follows. Because the determinant of the right-
hand side of this formula can be brought into the form [Anderson 1984, Theo-
rem A.3.2]

det
(
∆p +RTpRp

)
= det ∆p · det

(
I +Rp∆−1

p RTp
)
,

the downdating formula for the determinant term lp = log det ∆p becomes

lp−1 = lp + log det(I +Rp∆−1
p RTp ).

This downdate can be computed from a Cholesky factorization

I +Rp∆−1
p RTp = LpL

T
p (33)

as

lp−1 = lp + 2 log detLp, (34)

the determinant of the Cholesky factor Lp being the product of the diagonal ele-
ments.

This downdating procedure can be iterated, starting from aQR factorization for a
model of order pmax and stepwise downdating the factorization and the determinant
term lp appearing in the order selection criteria until the minimum order pmin is
reached. To downdate the inverse cross-product matrix ∆−1

p , which is needed in
the Cholesky factorization (33), one can use the Woodbury formula [Björck 1996,
Chapter 3]

∆−1
p−1 =

(
∆p +RTpRp

)−1 = ∆−1
p −∆−1

p RTp
(
I +Rp∆−1

p RTp
)−1

Rp∆−1
p

and compute the downdated inverse ∆−1
p−1 from the Cholesky factorization (33) via

Np = L−1
p Rp∆−1

p , (35)

∆−1
p−1 = ∆−1

p −NT
p Np. (36)
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With the downdating scheme (33–36), an order selection criterion such as SBC or
FPE, given a QR factorization for a model of order pmax, can be evaluated for
models of order pmax − 1, . . . , pmin, whereby for the model of order p, the first
pmax − p state vectors are ignored.

After evaluating the order selection criterion for a sequence of models and deter-
mining an optimum order popt, one finds the least squares parameter estimates (31)
for the model of the optimum order by replacing the maximally sized submatrices
R11 and R12 of the triangular factor R by their leading submatrices of size npopt .
If the available time series is short and the assumed maximum model order pmax is
much larger than the selected optimum order popt, computing the parameters of the
AR model of optimum order popt from the downdated factorization of the model of
maximum order pmax, and thus ignoring (pmax−popt) available state vectors, might
entail a significant loss of information. To improve the accuracy of the parameter
estimates in such cases, the parameters of the model of optimum order popt can be
computed from a second QR factorization, a QR factorization for a model of order
p = popt.

The above downdating scheme is applicable both to the QR factorization of the
data matrix K and to the regularized QR factorization of the augmented data
matrix (32). The ARfit module arord evaluates order selection criteria by down-
dating the regularized QR factorization performed with the module arqr. The
driver module arfit determines the optimum model order and computes the AR
parameters for the model of the optimum order.

3.3 Computational complexity of the stepwise least squares algorithm

The data matrix whoseQR factorization is to be computed is of sizeN ′×(npmax +m),
where the number of rows N ′ of this matrix is equal to the sample size N if the
least squares estimates are not regularized, or the number of rows N ′ is equal to
N + npmax +m if the least squares estimates are regularized by computing the QR
factorization of the augmented data matrix (32). Computing the QR factorization
requires, to leading order, O(N ′m2p2

max) operations.
In traditional algorithms for estimating parameters of AR models, a separate fac-

torization would be computed for each order p for which an order selection criterion
is to be evaluated. In the stepwise least squares algorithm, the downdates (33)–(36)
require O(m3) operations for each order p for which an order selection criterion is
to be evaluated. Since N ′ ≥ m, the downdating process for each order p requires
fewer operations than a new QR factorization. If the number of rows N ′ of the data
matrix whose QR factorization is computed is much greater than the dimension m
of the state vectors, the number of operations required for the downdating pro-
cess becomes negligible compared with the number of operations required for the
QR factorization. With the stepwise least squares algorithm, then, the order and
the parameters of an AR model can be estimated about (pmax − pmin + 1)-times
faster than with traditional least squares algorithms that require (pmax − pmin + 1)
separate QR factorizations. Since deleting columns of a matrix does not decrease
the smallest singular value of the matrix, the stepwise least squares algorithm is a
numerically stable procedure [cf. Björck 1996, Chapter 3.2].
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16 · A. Neumaier and T. Schneider

