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This document is a guide and reference manual for the Matlab toolbox 'Measures of Effect Size' abbreviated in the 

following as MES. First, we provide an overview of the toolbox – its contents, practical aspects of usage, and some 

implementation detail. Where deemed helpful, brief introductions to some theoretical statistical concepts are 

included. In the reference section, all implemented measures of effect size are listed, including formulae and 

examples to illustrate their use. The examples are based on simulated data which are included in the program 

package. 

 

Sources of information, recommended literature  

Our primary source of information and inspiration was (Kline, 2004). The selection of measures of effect size in the 

toolbox reflects to a substantial degree the material presented in this work. For the computation of exact confidence 

intervals we consulted mainly Smithson (2003). For treatments of contrasts beyond the simple analyses 

implemented here, see Rosenthal and Rosnow (1985) and Rosenthal et al. (2000). Howell (2002) is an excellent 

source for in-depth explanations of factorial analysis.  

The toolbox is accompanied by a paper (Hentschke and Stüttgen, 2011) in which we first outline the rationale for 

complementing or substituting null hypothesis tests by measures of effect size. We wish to stress that this is a 

reiteration of appeals for a more rational use of statistics put forward time and again by numerous authors over the 

past decades (see references therein). In the second part, we provide real-life examples from neurophysiology, and 

provide an overview of the toolbox. 

Version 

This manual refers to version 1.2 of the toolbox, released March 2012. 

Toolbox content, Matlab version and Matlab toolboxes required 

The package contains  

 the four main functions computing MES: 

o mes.m – for 1-sample and 2-sample data sets (complement: t-test) 

o mes1way.m – 1-way data sets (one factor; complement: 1-way ANOVA) 

o mes2way.m – 2-way data sets (two factors; complement: 2-way ANOVA) 

o mestab.m – data tables of categorical outcomes (complement: e.g. chi square test)  

 a function for iterative determination of the noncentrality parameter (ncp) of noncentral Χ
2
 (chi square), t- 

or  F-distributions needed for the construction of confidence intervals:  

o ncpci.m 

 a handful of accessory functions 

 simulated data used in the example calculations: 

o exampleData.mat  
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The code works on Matlab version 7.5 (Release 2007b) and above. Compatibility with lesser versions has not been 

tested. The Matlab Statistics Toolbox is required. 

Example data and calculations 

MES are illustrated with simulated data from a canonical study, accessible in exampleData.mat. In this hypothetical 

study, subjects (student sample) are randomly assigned to one of three groups (‘control’, ‘experimental’ and 

‘experimental 2’) and receive a treatment (placebo, and two different kinds of dopamine-reuptake inhibitor). In each 

of the three groups there are 10 males and 10 females (total N=60). Subjects’ performance on a simple reaction 

time (RT) task is assessed both before and after drug administration, as well as on Conners’ continuous 

performance test (CPT). The CPT assesses sustained attention and impulsivity. Subject’s task is to respond to 

each presentation of a letter on a screen with a button press. However, if that letter reads ‘X’, the subject is asked 

to withhold responding. The CPT yields various dependent measures. Of interest here are reaction times as well as 

the number of errors of commission (pressing the button when X appeared), believed to index impulsivity. 

 

variable 

name 

size meaning 

group 60*1 0=control, 1=experimental, 2=experimental 2 

sex 60*1 0=female, 1=male 

iq 60*1 IQ points on a nonverbal scale of intelligence 

impulse 60*1 number of points on a self-assessment questionnaire for the 

personality dimension of “Impulsivity”; range 0 (self-controlled) to 

20 (highly impulsive) 

rt_pre 60*1 mean reaction time over 100 trials (assessed pre-treatment) 

rt_post 60*1 mean reaction time over 100 trials (assessed post-treatment) 

com_pre 60*1 number of errors of commission in the CPT assessed pre-

treatment 

com_post 60*1 number of errors of commission in the CPT assessed post-

treatment 

Table 1  Data in exampleData.mat used for the exemplary computations in the reference section 

 

The organization of the data is designed to facilitate an understanding of the exemplary calculations; the focus is 

not on efficiency or syntactical elegance. In a similar vein, we wish to emphasize that the example calculations 

provided for each effect size measure illustrate the functionality of the code, highlight the specifics of the MES and 

point to conclusions the results suggest. The ensemble of calculations, particularly the sequence in which they are 

presented, is not meant to exemplify best-practice approaches to analysis.  

Independent versus dependent data 

In 1-way analyses including the comparison of only two groups, data may be independent (unpaired) or dependent 

(paired, repeated measures). In analyses of more than one factor, terminology reflects the fact that the data may be 

dependent along some factors but independent with respect to others. We differentiate between i) completely 

between-subjects designs (independence along all factors), ii) mixed within-subjects designs (independence along 

one or more factors and dependence along the other factor(s)), and iii) completely within-subjects designs 

(dependence along all factors). For the purpose of covering both 1-way and 2-way analyses in the following 

discussion, we term case i) independent and cases ii) and iii) dependent. 

The functions in the toolbox principally accept data of all designs, but for the various MES the results may or may 

not differ between designs. For some MES, e.g. Hedges' g, design-dependent formulae have been published and 

are implemented, whereas for other MES there is no conceptual difference; the question whether data are 
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dependent or not is simply ignored. Some MES, like Glass's Δ, make most sense only for independent data, 

whereas ψ/SDψ ('psibysd') by definition exists only for dependent data.  

The toolbox functions mes.m, mes1way.m and mes2way.m behave according to the following philosophy: 

 if for a given MES different formulae are implemented for dependent and independent data, they are listed 

in the reference section 

 if the MES at hand is 'indifferent' in this respect it will be computed for any design and its value will be 

independent of the design 

 if a MES either conceptually assumes or computationally requires a specific design, a warning or an error 

is issued if the design varies, depending on the severity of the violation of assumptions  

 irrespective of the MES required, bootstrapped confidence intervals always depend on the design due 

to the way samples are drawn from the different groups! Please see the paragraph 'Confidence intervals'. 

 

Balanced versus unbalanced data 

mes.m, mes1way.m and mes2way.m principally accept unbalanced data, that is, data in which the number of 

samples in different groups are unequal. However, there are restrictions and caveats: 

i) Naturally, if the data are dependent they must also be balanced.  

ii) Particularly the MES computed by mes1way.m and mes2way.m assume balanced designs. As is detailed 

in the introductory notes to the 2-way analyses in the reference section, the implementation is geared to 

data sets which are by design balanced, but in which random and sparse loss of data may occur. The 

implementation accommodates imbalances in group size, in part by using the harmonic mean of group size 

as the overall group size or related techniques, but you should be aware that the wider the digression from 

this assumption the more caution has to be exerted in the interpretation of the results. 

