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ARfit is a collection of Matlab modules for modeling and analyzing multivariate time series with

autoregressive (AR) models. ARfit contains modules for fitting AR models to given time se-

ries data, for analyzing eigenmodes of a fitted model, and for simulating AR processes. ARfit

estimates the parameters of AR models from given time series data with a stepwise least squares al-

gorithm that is computationally efficient, in particular when the data are high-dimensional. ARfit

modules construct approximate confidence intervals for the estimated parameters and compute

statistics with which the adequacy of a fitted model can be assessed. Dynamical characteristics of

the modeled time series can be examined by means of a decomposition of a fitted AR model into
eigenmodes and associated oscillation periods, damping times, and excitations. The ARfit mod-

ule that performs the eigendecomposition of a fitted model also constructs approximate confidence
intervals for the eigenmodes and their oscillation periods and damping times.
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1. OVERVIEW

ARfit is a collection of Matlab modules for modeling and analyzing multivariate
time series with autoregressive (AR) models. The stochastic model that underlies
the ARfit modules is the m-variate autoregressive model of order p [AR(p) model],

vν = w +
p∑
l=1

Alvν−l + εν , εν = noise(C), (1)

a model for a stationary time series of m-dimensional state vectors vν that have been
observed at equally spaced instants ν. The matrices A1, . . . , Ap ∈ Rm×m are the
coefficient matrices of the AR model, and the m-dimensional vectors εν = noise(C)
are uncorrelated random vectors with mean zero and covariance matrix C ∈ Rm×m.
The m-dimensional vector w is a vector of intercept terms, which allows for a
nonzero mean of the time series,

〈vν〉 = (I −A1 − · · · −Ap)−1w, (2)

where 〈·〉 denotes an expected value. (For an introduction to modeling multivariate
time series with such AR models, see Lütkepohl [1993].) ARfit contains modules
(i) for estimating, from a sample of time series data vν , the order p of an AR(p)
model, the intercept vector w, the coefficient matrices A1, . . . , Ap, and the noise
covariance matrix C; (ii) for assessing the adequacy of a fitted AR model; (iii) for
analyzing the eigendecomposition of a fitted AR(p) model; and (iv) for simulating
AR processes.

1.1 Estimating the parameters of an AR model

For the selection of the order p of an AR(p) model and for the estimation of the
parameters w, A1, . . . , Ap, and C, the stepwise least squares algorithm described
by Neumaier and Schneider [2001] is implemented in ARfit. Given a time series
of N + p state vectors vν (ν = 1− p, . . . , N) and a lower bound pmin and an upper
bound pmax on the model order, the ARfit module arfit evaluates criteria for
the selection of the model order for a sequence of AR models of successive orders
pmin, . . . , pmax and computes the parameters w, A1, . . . , Apopt , and C for a model
of the optimum order popt.

The optimum order popt of an AR model is generally chosen as the optimizer of an
order selection criterion [Lütkepohl 1993, Chapter 4]. The order selection criteria
implemented in ARfit are Akaike’s [1971] Final Prediction Error (FPE) criterion
and Schwarz’s [1978] Bayesian Criterion (SBC). Lütkepohl [1985] compared these
and other order selection criteria in a simulation study and found that Schwarz’s
Bayesian Criterion chose the correct model order most often and led, on the average,
to the smallest mean-squared prediction error of the fitted AR models. Schwarz’s
Bayesian Criterion is therefore the default order selection criterion of ARfit.

In the stepwise least squares algorithm, the order selection criteria are evaluated
for models of order pmin, . . . , pmax by stepwise downdating a regularized QR fac-
torization of a data matrix for a model of the maximum order pmax. From the
QR factorization for a model of order pmax, approximate least squares estimates of
the parameters w, A1, . . . , Apopt , and C are computed for the model of the order
popt that optimizes the order selection criterion. The stepwise least squares esti-
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mation is computationally efficient in particular when the time series data vν are
high-dimensional. Neumaier and Schneider [2001] discuss properties of the step-
wise least squares algorithm and compare this algorithm with other methods for
the estimation of AR parameters.