4. CONFIDENCE INTERVALS

Under weak conditions on the distribution of the noise vectors εν of the AR model,
the least squares estimator of the AR coefficient matrices A1, . . . , Ap and of the
intercept vector w is consistent and asymptotically normal [e.g., Lütkepohl 1993,
Chapter 3.2]. Let the AR parameters B = (w A1 · · · Ap) ∈ Rm×np be arranged
into a parameter vector xB by stacking adjacent columns B:j of the parameter
matrix B,

xB =

 B:1

...
B:np

 ∈ Rmnp .
Asymptotically, in the limit of large sample sizes N , the estimation errors xB̂ −xB
are normally distributed with mean zero and with a covariance matrix ΣB that
depends on the noise covariance matrix C and on the moment matrix 〈uνuTν 〉 of
the predictors uν in the regression model (22) [e.g., Lütkepohl 1993, Chapter 3.2.2].
Substituting the least squares estimate Ĉ of the noise covariance matrix and the
sample moment matrix U of the predictors uν for the unknown population quanti-
ties, one obtains, for the least squares estimator xB̂ , the covariance matrix estimate

Σ̂B = U−1 ⊗ Ĉ, (37)

where A⊗B denotes the Kronecker product of the matrices A and B.
Basing inferences for finite samples on the asymptotic distribution of the least

squares estimator, one can establish approximate confidence intervals for the AR
coefficients, for the intercept vector, and for the eigenmodes, periods, and damping
times derived from the AR coefficients. A confidence interval for an element φ ≡
(xB)l of the parameter matrix B can be constructed from the distribution of the
t-ratio

t =
φ±
σ̂φ

, (38)

the ratio of the estimation error φ± ≡ φ̂ − φ of the least squares estimate φ̂ =
(xB̂)l = B̂jk over the square root of the estimated variance

σ̂2
φ ≡ (Σ̂B)ll = (U−1)kkĈjj , l = m(k − 1) + j, (39)

of the least squares estimator. For the construction of confidence intervals, it is
common practice to assume that the t-ratio (38) follows Student’s t distribution
with N−np degrees of freedom [e.g., Lütkepohl 1993, Chapter 3.2]. To be sure, this
assumption is justified only asymptotically, but for lack of finite-sample statistics,
it is commonly made. Assuming a t distribution for the t-ratios yields, for the
parameter φ, the 100α% confidence limits φ̂± φ̂± with margin of error

φ̂± = t
(
N − np, (1 + α)/2

)
σ̂φ, (40)

where t(d, β) is the β-quantile of a t distribution with d degrees of freedom [cf.
Draper and Smith 1981, Chapter 1.4]. From the estimated variance (39) of the
least squares estimator, one finds that the margin of error of a parameter estimate
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φ̂ = (xB̂)l = B̂jk takes the form

φ̂± = t
(
N − np, (1 + α)/2

)√
(U−1)kkĈjj . (41)

The ARfit module arconf uses this expression to compute approximate confidence
limits φ̂ ± φ̂± for the elements of the AR coefficient matrices and of the intercept
vector.

Establishing confidence intervals for the eigenmodes and their periods and damp-
ing times is complicated by the fact that these quantities are nonlinear functions of
the AR coefficients. Whereas for certain random matrices — for symmetric Wishart
matrices, for example [Anderson 1984, Chapter 13] — some properties of the dis-
tributions of eigenvectors and eigenvalues are known, no analytical expressions for
the distributions of eigenvalues and eigenvectors appear to be known for nonsym-
metric Gaussian random matrices with correlated elements. For the estimation of
confidence intervals for the eigenmodes and their periods and damping times, we
must therefore resort to additional approximations that go beyond the asymptotic
approximation invoked in constructing the approximate confidence intervals for the
AR coefficients.