 

Confidence intervals 

Confidence intervals (CIs) can be computed in various ways. For a range of MES, we implemented analytical CIs. 

In general, analytical CIs are straightforward to compute only for simple, mostly unstandardized MES. For example, 

the confidence interval of the difference between means of two independent groups is 

      (eq.1) 

where m1 and m2 are the means of the first and second group, respectively, sD is the standard error of the mean 

difference (see eq.6), and tα/2,df is the critical value of the t statistic which depends on the choice of alpha (usually 

0.05) and the degrees of freedom, that is, sample sizes. In Matlab, values of tα/2,df are conveniently obtained from 

function tinv, and the whole business of computing confidence intervals is usually accomplished in one code line. 

This way of computing confidence intervals is based on central Χ
2
-, t- or F-distributions, which assume the null 

hypothesis. For mean differences, this approach also works if the null hypothesis is not assumed to be true 

because the distribution of mean differences does not differ in the two scenarios. The resulting confidence intervals 

are among those termed 'exact' here. Most measures of effect size, however, have more complex distributions 

which do differ depending on whether the null hypothesis is assumed to be true or not. Traditional approaches 

dealing with this difficulty may involve transformation of the effect size statistic to e.g. a normally distributed 

variable, computation of confidence intervals thereof, and retransformation (see e.g. the explanatory notes for 

requivalent). The resulting confidence intervals are termed 'approximate'; they are implemented for some MES.  

Thanks to the computational power available nowadays, an alternative approach has recently resurfaced which 

overcomes the quandary of computing confidence intervals which rely on the null hypothesis assumption (Steiger 

and Fouladi, 1997). Based on so-called noncentral Χ
2
-, t- or F-distributions, it yields 'exact' analytical confidence 

intervals. Briefly, the noncentrality parameter (ncp) of a noncentral distribution describes the degree of deviation 

from the null hypothesis. Its value is zero if the null hypothesis is true, and different from zero otherwise. The task 

of constructing exact CIs consists of an iterative determination of the noncentrality parameter of noncentral Χ
2
-, t- 

or  F-distributions. This is achieved by ncpci.m, which is part of the present package (for an interface-style 

Windows program to compute ncp, also freely available, see e.g. the Noncentral Distribution Calculator ndc.exe by 

J. H. Steiger, to be found at http://statpower.net/Software.html). Given the Χ
2
, t or F value and the degrees of 

freedom in the analysis at hand, the code generates pairs of Χ
2
, t or F probability density functions with ncp as the 

http://statpower.net/Software.html
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Figure 1. Noncentral F distributions with identical 

degrees of freedom but varying noncentrality parameters 

to illustrate the construction of confidence intervals (see 

main text). 

only free parameter. ncp of each function of the pair is iteratively adjusted such that the Χ
2
, t or F value cuts off the 

upper and lower 2.5 % of the area under the curves, yielding the lower and upper bounds of the 95 % confidence 

interval, respectively, of ncp. From these, the confidence intervals of the MES can be computed (Steiger and 

Fouladi, 1997; Smithson, 2003). 

A few points should be noted in connection with confidence 

intervals and noncentral distributions. First, and foremost, the 

output of toolbox functions mes.m, mes1way.m and 

mes2way.m has fields named xCiType (replace x by the 

name of the MES computed, e.g. hedgesg) which lists the 

method used for the calculation of CIs. This information has 

been deemed useful as in an actual computation the method 

used may be difficult to know because the user's choice may 

be modified by the code due to the limitations mentioned 

above. Second, determining ncp is computationally more 

intensive than much of the code dealing with effect size 

computation proper; it may in cases rival the computational 

demand for bootstrapping. Third, if ncp of Χ
2
 or F distributions 

are needed (as is the case with all 1-way and 2-way MES) 

and the effect size of the data set in question is small, the 

lower CIs often cannot be computed via this method. 

Consider the following example (Figure 1). In a balanced 1-

way design with four groups (dfnumerator=3) and ten samples 

each (dfdenominator=36) let F=5.0. 95% CI of ncp is [1.48   33.65], the lower bound already being close to zero. If 

F=3.0, the lower bound cannot be computed because this abscissa value is lower than the 97.5
th
 percentile of the 

'most central' noncentral F distribution possible, that is, the central F distribution with ncp=0. In such cases, ncpci.m 

will return NaN as the lower CI to indicate this fact; the user may decide to follow common practice by assuming the 

value to be zero. Bootstrapping may be an alternative (see below); it will yield a lower CI very close to zero. 

Another solution could be choosing a lower confidence level of e.g. 90%. Finally, it should be mentioned that the 

paucity of MES for which exact CIs can be computed is partly due to the complexity of the underlying distributions. 

For example, CIs of Hedges' g for dependent data or of 
2
 (eta squared) in 2-way analyses are difficult to derive as 

these statistics follow neither central nor noncentral distributions. Therefore, for all MES except those dealing with 

tabled data (computed by mestab.m), bootstrapping was implemented in the toolbox. Deriving confidence intervals 

from bootstrapped data is possible for independent and dependent data. When data are independent, samples are 

drawn from the groups to be compared independently of each other; in the case of dependent data matching pairs 

(or tuples) are drawn. 

 

Contrasts 

In all of the 1-way and 2-way analyses contrast weights may be specified. As contrasts may not be widely known, 

but (may) play a key role in these analyses, the briefest of introductions is provided here; for more information we 

refer the reader to statistical literature on the subject, e.g. (Kline, 2004) for a succinct introduction and (Rosenthal 

and Rosnow, 1985;Rosenthal et al., 2000) for authoritative treatments. Consider the example data above, which 

can be divided into three treatment groups: control, experimental and experimental 2. A contrast, often denoted by 

Ψ (psi), is a weighted sum of population means. For example, a contrast may be the mean of the control group 

minus the mean of the experimental group: Ψ=m1-m2, where mi is the mean of the i
th
 group. A more sophisticated 

contrast would be the mean of the first group minus the average of the means of both experimental groups: Ψ=m1-

0.5*(m2+m3). More generally, a contrast is the weighted sum of population means: 

  i

a

i

imc
1

      (eq.2) 

where ci are the individual contrast weights and a is the number of groups (levels of the factor). In the examples 

just considered, the sets of contrast weights are c=[1 -1 0] and c=[1 -0.5 -0.5], respectively. The contrast weights 

must sum to zero. Furthermore, the focus in contrast analysis in Kline (2004), which we also pursue here, is on the 
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comparison of means, which means that contrast weights must fulfill additional conditions: if a contrast is to be 

interpreted as the difference of the means of two subsets of group means, the absolute values of the contrast 

weights must sum to 2. In this case c is termed a standard set. mes1way.m will issue a warning if c does not fulfil 

this requirement. A standardized contrast is a contrast divided by a population standard deviation, for example the 

square root of MSW, the within-conditions variance pooled across all groups. Thus, like Hedges' g and Glass's Δ, 

standardized contrasts, here denoted gΨ, are standardized mean differences. They inform us in a readily 

understandable metric (namely, in terms of the pooled standard deviation of the groups) on the difference between 

groups. Particularly in conjunction with confidence intervals they permit a comparison of effect magnitude and 

statistical 'significance' across analyses and studies. In analyses with two or more factors the same holds true, but 

the computation of contrasts is more varied. Please see the introductory notes to 2-way analyses in the reference 

section. 