Basing finite-sample inferences on the asymptotic distribution of the least squares
estimator makes it possible to construct approximate confidence intervals for the in-
tercept vector w and for the coefficient matrices A1, . . . , Apopt [e.g., Lütkepohl 1993,
Chapter 3]. The ARfit module arconf constructs approximate 95% confidence
intervals for the intercept vector w and for the coefficient matrices A1, . . . , Apopt

(see Neumaier and Schneider 2001 for details).

1.2 Assessing the adequacy of a fitted model

Before the structure of a fitted AR model is analyzed or a fitted AR model is used for
predictions, it is necessary to assess whether the fitted model provides an adequate
representation of the given time series [cf. Tiao and Box 1981]. Various tests of the
adequacy of a fitted model are described by Brockwell and Davis [1991] and by Wei
[1994]. Tests of model adequacy are usually tests of whether the statistics of the
residuals

ε̂ν = vν − ŵ −
p∑
l=1

Âlvν−l, ν = 1, . . . , N, (3)

are consistent with the assumptions intrinsic to the AR model (1). (The hat-accent
Â designates an estimate of the quantity A.) A principal assumption intrinsic to AR
models is that the noise vectors εν be uncorrelated. Uncorrelatedness of the noise
vectors is, for example, invoked in the derivation of the least squares estimator.
With the ARfit module acf, the autocorrelation function of the residuals (3) can
be examined graphically [cf. Brockwell and Davis 1991]. With the ARfit module
arres, the hypothesis that the residuals are uncorrelated can be tested [cf. Li and
McLeod 1981].

The uncorrelatedness of the residuals is tested using estimates R̂(l) of the lag l
correlation matrices that consist of the elements

R̂ij(l) =
ĉij(l)√

ĉii(0)ĉjj(0)
, l = 1, . . . , k,

where the matrices

ĉ(l) =
N∑

ν=l+1

(ε̂ν−l − µ̂)(ε̂ν − µ̂)T

contain the lagged residual cross-products and the vector

µ̂ =
1
N

N∑
ν=1

ε̂ν

is the mean of the residuals. Li and McLeod [1981] show that under the null
hypothesis of model adequacy, for Gaussian noise, and for sufficiently large k the
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quantity

Qk = N
k∑
l=1

xT
R̂(l)

(
R̂(0)−1 ⊗ R̂(0)−1

)
xR̂(l) +

m2k(k + 1)
2N

(4)

is asymptotically χ2-distributed with

f = m2(k − p)

degrees of freedom. Here, the vector xA consists of the components of the matrix
A, arranged as a vector by stacking adjacent columns; the superscript T denotes
transposition; and P ⊗ Q is the Kronecker product of P and Q (as returned by
the Matlab function kron). The maximum lag k up to which residual correlation
matrices are computed should be chosen such that, for models of order l > k, the
estimated AR parameter matrices Âl (often called the lag-l partial autocorrelation
matrices [Tiao and Box 1981]) are consistent with zero. For models of low order,
the choice k = 20 should, in practice, suffice. In doubt, it is better that the lag k
be chosen too large than too small.

From the asymptotic distribution of the Li-McLeod statistic Qk, it follows that
the hypothesis that the residuals are uncorrelated is rejected with approximate
significance level β if the statistic Qk exceeds the (1 − β)-quantile χ2

1−β(f) of a
χ2-distribution with f degrees of freedom,

Qk > χ2
1−β(f). (5)

For a significance level β, the critical value χ2
1−β(f) of the statistic Qk is a solution

of

β = 1− Φ

(
f

2
,
χ2

1−β(f)
2

)
where

Φ(α, x) =
1

Γ(α)

∫ x

0

tα−1e−t dt

is the incomplete gamma function. Equivalently, the hypothesis that the residuals
are uncorrelated is rejected if the estimated significance level

β̂ = 1− Φ
(
f

2
,
Qk
2

)
(6)

satisfies β̂ < β, where β indicates the probability that the test rejects a true hy-
pothesis. As a typical value one may choose β = 0.05.

This extension of the univariate portmanteau test [cf. Box and Jenkins 1970;
Box and Pierce 1970] to the multivariate case is implemented in the ARfit module
arres. We will refer to this test of the uncorrelatedness of the residuals as the
modified Li-McLeod portmanteau (LMP) test.