Consider a real-valued function φ = φ(xB) that depends continuously on the AR
parameters xB , and let the estimate φ̂ ≡ φ(xB̂) be the value of the function φ at the
least squares estimates xB̂ of the AR parameters xB . The function φ may be, for
example, the real part or the imaginary part of a component of an eigenmode, or
a period or damping time associated with an eigenmode. Linearizing the function
φ about the estimate φ̂ leads to φ̂ − φ ≈

(
∇φ̂
)T (xB̂ − xB), where ∇φ̂ denotes the

gradient of φ(xB) at the estimate xB = xB̂ . From this linearization, it follows that
the variance σ2

φ ≡
〈
(φ̂− φ)2

〉
of the estimator function φ̂ can be approximated as

σ2
φ ≈

〈(
∇φ̂
)T (xB̂ − xB)(xB̂ − xB)T∇φ̂

〉
=
(
∇φ̂
)TΣB

(
∇φ̂
)
, (42)

where ΣB is the covariance matrix of the least squares estimator xB̂ . If the function
φ is linear in the parameters xB , the relation (42) between the variance σ2

φ of
the estimator function φ̂ and the covariance matrix ΣB of the estimator xB̂ holds
exactly. But if the function φ is nonlinear, as it is, for example, when φ stands for
a component of an eigenmode, the relation (42) holds only approximately, up to
higher-order terms.

Substituting the asymptotic covariance matrix (37) into the expression (42) for
the variance of the estimator function φ̂ gives a variance estimate

σ̂2
φ =

(
∇φ̂
)T Σ̂B

(
∇φ̂
)

(43)

that can be used to establish confidence intervals. If the function φ is nonlinear,
the t-ratio t = φ±/σ̂

2
φ of the estimation error φ± = φ̂−φ over the square root of the

estimated variance σ̂2
φ generally does not follow a t distribution, not even asymp-

totically. But assuming that the t-ratio follows a t distribution is still a plausible
heuristic for constructing approximate confidence intervals. Generalizing the above
construction of confidence limits for the AR parameters, we therefore compute ap-
proximate confidence limits φ̂± φ̂± for functions φ(xB) of the AR parameters with
the estimator variance (43) and with the margin of error (40).
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The ARfit module armode thus establishes approximate confidence intervals
for the real parts and the imaginary parts of the individual components of the eigen-
modes, and for the periods and the damping times associated with the eigenmodes.
The closed-form expressions for the gradients ∇φ̂ of the eigenmodes, periods, and
damping times, which are required for the computation of the estimator variance
(43), are derived in the Appendix.

5. NUMERICAL EXAMPLE

To illustrate the least squares estimation of AR parameters and to test the quality of
the approximate confidence intervals for the AR parameters and for the eigenmodes,
periods, and damping times, we generated time series data by simulation of the
bivariate AR(2) process

vν = w +A1vν−1 +A2vν−2 + εν , εν = WN(0, C), ν = 1, . . . , N (44)

with intercept vector

w =
(

0.25
0.10

)
, (45)

coefficient matrices

A1 =
(

0.40 1.20
0.30 0.70

)
, A2 =

(
0.35 −0.30
−0.40 −0.50

)
, (46)

and noise covariance matrix

C =
(

1.00 0.50
0.50 1.50

)
. (47)

The pseudo-random vectors εν = WN(0, C) are simulated Gaussian white noise
vectors with mean zero and covariance matrix C. Ensembles of time series of
effective length N = 25, 50, 100, and 400 were generated, the ensembles consisting
of 20000 time series for N = 25; 10000 time series for N = 50; and 5000 time series
for N = 100 and N = 400. With the methods of the preceding sections, the AR(2)
parameters were estimated from the simulated time series, the eigendecomposition
of the estimated models was computed, and approximate 95% confidence intervals
were constructed for the AR parameters and for the eigenmodes, periods, and
damping times.