 

Interpretation of effect size magnitude 

The guidelines for interpretation of the magnitude of effect size are either based on Cohen (1992) or Kline (2004); 

for some measures, no guidelines were available, so we decided on our own. Importantly, these guidelines may 

vary with the type of research conducted, the number of sample points, and a multitude of other factors. See Kline 

(2004) for a full discussion of this matter. 

Overview of input arguments into the MES functions 

argument explanation and possible values Comments 

‘isDep’ specifies whether data are dependent (1) or independent (0, 
the default) 

 

‘missVal’ specifies how to handle missing values (NaNs);  if set to 
‘pairwise’, only the missing data point proper is excluded; if set 
to ‘listwise’, data points in corresponding positions (i.e. entire 
row containing any NaN) will be dropped from the analysis. 
Which of these two settings is applicable and/or the default 
depends on whether the data are dependent or not. See the 
individual functions. In mes2way.m missVal is not an input 
argument, data will always be eliminated in pairwise fashion.  

mes.m and 

mes1way.m only 

‘nBoot’ determines number of bootstrapping iterations; if given a value 
n>0, bootstrapping will be performed with n iterations; if ‘nBoot’ 
is set to 0, inf or nan, no bootstrapping will be performed, i.e. 
CIs will be computed analytically, if possible 

bootstrapping requires 
thousands of iterations to yield 
reliable results 

‘exactCi’ if ‘true’, computes exact analytical confidence intervals for 
effect size measures for which both exact and approximate CIs 
can be computed; the default is ‘false’ (exact CIs are based on 
iterative determination of noncentrality parameters of 
noncentral t or F distributions, which can be very time-
consuming; see documentation for details) 

mes.m only  

without effect if bootstrapping is 
requested 

 

‘confLevel’ specifies confidence level for calculation of CI; default is 0.95  

‘ROCtBoot’ if 'true', computes bootstrap confidence intervals for the area 
under the receiver-operator curve according to the 'bootstrap t' 
method, which is more conservative than the bootstrap 
percentile method, the default ('false') 

mes.m only 

‘trCutoff’ cutoff value for computation of tail ratios, given in units of 
standard deviations above or below the grand mean; default: 1 

mes.m only; if set to a positive 
value, right tail ratio (RTR) will 
be computed, else left tail ratio 
(LTR) 

‘trMeth’ applicable for computation of tail ratios: if set to ‘count’ 
(default), ratios will be determined by counting the actual data 
points beyond the cutoff value; if set to ‘analytic’, tail ratios will 
be calculated assuming normal distributions 

mes.m only 
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‘doPlot’ if 'true' (default) a simple plot for each requested effect size 
measure will be produced 

mes.m only 

‘group’ input argument which must be specified if input data X is a 
single-column vector (as opposed to a multi-column array in 
which each column represents one group); g must in this case 
be a single-column vector of arbitrary numbers coding for the 
different groups 

optional input argument in 
mes1way.m, mandatory input 
argument in mes2way.m 

‘cWeight’ allows specification of contrast weights for the computation of 
effect size measures like standardized contrasts and eta 
squared for focused comparisons; in mes1way.m input array c 
must contain as many columns as there are groups and may 
contain several rows (=contrasts); in mes2way.m only one set 
of contrast weights may be specified the shape of which 
depends on the type of contrast to be computed (see specific 
help therein) 

mes1way.m and mes2way.m 
only 

‘tDenom’ for dependent data and contrasts, this parameter determines 
the way F and p values of the contrasts and the confidence 
intervals of the standardized contrast gΨ are computed (please 
refer to the introductory note to oneway analyses) 

mes1way.m only 

Table 2  Input arguments of the MES functions 

 

Output of the MES functions 

The four main functions return a struct array stats the fields of which contain the MES, confidence intervals, Χ
2
, t or 

F statistics as well as additional information like sample size, type of confidence interval, etc. to facilitate post-

analysis interpretation of the results. mes1way.m and mes2way.m optionally produce as an additional output the 

full table of results displayed on the command line. See the detailed help to the individual functions.  
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Effect size measures covered in mes.m  

Introductory notes 

The 'correlation' type of analyses  Users who are not familiar with measures of effect size may wonder why the 

toolbox offers analyses like point and rank biserial correlations with X and Y unpaired and even of different sample 

sizes: if the principle of correlation is to evaluate the relations between pairs of data points, how does it work? Let 

us consider two fictitious variables A and B. Let A be a list of 100 numbers, namely the density of plated neurons 

after 2 days of cultivation. B would be a list of the same length, but consisting only of ones (some nutritial agent 

was added) and zeroes (agent was not added). If your data are arranged like this, you can compute point and rank 

biserial correlations very easily in Matlab. However, chances are that they are not. In most cases, you will have two 

data columns or lists, one for each of the conditions (with or without agent, respectively), exactly because variable 

B or, generally speaking, the treatment is a yes-or-no-affair. Thus, you may just plug these two lists into mes.m, 

very much as you would do when running e.g. a t-test for unpaired data. The rearrangement of the data mentioned 

above is handled within the toolbox, and in case of the point biserial correlation the implementation is different 

anyways.  

The same logic applies to the receiver-operating characteristic analysis: input variable X holds measurements of 

some parameter in one condition (say, treatment with nutritional agent), Y in the other, and the distinction into false 

positives and true positives as well as the ROC curve is then computed on the basis of a range of criterion values 

embracing the minimum and maximum values in the combined data set. 