1.3 Analyzing the eigendecomposition of a fitted model

Tiao and Box [1981] discuss how structural analyses of a fitted AR model can yield
insight into dynamical characteristics of the system being modeled. The eigende-
composition of a fitted AR model, described by Neumaier and Schneider [2001], is
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a structural analysis of an AR model that allows one to examine characteristics of
oscillatory dynamics of a system. The ARfit module armode performs the eigen-
decomposition of a fitted AR model. It computes the estimated eigenmodes and
their oscillation periods, damping times, and excitations, as well as approximate
confidence intervals for the eigenmodes, periods, and damping times. Eigenmodes
computed with armode might, for example, be analyzed graphically [cf. Neumaier
and Schneider 2001; von Storch and Zwiers 1999, Chapter 15].

1.4 Simulating AR processes

A realization of an AR process can be simulated by substituting Gaussian pseudo-
random vectors with covariance matrix C for the noise vectors εν in the AR model
(1). Gaussian pseudo-random vectors with covariance matrix C can be obtained by
multiplying Gaussian white noise vectors by the Cholesky factor R of the covariance
matrix C = RTR. In this way, the ARfit module arsim generates Gaussian
pseudo-random vectors and simulates realizations of AR processes [cf. Lütkepohl
1993, Appendix D].

2. DESCRIPTION OF MODULES

The Matlab implementations of the above methods are extensively annotated and
include online documentation with information on the usage of the different ARfit

modules. Neumaier and Schneider [2001] give detailed descriptions of the imple-
mented algorithms and the results of numerical tests. Presented here is a summary
of what functions the different ARfit modules fulfill.

Matlab modules come in the form of what are called M-files, files with the generic
name module.m, where module is the module name. ARfit consists of the following
modules:

arfit Given a minimum model order pmin and a maximum model order pmax, arfit
uses the stepwise least squares algorithm of Neumaier and Schneider [2001]
both to evaluate the order selection criteria FPE and SBC for AR(p) models
of order pmin ≤ p ≤ pmax and to compute estimates of the parameters A1, . . . ,
Apopt , w, and C of the AR model of the optimum order popt. The optimum
order popt is chosen as the optimizer either of Schwarz’s Bayesian Criterion or
of Akaike’s Final Prediction Error.

arres Given the time series of state vectors vν and estimates of the parameters
A1, . . . , Ap, and w of an AR(p) model, arres computes the time series of resid-
uals (3) and the significance level β̂ of the LMP statistic (6).

acf The module acf plots the sample autocorrelation function of a univariate time
series. In assessing the adequacy of a fitted model, acf may be used to test
whether the time series of residuals show significant autocorrelations. (The
module acf requires the module xcorr from the Matlab Signal Processing Tool-
box, which is not included in the standard distribution of Matlab.)

arconf The module arconf computes approximate 95% confidence intervals for
the intercept vector w and for the AR coefficient matrices A1, . . . , Ap. The
confidence coefficient for which arconf computes confidence intervals is an
adjustable program parameter.
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armode Given estimates of the coefficient matrices A1, . . . , Ap of an AR(p) model,
armode computes the eigenmodes of the fitted model and the associated os-
cillation periods, damping rates, and excitations. The module armode also
computes approximate 95% confidence intervals for the eigenmodes, periods,
and damping times. The confidence coefficient for which armode computes
confidence intervals is an adjustable program parameter.

arsim Monte-Carlo simulation of AR processes.
ardem Demonstration of the modules contained in the ARfit package.

These are the modules that a user will typically access. Some of these modules,
however, require lower-level modules, which are also part of ARfit:

arqr Regularized QR factorization for an AR model. The module arqr is required
by the module arfit.

arord Evaluates order selection criteria for a sequence of AR models by successively
downdating a QR factorization. The module arord is required by the module
arfit.

adjph Multiplies a complex vector by a phase factor such that its real part and
its imaginary part are orthogonal and the norm of the real part is greater than
or equal to the norm of the imaginary part. The module adjph is required by
the module armode to normalize the eigenmodes of the AR model.

tquant Calculates quantiles of Student’s t distribution. The modules arconf and
armode require the module tquant in the construction of approximate confi-
dence intervals.

If one places the M-files in a directory that Matlab can access and invokes the
online help function of Matlab,

help module,

detailed information on the usage of the M-file module will be displayed. The script
ardem demonstrates the main features of the M-files listed above. It illustrates
with a simulated time series how ARfit can be used in modeling and analyzing
multivariate time series.
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