Table 1 shows, for each AR parameter φ = Bjk, the median of the least squares
parameter estimates φ̂ = B̂jk and the median of the margins of error φ̂± belonging
to the approximate 95% confidence intervals (41). Included in the table are the
absolute values of the 2.5th percentile φ− and of the 97.5th percentile φ+ of the
simulated distribution of the estimation errors φ̂ − φ. 95% of the least squares
parameter estimates φ̂ lie between the limits φ− φ− and φ+ φ+. The quantity

q95 = 95th percentile of
{

(φ+, φ−)

φ̂±

}
is the 95th percentile of the ratio of the simulated margins of error φ+ and φ− over
the approximate margins of error φ̂±. The quantity q95 is a measure of how much
the approximate margin of error φ̂± can underestimate the simulated margins of
error φ− and φ+.
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Table 1. Least squares estimates and 95% margins of error for the parameters of the bivariate
AR(2) model (44).

φ φ̂± φ̂± φ− φ+ q95 φ̂± φ̂± φ− φ+ q95

N = 25 N = 50

w1 0.289± 0.506 0.451 0.820 2.13 0.266± 0.328 0.289 0.453 1.67

w2 0.139± 0.621 0.574 0.969 2.06 0.115± 0.402 0.356 0.548 1.65
(A1)11 0.326± 0.391 0.404 0.312 1.29 0.368± 0.250 0.256 0.215 1.19
(A1)21 0.223± 0.475 0.564 0.370 1.57 0.260± 0.305 0.347 0.258 1.38

(A1)12 1.152± 0.329 0.380 0.261 1.51 1.175± 0.215 0.236 0.185 1.32
(A1)22 0.629± 0.407 0.437 0.310 1.30 0.667± 0.263 0.280 0.231 1.21

(A2)11 0.353± 0.292 0.305 0.231 1.42 0.351± 0.191 0.205 0.162 1.33

(A2)21 −0.402± 0.356 0.320 0.372 1.47 −0.397± 0.234 0.210 0.250 1.35
(A2)12 −0.206± 0.443 0.283 0.543 1.51 −0.256± 0.283 0.207 0.340 1.39

(A2)22 −0.418± 0.543 0.374 0.640 1.45 −0.460± 0.347 0.270 0.398 1.31

N = 100 N = 400

w1 0.256± 0.224 0.198 0.286 1.46 0.252± 0.110 0.099 0.123 1.20

w2 0.107± 0.274 0.247 0.327 1.37 0.104± 0.134 0.125 0.146 1.17

(A1)11 0.384± 0.168 0.170 0.152 1.13 0.396± 0.082 0.082 0.077 1.06
(A1)21 0.281± 0.206 0.227 0.180 1.27 0.295± 0.100 0.106 0.092 1.14
(A1)12 1.188± 0.146 0.160 0.125 1.24 1.197± 0.071 0.077 0.067 1.15
(A1)22 0.682± 0.178 0.182 0.160 1.11 0.695± 0.087 0.092 0.082 1.10

(A2)11 0.352± 0.131 0.142 0.114 1.26 0.350± 0.064 0.066 0.060 1.11
(A2)21 −0.401± 0.159 0.150 0.166 1.23 −0.400± 0.078 0.077 0.081 1.13
(A2)12 −0.276± 0.192 0.149 0.215 1.24 −0.294± 0.093 0.085 0.101 1.15

(A2)22 −0.479± 0.234 0.199 0.264 1.24 −0.494± 0.113 0.102 0.124 1.15

The simulation results in Table 1 show that the least squares estimates of the
AR parameters are biased when the sample size is small [cf. Tjøstheim and Paulsen
1983; Mentz et al. 1998]. Consistent with asymptotic theoretical results on the
bias of AR parameter estimates [Tjøstheim and Paulsen 1983], the bias of the least
squares estimates in the simulations decreases roughly as 1/N as the sample size N
increases. The bias of the estimates affects the reliability of the confidence intervals
because in the approximate confidence intervals φ̂±φ̂±, centered on the least squares
estimate φ̂, the bias is not taken into account. The bias of the estimates is one of
the reasons why, for each parameter φ, the median of the approximate 95% margins
of error φ̂± differs from the absolute values φ− and φ+ of the 2.5th percentile and
of the 97.5th percentile of the simulated estimation error distribution [cf. Nankervis
and Savin 1988]. For small sample sizes N , the absolute values φ− and φ+ of the
2.5th percentile and of the 97.5th percentile of the estimation error distribution
differ considerably, for N = 25 by nearly a factor of two. Nevertheless, the median
of the approximate margins of error φ̂± lies, for each parameter φ, in between
the absolute values of the percentiles φ− and φ+ of the simulated estimation error
distribution. The approximate margins of error φ̂± can thus be used as rough
indicators of the magnitudes of the estimation errors. But as the values of q95

suggest, the approximate margins of error are reliable indicators of the magnitudes
of the estimation errors only when the sample size N is large.