Order of input arguments X and Y  For almost all two-sample MES the order of the two samples to be compared 

matters. In general, X, the first input argument, is assumed to be the first or 'control' group; accordingly, all terms 

related to this sample are denoted by the subscript '1','X' or 'control'. For example, m1 or mcontrol  denotes the mean 

of this sample. Accordingly, subscripts '2', 'Y' or 'experimental' (or similar) denote terms of the second group, 

delivered to mes.m via input variable Y. If X and Y are swapped, the results will change. Values for AUROC, the 

area under the curve of the receiver-operating characteristic, will be symmetrical around 0.5 (e.g. 0.76 for a 

comparison of X versus Y and 0.24 for the inverse). In the case of Hedges' g, it is solely the sign that changes. For 

the closely related Glass’s , the order of X and Y also determines the sign; additionally (and crucially), it affects 

the magnitude of the result, as only the properties of the first group determine the denominator. 

In order to obtain meaningful values (or interpretations) for U3, CLES, and tail ratios, the user is required to 

establish - prior to computation - which of the two compared groups is 'higher', that is, which has the higher mean 

or median. Although this task could be implemented easily, it has not been done: any internal reordering of groups 

would have to be communicated to the user, and would potentially lead to confusion in the interpretation of results, 

particularly if reordering depended on the types of effect size measures requested and if multiple comparison (see 

point below) were made.  

Multiple comparisons  mes.m accepts arrays with more than one column as input variables X and Y. Effect size 

measures will be computed for each pair of matching columns. The reason for this implementation is that in some 

analysis situations one may wish to compute effect sizes for a large number of two-sampe data sets, e.g. the bins 

of matching histogram data. Implementing multiple comparisons in mes.m is much more efficient than multiple calls 

to the function. All other mes functions accept only one data set at a time. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   g1 

 
data structure:  one sample, metric variable 
 

formula: 
s

am
g1

        (eq.3)  

where m and s are the mean and the standard deviation of the sample, and a is a specific 
comparison value 

 
intuition: standardized distance between the sample mean and a comparison value 
 
complements: one-sample t-test 
 
range:   –inf to +inf; no effect: 0 
 
guide for interpretation: small ±0.2, medium ±0.5, large ±0.8 
 
confidence intervals: bootstrap 
 
more information: (Hedges, 1981) 
 
example: IQ is known to correlate with reaction time tasks. Is the average IQ of the sample 

comparable to that of the general population? IQ tests are standardized to have a 
population mean of 100 with a standard deviation of 15. 

 [h,p,ci,stats]=ttest(iq,100) yields t(59)=6.62, p<10
-7

, so the difference turns out to be 
highly statistically significant. How big is the difference? Application of eq.3 with 
mes(iq,100,'g1','nBoot',10000) yields g1=0.85 with a bootstrapped CI95 of [0.58 1.22]. 
This means that the sample distribution’s center (m=110.75) is almost one standard 
deviation (0.85 sd units) above the population mean, which can be considered a large 
difference according to the above guidelines. The confidence interval shows that the likely 
range of the population effect size is from 0.58 to 1.22; so the difference is likely to be no 
smaller than 0.58 and no larger than 1.22 standard deviations. The sign of g1 indicates 
whether the comparison value is above (g1 positive) or below (g1 negative) the sample 
mean. 

In sum, the analysis shows that the sample is not representative of the general population, 
at least in terms of IQ, which may affect the generalizability of the results. 

comments: this measure of effect size has, to our knowledge not yet been proposed elsewhere and is 
based on Hedges’ g for two samples 

 

 

 

Figure 2. Illustration of g1. Shown is a standard normal distribution, i.e. with a mean (m) of 0 and a standard deviation (sd) of 1. The 
comparison value, a, is located 1.5 sd to the left of the mean. Accordingly, g1=(0–(–1.5))/1=1.5.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   U31 

 
data structure:  one sample, metric or ordinal-scaled variable 
 

formula: 

X

aXaX

n

nn
U3

5.0
1       (eq.4) 

where nX is the number of elements in the sample, and nX<a and nX=a are the number of 
elements with magnitude smaller than and equal to comparison value a, respectively 

 
intuition: fraction of sample below the comparison value 
 
complements: one-sample t-test 
 
range:   0 to 1, no effect: 0.5 
 
guide for interpretation: small 0.4/0.6, medium 0.3/0.7, large 0.2/0.8 
 
confidence intervals: bootstrap 
 
more information: (Cohen, 1988) 
 
example: IQ is known to correlate with reaction time tasks. Is the average IQ of the sample 

comparable to that of the general population? IQ tests are standardized to have a 
population mean of 100 with a standard deviation of 15. 

 [h,p,ci,stats]=ttest(iq,100) yields t(59)=5.35, p=10
-8

, so the difference turns out to be 
highly statistically significant. How big is the difference? Application of eq.4 with 
mes(iq,100,'U3_1','nBoot',10000) yields U31=0.22 with a bootstrapped CI95 of [0.12 
0.32]. This means that ~22% of the sample values are below the comparison value, rather 
than 50%, the value expected based on the assumption of a normally distributed variable 
with a mean of 100. U31 is symmetric, so in other words, ~78% of the sample values 
exceed the comparison value. The confidence interval shows that the likely range of the 
population effect size is from 0.12 to 0.32. 
In sum, the analysis shows that the sample is not representative of the general population, 
at least in terms of IQ, which may affect the generalizability of the results. 

 
comments: this measure of effect size has, to our knowledge not yet been proposed elsewhere and is 

based on Cohen’s U3 for two samples (see below) 
 
 
 
 

 
 
Figure 3. Illustration of U31. Shown is a standard normal distribution, i.e. with a mean m of 0 and a standard deviation (sd) of 1. The 
comparison value, a, is located 1.5 sd to the left of the mean. U31 is indicated by the shaded area, and its value is U31=0.067.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   mean difference 

 
data structure:  two samples, metric variables 
 

formula: 
21 mmmd         (eq.5)  

where m1 and m2 are the means of the first and second sample, respectively. 
 
For the computation of confidence intervals of md the standard error of the mean 
difference is needed. For two independent samples it is computed as 

21

2 11

nn
ss pD

       (eq.6) 

where s
2
p is the pooled within-groups variance and n1 and n2 are the number of cases in 

groups 1 and 2, respectively. The pooled within-groups variance is 
 

2

)1()1(

21

2

22

2

112

nn

snsn
s p

      (eq.7) 

where s1
2
 and s2

2
 are the variances of group 1 and 2, respectively. 