We carried out an analogous analysis for the eigendecomposition of the estimated
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AR(2) models. Imposing the normalization conditions (21) on the eigenvectors

S̃:k =
(
λkS:k

S:k

)
of the augmented coefficient matrix

Ã =
(
A1 A2

I 0

)
that consists of the above coefficient matrices (46), one finds, for the simulated
process (44), the eigenmodes

S:1 =
(

0.750
−0.301

)
, S:2 =

(
0.768
−0.362

)
, S:3,4 =

(
0.495± 0.315i
0.323∓ 0.397i

)
, (48)

and the eigenvalues

λ1 = −0.728, λ2 = 0.623, λ3,4 = 0.603± 0.536i. (49)

Associated with the eigenmodes are the periods

T1 = 2, T2 →∞, T3,4 = 8.643, (50)

and the damping times

τ1 = 3.152, τ2 = 2.114, τ3,4 = 4.647. (51)

The eigenmodes, periods, and damping times obtained from the ensembles of esti-
mated models were compared with the eigenmodes, periods, and damping times of
the simulated process.

Table 2 and Table 3 show, for functions φ(xB) of the AR parameters B, the
median of the estimates φ̂ = φ(xB̂) and the median of the margins of error φ̂±
belonging to the approximate 95% confidence intervals (40). The function φ stands
for a real part ReSjk or an imaginary part ImSjk of a component Sjk of an eigen-
mode, or for a period Tk or a damping time τk. As in Table 1, the symbols φ− and
φ+ refer to the absolute values of the 2.5th percentile and of the 97.5th percentile
of the simulated distribution of the estimation errors φ̂−φ, and the quantity q95 is
defined as above. A value of “NaN” for the quantity q95 stands for the indefinite
expression 0/0. A value of infinity (“Inf”) results from the division of a nonzero
number by zero.

Which eigenmode, period, and damping time of an estimated AR(2) model cor-
responds to which eigenmode, period, and damping time of the simulated AR(2)
process (44) is not always obvious, in particular not when the effective time series
length N is so small that the estimated parameters are affected by large uncer-
tainties. To establish the statistics in Tables 2 and 3, we matched the estimated
eigenvalues λ̂k with the eigenvalues λk of the simulated process (49) by finding the
permutation π of the indices 1, . . . , 4 that minimized

4∑
k=1

|λ̂πk − λk|2.

The estimated eigenmodes, periods, and damping times were matched with the
eigenmodes, periods, and damping times of the simulated process according to the
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Table 2. Estimates and 95% margins of error for the periods and damping times of the bivariate
AR(2) model (44).

φ φ̂± φ̂± φ− φ+ q95 φ̂± φ̂± φ− φ+ q95

N = 25 N = 50

T1 2.000± 0.000 0.000 0.000 NaN 2.000± 0.000 0.000 0.000 NaN

τ1 3.285± 4.738 2.181 8.677 4.51 3.202± 2.904 1.752 4.229 2.89
T2 Inf± 0.000 0.000 0.000 NaN Inf± 0.000 0.000 0.000 NaN
τ2 1.309± 2.491 1.841 4.901 4.26 1.694± 2.140 1.646 3.121 3.38

T3,4 8.578± 2.791 2.553 4.848 3.23 8.650± 2.187 1.883 3.420 2.59
τ3,4 6.449± 9.807 2.557 21.942 5.43 5.484± 5.172 2.112 8.204 2.97

N = 100 N = 400

T1 2.000± 0.000 0.000 0.000 NaN 2.000± 0.000 0.000 0.000 NaN

τ1 3.147± 1.922 1.402 2.638 2.22 3.143± 0.928 0.802 1.047 1.44
T2 Inf± 0.000 0.000 0.000 NaN Inf± 0.000 0.000 0.000 NaN

τ2 1.903± 1.687 1.325 2.184 2.52 2.071± 0.892 0.797 0.970 1.51
T3,4 8.643± 1.644 1.436 2.405 2.18 8.646± 0.889 0.798 1.049 1.51

τ3,4 5.097± 3.123 1.698 4.153 2.10 4.747± 1.339 1.049 1.634 1.54

Table 3. Estimated eigenmodes (48).

φ φ̂± φ̂± φ− φ+ q95 φ̂± φ̂± φ− φ+ q95

N = 25 N = 50

ReS11 0.738± 0.162 0.139 0.149 1.44 0.745± 0.108 0.090 0.115 1.41
ReS21 −0.302± 0.256 0.252 0.348 2.45 −0.300± 0.162 0.158 0.197 1.87
ReS12 0.701± 0.488 0.926 0.065 12.78 0.742± 0.248 0.626 0.042 15.37
ReS22 −0.557± 0.663 0.628 0.426 3.46 −0.460± 0.528 0.606 0.308 2.39

ReS13,4 0.477± 0.231 0.566 0.176 4.48 0.486± 0.195 0.433 0.156 3.97
| ImS13,4| 0.329± 0.189 0.496 0.194 6.32 0.324± 0.184 0.420 0.196 5.19
ReS23,4 0.348± 0.259 0.628 0.293 5.62 0.338± 0.242 0.519 0.264 4.61
| ImS23,4| 0.300± 0.256 0.518 0.109 3.71 0.336± 0.208 0.405 0.119 3.18

N = 100 N = 400

ReS11 0.749± 0.074 0.066 0.082 1.34 0.750± 0.037 0.034 0.038 1.16
ReS21 −0.300± 0.109 0.110 0.126 1.60 −0.301± 0.053 0.050 0.056 1.25

ReS12 0.754± 0.137 0.367 0.033 13.91 0.766± 0.053 0.110 0.023 6.82
ReS22 −0.413± 0.404 0.506 0.255 1.99 −0.371± 0.211 0.256 0.163 1.57

ReS13,4 0.492± 0.162 0.307 0.135 3.38 0.494± 0.104 0.136 0.093 1.97

| ImS13,4| 0.320± 0.167 0.319 0.183 4.01 0.316± 0.115 0.144 0.117 2.03
ReS23,4 0.331± 0.212 0.377 0.236 3.46 0.324± 0.141 0.174 0.139 1.90

| ImS23,4| 0.363± 0.164 0.287 0.121 2.64 0.388± 0.099 0.122 0.089 1.74

minimizing permutation of the indices. To remove the remaining ambiguity of the
sign of the estimated eigenmode Ŝ:πk belonging to the eigenvalue λ̂πk , we chose the
sign of the estimated eigenmode Ŝ:πk such as to minimize

‖Ŝ:πk − S:k‖2.

This procedure allowed us to match a parameter φ̂ of the eigendecomposition of
an estimated model uniquely with a parameter φ of the eigendecomposition of the
simulated process.

The estimation results in Tables 2 and 3 show that large samples of time series
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data are required to estimate the eigenmodes, periods, and damping rates of an
AR model reliably. The approximate 95% margins of error are rough indicators of
the estimation errors most of the time, but the approximate margins of error are
always reliable as indicators of the magnitude of the estimation error only when
the sample size N is large. Even for large samples, the approximate confidence
intervals for the eigenmodes, periods, and damping times are less accurate than
the confidence intervals for the AR parameters themselves. The median of the
approximate margins of error φ̂± does not always lie in between the percentiles φ−
and φ+ of the simulated estimation error distribution. The fact that the absolute
values of the percentiles φ− and φ+ in some cases differ significantly even when
the bias of the estimates for a parameter φ is small indicates that the distribution
of the parameter estimates can be skewed, showing that the t ratio (38) does not
follow Student’s t distribution. The lower accuracy of the confidence intervals for
the eigendecomposition compared with the accuray of the confidence intervals for
the AR parameters themselves is a consequence of the linearization involved in the
construction of the approximate confidence intervals for the eigendecomposition.