For paired samples, computation of standard error of the mean difference takes into 

account the correlation between the groups: 

n

rssss
sD

1221

2

2

2

1 2
      (eq.8) 

where s1 and s2 are the standard deviations of group 1 and 2, respectively, and r12 is the 

correlation between the groups. However, note that mes.m computes sD from the standard 

deviation of the individual difference scores, which is computationally simpler. 
 
intuition: difference between the means of two samples, expressed in the original scale of 

measurement (i.e. non-standardized) 
 
complements: two-sample t-test 
 
range:   –inf to +inf; no effect: 0 
 
guide for interpretation: depends on the scale of measurement 
 
confidence intervals: exact analytical, bootstrap 
 
more information: Kline (2004), Rosenthal et al. (2000) 
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect the number of commission errors? 

 [h,p,ci,stats]=ttest2(com_post(group==0),com_post(group==1)) yields t(38)=–4.01, 

p=0.0003, i.e. the difference is indeed statistically significant. The mean difference, 

obtained via mes(com_post(group==0),com_post(group==1),'md'), is –9.15 with an exact 

95% confidence interval ranging from –13.77 to –4.53. The bootstrapped CI95, obtained 

via mes(com_post(group==0),com_post(group==1),'md','nBoot',10000) is [–14.10 –

5.35], quite close to the analytical CI95. 
 

Note that the sign of md is dependent on which of the two groups is entered first into 
mes.m. 
 

comments: this measure of effect size is the most basic one could think of; we included it because in 
many applications the original units of measurement are meaningful (e.g., millivolts or 
number of errors) and because in contrast to md itself some users may find its confidence 
intervals not trivial to compute.  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   Hedges’ g 

 
data structure:  two independent or dependent samples, metric variable 
 

formula: 

ps

mm
g 12

        (eq.9)            

where m1 is the sample mean of the first group, m2 is the sample mean of the second 
group, and sp is the pooled standard deviation, i.e. the square root of the pooled within-
groups variance, weighted by number of cases in each group: 

 
2
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nn
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s p       (eq.10) 

 where n1 and n2 are the number of cases in groups 1 and 2, respectively, and s1
2
 and s2

2
 

are their variances 
 Eq.9 is known to yield a biased estimate for the population value. Therefore, mes.m 

implements a correction formula: 

 
1)2(4

3
1

21 nn
gg biasedunbiased     (eq.11) 

 In principle, the above formulas can be applied to independent and dependent samples. 
However, in some instances a researcher may want to use a form of Hedges’ g specifically 
for dependent data: 
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pair        (eq.12) 

   where t is the t-statistic from a t-test for dependent samples, and s
2
D is the variance of the 

difference scores. 
 
intuition: standardized difference between the sample means, i.e. the difference expressed as the 

number of standard deviations necessary to move one distribution such that its mean is 
identical to the other 

 
complements: t-test for two independent or dependent samples 

 
range:   –inf to +inf; no effect: 0 
 
guide for interpretation: small: ±0.2, medium: ±0.5, large: ±0.8 
 
confidence intervals: bootstrap (independent & dependent); approximate analytical (independent & dependent), 

exact analytical (independent) 
 
more information: (Hedges, 1981) 
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect the number of commission errors? 
 [h,p,ci,stats]=ttest2(com_post(group==0),com_post(group==1)) yields t(38)=–4.01, 

p=0.0003, i.e. the difference is indeed statistically significant. Hedges’ g can be used to 
quantify the obtained difference, and 
mes(com_post(group==0),com_post(group==1),'hedgesg','nBoot',10000) yields g=–
1.24 with a boostrapped 95% confidence interval ranging from –2.37 to –0.94. The 
approximate analytical CI95 is [–1.90 –0.53] and can be obtained by leaving out the 
argument ‘nBoot’. The analytical CI can also be computed in an exact fashion (see notes 
at the beginning of this document and explanations for input argument 'exactCI'). 
Computation of exact CI may take a longeish time. In the current example, exact CI95 are 
[–1.90 –0.57], barely different from the approximate CI given above. 
Note that the sign of Hedges’ g is dependent on which of the two groups is entered first 
into mes.m. 
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comments: differs from Glass’s  only by the standardizer in the denominator and will frequently yield 
highly similar results 

 is a form of Cohen’s d; Cohen never specified which standard deviation to choose (one 
group or pooled over both groups), this is why we use the term Hedges’ g rather than 
Cohen’s d 
can in principle be used for both dependent and independent samples; mes.m includes a 
special formula for dependent samples, where the magnitude of g depends on the 
correlation between the samples; see Kline (2004) for discussion of this measure 

 

 
 

Figure 4. Illustration of Hedges’ g. Shown are  two standard normal distributions, with means m1 of 0 and m2 of 2.2, and a standard 
deviation (sd) of 1 (identical for both distributions). Accordingly, in this example, Hedges’ g=(2.2–0)/1=2.2. 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   Glass’s  

 
data structure:  two independent samples, metric variable 
 

formula: 

control

control

s

mmexp
       (eq.13) 

where mexp is the sample mean of the experimental group, mcontrol is the sample mean of 
the control group, and scontrol is the standard deviation of the control group. Note that both 
the sign and the value of Glass’s  depend on which of the two groups is entered first into 
mes.m. The first input argument, X, is assumed to be the control, and the mean difference 
will be divided by the standard deviation of this group. 

 
intuition: standardized difference between the sample means, i.e. the difference expressed as the 

number of standard deviations necessary to move one distribution such that its mean is 
identical to the other 

 
complements: t-test for two independent samples 

 
range:   –inf to +inf; no effect: 0 
 
guide for interpretation: small: ±0.2, medium: ±0.5, large: ±0.8 
 
confidence intervals: bootstrap & approximate analytical 
 
more information: (Hedges, 1981;Glass, 1976) 
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect the number of commission errors? 
[h,p,ci,stats]=ttest2(com_post(group==0),com_post(group==1)) yields t(38)=–4.01, 
p=0.0003, i.e. the difference is indeed statistically significant. Glass’s can be used to 
quantify the obtained difference, and 
mes(com_post(group==0),com_post(group==1),'glassdelta','nBoot',10000) yields g=–
5.85 with a boostrapped 95% confidence interval ranging from –10.44 to –3.36. The 
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approximate analytical CI95 is [-7.87 -3.82] and can be obtained by leaving out the 
argument ‘nBoot’. 

 
comments: differs from Hedges’s g only by the standardizer in the denominator and will frequently 

yield highly similar results 

 Glass’s  has originally been proposed in the context of the evaluation of the effectiveness 
of different forms of psychotherapy. Since in that context several experimental groups 
were compared to a single control group, the therapies’ effectiveness was best made 
comparable by using the control group’s standard deviation. Under different conditions, 
Hedges’ g may be more suitable since it uses both samples’ standard deviations to 

estimate the population’s standard deviation. In our example, Glass’s  is much larger than 
Hedges’ g because the variance of the control group is considerably smaller than the 
variance of the experimental group. 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   mdbysd 

 
data structure:  two dependent samples, metric variable 
 

formula: 