6. CONCLUSIONS

If a multivariate time series can be modeled adequately with an AR model, dynam-
ical characteristics of the time series can be examined by structural analyses of the
fitted AR model. The eigendecomposition discussed in this paper is a structural
analysis of AR models by means of which aspects of a system that oscillate with
certain periods and that relax towards a mean state with certain damping times
can be identified. Eigendecompositions of AR(1) models have been used in the
geosciences to characterize oscillations in complex systems [von Storch and Zwiers
1999, Chapter 15]. We have generalized the eigendecomposition of AR(1) models
to AR(p) models of arbitrary order and have shown that the eigendecomposition
of higher-order models can be used as a data analysis method in the same way the
eigendecomposition of AR(1) models is currently used. Because a larger class of
systems can be modeled with higher-order AR(p) models than with AR(1) models,
generalizing the eigendecomposition of AR(1) models to AR(p) models of arbitrary
order renders this data analysis method more widely applicable.

Since the eigendecomposition of AR models is of interest in particular for high-
dimensional data as they occur, for example, when the state vectors of a time series
represent spatial data, we have proposed a computationally efficient stepwise least
squares algorithm for the estimation of AR parameters from high-dimensional data.
In the stepwise least squares algorithm, the least squares estimates for an AR model
of order p < pmax are computed by downdating a QR factorization for a model of
order pmax. The downdating scheme makes the stepwise least squares algorithm a
computationally efficient procedure when both the order of an AR model and the
AR parameters are to be estimated from large sets of high-dimensional data.

The least squares estimates of the parameters of an AR(p) model are conditional
estimates in that in deriving the least squares estimates, p initial state vectors of the
available time series data are taken to be constant, although, in fact, they are part
of a realization of a stochastic process. Unconditional estimates that are not based
on some such approximation are obtained from Gaussian data with exact maximum
likelihood procedures [see, e.g., Wei 1994]. By the exact treatment of the p initial
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state vectors, the problem of maximizing the likelihood becomes nonlinear, so that
exact maximum likelihood algorithms are iterative and usually slower than least
squares algorithms [cf. Wei 1994, Chapter 14]. To be sure, with an exact maximum
likelihood algorithm such as that of Ansley and Kohn [1983, 1986], stability of the
estimated model can be enforced, the time series data can have missing values, and
model parameters can be constrained to have given values, which with linear least
squares algorithms is impossible. But for high-dimensional data without missing
values, the computational efficiency of the stepwise least squares algorithm might
be more important than the guarantee that the estimated AR model be stable
or satisfy certain constraints on the parameters. The conditional least squares
estimates might then be used as initial values for an exact maximum likelihood
algorithm. Or, because it appears that for AR models the conditional least squares
estimates are of an accuracy comparable with the accuracy of the unconditional
maximum likelihood estimates [cf. Mentz et al. 1998], the stepwise least squares
algorithm might be used in place of computationally more complex exact maximum
likelihood algorithms.

Approximate confidence intervals for the eigenmodes and their periods and damp-
ing times can be constructed from the asymptotic distribution of the least squares
estimator of the AR parameters. For lack of a distributional theory for the eigen-
vectors and eigenvalues of Gaussian random matrices, the confidence intervals for
the eigenmodes, periods, and damping times are based on linearizations and rough
approximations of the distribution of estimation errors. Simulations of a bivariate
AR(2) process illustrate the quality of the least squares AR parameter estimates
and of the derived estimates of the eigendecomposition of an AR(2) model. The
simulations show that the confidence intervals for the eigendecomposition roughly
indicate the magnitude of the estimation errors, but that they are reliable only
when the sample of available time series data is large.
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APPENDIX