Ds

mm
mdbysd 12

       (eq.14) 

where m1 is the sample mean of the first group, m2 is the sample mean of the second 
group, and sD is the standard deviation of the difference score (the differences between 
matching pairs of data in the groups). 

 
intuition: standardized difference between the sample means; will be larger than Hedges' g or 

Glass's  if subjects show high inter-individual variability but consistent effects of e.g. 
treatment 

 
complements: t-test for dependent samples 

 
range:   –inf to +inf; no effect: 0 
 
guide for interpretation: small: ±0.2, medium: ±0.5, large: ±0.8 
 
confidence intervals: bootstrap, exact analytical 
 
more information: (Kline, 2004) 
 

example: As in the previous examples (Hedges' g and Glass's ) we ask whether administration of 
APO affects the number of commission errors, now assuming that the individuals are 
identical in the control and experimental groups. 
mes(com_post(group==0),com_post(group==1),'mdbysd','isDep',1) yields a value of -
0.91 with 95% exact analytical confidence intervals of [-1.43 -0.38]. Thus, there is 
decidedly a strong effect, the same qualitative result as obtained with Hedges' g and 

Glass's . The effect of the 'experimental 2' treatment, assessed via 
mes(com_post(group==0),com_post(group==2),'mdbysd','isDep',1) is -1.87 [-2.58 -
1.12], more than twice as strong than that of the first experimental treatment. 

 
comments: the standardizer in the denominator is sensitive to correlations between the groups, the 

advantage being potentially more sensitivity in detecting effects, which must be weighed 

angainst the disadvantage that the values cannot be compared to Hedges' g or Glass's  
because the denominator is in a different metric 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   requivalent  

 
data structure:  two independent (or dependent) samples, metric variable 
 

formula: 
)2(2

2

Nt

t
requivalent

      (eq.15) 

where t is the one-sided t-value of a two-sample t-test, and N is the number of subjects 
from both conditions 

 Exact analytical CIs can be computed if the samples are independent. If the samples are 
dependent or approximate analytical CI95 are preferred, these will be computed. 
Approximate analytical CIs are computed as for Pearson’s correlation coefficient: first, r is 
transformed to Fisher’s Z by Zr=0.5*log(((1+r)/(1–r))), then the 95% CI of Zr is found by 

computing Zr  tdf,alpha/ (N–3). tdf,alpha is a critical value of the t statistic which depends on 
the choice of alpha and the degrees of freedom (df). For alpha=0.05 and large n, 
tdf,alpha=1.96. 95% CI of requivalent are obtained by the retransformation r=(exp(2*Zr)-
1)/(exp(2*Zr)+1) 

 
intuition: correlation between group membership and a metric variable; if the two sample 

distributions are completely separated, |r|=1, if they are completely indistinguishable, r=0 
 
complements: t-test for two independent or dependent samples 

 
range:   –1 to 1; no effect: 0 
 
guide for interpretation: small: 0.2, medium: 0.5, large: 0.8 
 
confidence intervals: bootstrap (independent & dependent); approximate analytical (independent & dependent), 

exact analytical (independent) 
 
more information: (Rosenthal and Rubin, 2003;Kline, 2004)  
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect the number of commission errors? 
[h,p,ci,stats]=ttest2(com_post(group==0),com_post(group==1)) yields t(38)=–4.01, 
p=0.0003, i.e. the difference is indeed statistically significant. 
mes(com_post(group==0),com_post(group==1),'requiv','nBoot',10000) yields 
requivalent=–0.55, with bootstrapped CI95 –0.78 and –0.44. The exact analytical CI95 is [-
0.70 -0.28]. It is computed via noncentral F distributions and can be obtained by leaving 
out the argument ‘nBoot’ (or setting it to 0) and setting input argument 'exactCi' to 'true' (or 
1). If the latter is omitted or set to 'false' (or 0), the approximate analytical CI95 will be 
computed; it is [-0.74  -0.27], close to the exact values.  

 
comments: also termed point-biserial correlation coefficient; originally introduced as a measure of 

effect size for meta-analytic research. It is the two-sample case of η (the square root of η
2
 

(eta squared) explained further below) and can be computed in the two-sample case when 
only a p- or t-value and the sample size are reported; it draws on the point-biserial 
correlation, i.e. the Pearson correlation between a metric variable and dichotomous group 
membership (e.g. control vs. experimental group). It is recommended a) when only sample 
sizes and p-value are known for a study, b) to complement non-parametric hypothesis 
tests for which there are no MES, c) when sample sizes are very small or data so 
nonnormal that computation of other MES such as Hedges’ g were misleading. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   common-language effect size (CL) 

 
data structure:  two independent or dependent samples, metric variable 
 

formula: 
2

2

2

1

21

ss

mm
CL        (eq.16) 

where m1 and m2 are the means of the two groups, and s1
2
 and s2

2
 are their variances 

 
intuition: CL corresponds to the probability of that a random score from group A will be larger than a 

random score from group B 
 
complements: t-test for two independent samples 

 
range:   0 to 1; no effect: 0.5 
 
confidence intervals: bootstrap (independent & dependent) 
 
more information: (McGraw and Wong, 1992) 
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect the number of commission errors? 
[h,p,ci,stats]=ttest2(com_post(group==0),com_post (group==1)) yields t(38)=–4.01, 
p=0.0003, i.e. the difference is indeed statistically significant. 
mes(com_post(group==0),com_post(group==1),'cles','nBoot',10000) yields CL=0.19, 
with bootstrapped CI95 0.04 to 0.25. 

 
comments: a non-parametric alternative to CL is the area under the ROC-curve (AUROC) 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   Cohen’s U1 

 
data structure:  two independent or dependent samples, metric or ordinal-scaled variable 
 

formula: 
N

nn
U

XYYX )min()max(

1       (eq.17) 

where nX>max(Y) is the number of elements in group X that are larger than the maximum 
value of group Y, and nY<min(X) is the number of elements in group Y that are smaller than 
the minimum value of group X 

 
intuition: proportion of scores across both groups in areas of non-overlap (see Fig. 5 for illustration); 

if the distributions are completely separate, U1=1. If they overlap completely, U1=0. 
 
complements: t-test for two independent or dependent samples; Mann-Whitney-U-Test; Wilcoxon rank-

sum test 
 
range:   0 to 1; no effect: 0, maximum effect: 1 
 
confidence intervals: bootstrap (independent & dependent) 
 
more information: (Cohen, 1988) 
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect reaction time? 
[h,p,ci,stats]=ttest2(rt_post(group==0),rt_post (group==1)) yields t(38)=–2.03, 
p=0.0497, i.e. the difference is statistically significant. 
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Since reaction time distributions are rarely normally distributed, one may opt to choose a 
nonparametric hypothesis test instead and complete this with a nonparametric measure of 
effect size, such as U1. 
mes(rt_post(group==0),rt_post(group==1),'U1','nBoot',10000) yields U1=0.23, with 
bootstrapped CI95 0.13 to 0.4. 

 
comments: one of the few existing nonparametric MES 
 
 
 

 
 
Figure 5. Illustration of Cohen’s U1. Shown are two standard normal distributions. The gray shaded areas mark the tail regions of the 
two distributions. The left area is that part of distribution 1 having smaller values than the minimum value of distribution 2. 
Conversely, the right area is that part of distribution 2 having larger values than the maximum value of distribution 1. 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   Cohen’s U3 

 
data structure:  two independent or dependent samples, metric or ordinal-scaled variable 
 

formula: 

X

YmedianXYmedianX

n

nn
U

)()(

3

5.0
     (eq.18) 

where nX<median(Y) is the number of elements in group X that are exceeded by the median 
value of group Y, nX<median(Y) is the number of elements in group X that are equal to it, and 
nX is the total number of elements in group X 

 
intuition: proportion of scores in group X that are smaller than the typical value (i.e. the median) of 

group Y; like U1, U3 is best understood as a measure of overlap of two distributions, with 
overlap being minimal at U3 of 0.5 and maximal at 0 (all elements of group X are above 
the median of group Y) or 1 (all elements of group X are below the median of group Y) 

 
complements: t-test for two independent or dependent samples; Mann-Whitney-U-Test; Wilcoxon rank-

sum test 
 
range:   0 to 1; no effect: 0.5 
 
confidence intervals: bootstrap (independent & dependent) 
 
more information: (Cohen, 1988) 
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect reaction time? 
[h,p,ci,stats]=ttest2(rt_post(group==0),rt_post(group==1)) yields t(38)=–2.02, 
p=0.0497, i.e. the difference is statistically significant. 
Since reaction time distributions are rarely normally distributed, one may opt to choose a 
nonparametric hypothesis test instead and complete this with a nonparametric measure of 
effect size, such as U3. 
mes(rt_post(group==0),rt_post(group==1),'U3','nBoot',10000) yields U3=0.65, with 
bootstrapped CI95 0.2 to 1.0. In words, 65 % of the reaction time values in the control 
(placebo) group are below the median of those in the first treatment group, within (very 
wide) 95 % confidence margins of 20 to 100 %. Note that the order of input arguments 
matters in a nontrivial way: 
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mes(rt_post(group==1),rt_post(group==0),'U3','nBoot',10000) yields U3=0.45 [0.20 
0.65]. When input arguments x and y are swapped, values of U3 will not be symmetrical 
around the noneffect value of 0.5 unless the samples in both groups are exactly 
symmetrically distributed. 
 

comments: one of the few existing nonparametric MES 
 with Cohen’s U3, it is easy to obtain a ceiling or floor effect (note the upper confidence 

interval in the example above); that is, all values of X may be larger than the median of Y, 
but the distributions may still overlap to a considerable degree or not; Cohen’s U3 does not 
differentiate these situations 

 
 

 
 
Figure 6. Illustration of Cohen’s U3. Shown are two standard normal distributions. The gray shaded area marks the proportion of 
distribution 1 that is exceeded by the median of distribution 2 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   AUROC (area under the receiver operating characteristic curve) 

 
data structure:  two independent samples, metric or ordinal-scaled variable 
 
formula: AUROC represents the area under the receiver operating characteristic (ROC) curve. This 

area is found by graphing the data in linear ROC space and then integrating the area 
below the graph. Formally, successive pairs of hit and false alarm rates (H & F, 
respectively) are plotted and connected. Then, vertical lines are drawn from each point to 
the F-axis (abscissa), creating a series of trapezoids. Each of these trapezoids has an 
area equal to the difference in the F values times the average H value, and the total area is 
found by summing these areas: 

 ))((
2

1
11 iiii HHFFAUROC     (eq.19) 

where index i tracks the pairs of H-F OC points, with (F1,H1) being (0,0) and the last point is 
(1,1). 

 
intuition: like U3, AUROC can be understood as a measure of overlap of two distributions, with 

overlap being minimal at a value of 0.5 and maximal at 0 (all elements of group X are 
below the minimum of group Y) or 1 (all elements of group X are above the maximum of 
group Y); AUROC also equals the probability that a random score from group X exceeds a 
random score from group Y 

 
complements: t-test for two independent samples; Mann-Whitney-U-Test; Wilcoxon rank-sum test 
 
range:   0 to 1; no effect: 0.5 
 
confidence intervals: bootstrap, 'bootstrap t' (Obuchowski and Lieber, 1998), analytical (Hanley and McNeil, 

1982) 
 
more information: (Bamber, 1975;Stanislaw and Todorov, 1999;MacMillan and Creelman, 2005;McNicol, 

2005) 
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect reaction time? 
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[h,p,ci,stats]=ttest2(rt_post(group==0),rt_post(group==1)) yields t(38)=–2.02, 
p=0.0497, i.e. the difference is statistically significant. 
Since reaction time distributions are rarely normally distributed, one may opt to choose a 
nonparametric hypothesis test instead and complete this with a nonparametric measure of 
effect size, such as AUROC. 
mes(rt_post(group==0),rt_post(group==1),'auroc') yields AUROC=0.39, with analytical 
CI95 of [0.22 0.57]. With the classical bootstrap approach via 
mes(rt_post(group==0),rt_post(group==1), 'auroc','nBoot',10000)CI95 range from 0.22 
to 0.58. For a more conservative estimate the 'bootstrap t' approach may be used. 
mes(rt_post(group==0),rt_post(group==1), 'auroc','nBoot',10000,'ROCtBoot',1) yields 
CI95 of [0.19 0.58].  
Please note that there is no single best way of constructing confidence intervals for 
AUROC (Obuchowski and Lieber, 1998). When sample sizes are small and AUROC is 
close to zero or one, confidence intervals in general are very imprecise, the most obvious 
manifestation being analytical and 'bootstrap t' CI95 ranges exceeding one or zero. The 
reason is that these estimates assume normality of the pivot statistic, which is often not the 
case. It may be helpful in such cases to restrict the CI to e.g. 90% or less. 
 