For the construction of approximate confidence intervals for the eigenmodes, pe-
riods, and damping times, one needs the gradient of these functions φ(xB) of the
AR parameters xB . The eigendecomposition of an AR model depends only on the
AR coefficient matrices A1, . . . , Ap, but not on the intercept vector w, so that the
partial derivatives of the eigenmodes, periods, and damping times with respect to
components of the intercept vector w are zero. Because the normalization con-
ditions (10) for the eigenmodes S:k of AR(1) models have the same form as the
normalization conditions (21) for the augmented eigenmodes S̃:k of higher-order
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AR(p) models, it suffices to obtain closed-form expressions for the partial deriva-
tives of the eigenmodes S:k, periods Tk, and damping times τk of AR(1) models.
From the partial derivatives for the AR(1) model, the corresponding partial deriva-
tives for higher-order AR(p) models are then obtained by replacing the coefficient
matrix A and its eigenvectors S:k by the augmented coefficient matrix Ã and its
eigenvectors S̃:k.

One obtains the partial derivatives of the eigenvectors S:k and of the eigenval-
ues λk by differentiating the normalization conditions (10) and the eigenvector-
eigenvalue relation

AS:k = λkS:k.

Taking the derivatives leads to the system of equations

AṠ:k + ȦS:k = λ̇kS:k + λkṠ:k,

XT
:kẊ:k + Y T:k Ẏ:k = 0,

XT
:kẎ:k + Y T:k Ẋ:k = 0,

with dotted quantities denoting partial derivatives with respect to an element of the
coefficient matrix A. Upon substitution of the eigendecomposition of the coefficient
matrix A = SΛS−1, these equations become

(Λ− λkI)S−1Ṡ:k − e(k)λ̇k = −S−1ȦS:k, (52)
XT

:kẊ:k + Y T:k Ẏ:k = 0, (53)

XT
:kẎ:k + Y T:k Ẋ:k = 0, (54)

where e(k) is the kth column of an identity matrix. The kth component of the
differentiated eigenvector-eigenvalue relation (52) yields

λ̇k = (S−1ȦS)kk (55)

as an explicit formula for the partial derivative of the eigenvalue λk with respect
to the AR coefficients.

If we write the derivative of the eigenvector S:k as

Ṡ:k = SZ:k, (56)

the remaining components of the equations (52–54) take the form

(λj − λk)Zjk = −(S−1ȦS)jk for j 6= k,

(XT
:kX + Y T:k Y ) ReZ:k + (Y T:kX −XT

:kY ) ImZ:k = 0,

(XT
:kY + Y T:kX) ReZ:k + (XT

:kX − Y T:k Y ) ImZ:k = 0.

If all eigenvalues are distinct, these equations can be solved for the matrix Z and
yield

Zjk =
(S−1ȦS)jk
λk − λj

for j 6= k, (57)

and

ReZkk =
∑
l 6=k
(
(XTY − Y TX)kl ImZlk − (XTX + Y TY )kl ReZlk

)
, (58)
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ImZkk =

∑
l 6=k
(
(Y TY −XTX)kl ImZlk − (XTY + Y TX)kl ReZlk

)
(XTX − Y TY )kk

. (59)

[In deriving (58) and (59), we used the normalization conditions (10) in the form
(XTX+Y TY )kk = 1 and (XTY )kk = 0.] The expressions (57–59) for the elements
of the matrix Z together with the relation (56) give explicit formulas for the partial
derivatives of the eigenvectors S:k with respect to the AR coefficients.

In the case of multiple eigenvalues, the system of equations (52–54) cannot be
solved uniquely for the partial derivatives of the eigenvectors with respect to the AR
coefficients. In this case, however, the eigenvectors are not uniquely determined, so
that it is not meaningful to give confidence intervals for them.

Writing the eigenvalues as λk = ak + ibk with real parts ak and imaginary parts
bk, we deduce from the derivative (55) of the eigenvalues that

ȧk = Re(S−1ȦS)kk, ḃk = Im(S−1ȦS)kk.

It can be verified that the derivatives of the damping time scales (8) and of the
periods (9) then take the form

τ̇k = τ2
k

akȧk + bk ḃk
a2
k + b2k

(60)

and

Ṫk = −T
2
k

2π
Im

λ̇k
λk

=
T 2
k

2π
bkȧk − ak ḃk
a2
k + b2k

. (61)

By means of the formulas (55–61), the ARfit module armode assembles the gra-
dients that are required in the variance estimate (43).
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