comments:  one of the few existing nonparametric measures of effect size 
widely used e.g. in psychophysics, machine learning, and engineering 
function perfcurve, introduced in the Statistics Toolbox with Matlab Release 2009a, also 
performs ROC analysis 
see also (Jordan et al., 2010), who published a standalone program performing ROC 
analysis 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   RTR, LTR (right tail ratio, left tail ratio) 

 
data structure:  two independent or dependent samples, metric or ordinal-scaled variable 
 

formula: 

Y

SDMY

X

SDMX

n

n

n

n

p

p
RTR

XYXY

XYXY

1

2       (eq.20) 

where 
XYXY SDMXn is the number of elements in X that are larger than the grand mean 

plus the grand standard deviation, 
XYXY SDMYn is the number of elements in Y that are 

larger than the grand mean plus the grand standard deviation (‘grand’ is taken to imply that 
the measures were computed across the entire sample), nX and nY are the number of 
elements in groups X and Y, respectively; usually, the larger proportion of scores is taken 
as the numerator 

  

Y
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X

SDMX

n

n

n

n

LTR
XYXY

XYXY

       (eq.21) 

conventions as in eq.20 
 
intuition: RTR is the relative proportion of scores from two different groups that fall in the upper 

extreme of the combined frequency distribution; here, “extreme” means more than one 
standard deviation above the mean (~84% for a normal distribution), or p2/p1; LTR is the 
relative proportion of scores that falls in the lower extreme of the combined frequency 
distribution (~16% for a normal distribution) 

 
complements: t-test for two independent or dependent samples 

 
range:   1 to +inf; no effect: 1 
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confidence intervals: bootstrap (independent & dependent) 
 
more information: (Kline, 2004) 
 
example: Dopamine activity has frequently been linked to measures of impulsivity. Does 

administration of APO affect reaction time? 
[h,p,ci,stats]=ttest2(rt_post(group==0),rt_post(group==1)) yields t(38)=–2.02, 
p=0.0497, i.e. the difference is statistically significant. 
Since reaction time distributions are rarely normally distributed, one may opt to choose a 
nonparametric hypothesis test instead and complete this with a nonparametric measure of 
effect size, such as RTR/LTR. 
mes(rt_post(group==0),rt_post(group==1),'tailratio','nBoot',10000) yields a tail ratio of 
zero, with bootstrapped CI95 [0 0.67]. All values are below one, the lower range of 
possible values defined above. The reason is that the order of input arguments to mes.m 
matters and the group with lesser values was specified as the first input argument. This 
results in p2<p1 in equation 18, which is at variance with the standard definition of tail 
ratios, which assumes the inverse. As stated in the introductory paragraphs, the 
philosophy of mes is to not swap the order of input arguments internally because this 
would have to be communicated to the user, unnecessarily complicating interpretation of 
the data. Instead, the situation can be rectified by exchanging the order of groups in the 
call to mes.m. However, in the example above p1=0, which will result in infinity. A look at 
the data with e.g. hist([rt_post(group==0) rt_post(group==1)]) reveals that reaction 
times in the treatment group are non-normal with a very large variability compared to the 
control group. In such a situation the cutoff value may be lowered from the default (one 
grand standard deviation) to arrive at meaningful values: 
mes(rt_post(group==1),rt_post(group==0),'tailratio','nBoot',10000,'trCutoff',0.5) 
results in a right tail ratio of 7 with CI95 [0.8 9]. In words, the number of samples in the 
treatment group above [grand mean + 0.5* grand standard deviation] is seven times larger 
than the number of samples in the control group above this value.  
There is an alternative 'analytical' way to calculate tail ratios which assumes an 
approximately normal distribution of the data in both groups. In the canonical data set, 
'impulsivity' qualifies.  
mes(impulse(group==0),impulse(group==1),'tailratio', 
'nBoot',10000,'trMeth','analytic')  
yields a right tail ratio of 1.06, with bootstrapped CI95 [0.19  4.59], demonstrating that both 
groups are well matched in terms of this characteristic, albeit with a large margin of error. 
The left tail ratio can be obtained by specifying a negative factor for the cutoff value:  
mes(impulse(group==0),impulse(group==1),'tailratio', 
'nBoot',10000,'trMeth','analytic','trCutoff',-1) results in 1.01 [0.84  1.23], confirming the 
previous result for the lower end of impulsivity values. 
 

comments: widely used e.g. in psychophysics, machine learning, and engineering 
 The example above illustrates one of the main problems of all nonparametric MES, ceiling 

and floor effects, and underlines the need to scrutinize data for e.g. normality and/or 
approximate homogeneity of variability for some MES 

  
 

 
 
Figure 7. Illustration of RTR. Shown are two normal distributions. RTR is computed as p2/p1, the area of the left distribution above the 
cutting point (grand mean M1,2 plus one grand standard deviation SD1,2) divided by the area of right distribution above that cutting 
point. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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name:   rrb rank-biserial correlation 

 
data structure:  two dependent or independent samples, ordinal-scaled variable 
 

formula: 
2

12
1

0

n
Y

n
rrb        (eq.22) or 

 0

1 2

12
Y

n

n
rrb        (eq.23) 

where n0 and n1 are the number of elements in groups X and Y, respectively, n is the total 

number of elements, and 0Y and 
1Y are the mean number of ranks in groups X and Y, 

respectively 
the ordinal-scaled variable is transformed to ranks first using tiedranks.m 

 
intuition: correlation between a ranking (ordinal-scaled variable) and a dichotomy (e.g. experimental 

group) 
 how well does group membership predict ranking order? 
 unlike Pearson’s product-moment correlation, rrb measures the degree of monotonicity of a 

relationship, rather than the degree of a linear relationship 
 
complements: t-test for two independent or dependent samples; Mann-Whitney-U test; Wilcoxon rank-

sum test 
 
range:   –1 to +1; no effect: 0 
 
confidence intervals: bootstrap (independent & dependent) 
 
more information: (Cureton, 1956;Cureton, 1968;Glass, 1966) 
 
example: Continuous performance tests (CPT) are used in the assessment of attention-deficit 

hyperactivity disorder (ADHD), a symptom of which is impulsive behavior. So, impulsivity is 
a potential confound when comparing CPT data between groups not matched for 
impulsivity. Does impulsivity in healthy subjects (as assessed by a personality 
questionnaire) differ between subjects in the placebo and the experimental groups? 
[h,p,ci,stats]=ttest2(impulse(group==0),impulse(group==1)) yields a nonsignificant 
t(38) of 0.13, with p=0.90. However, absence of evidence (non-significant p-value) does 
not imply evidence of absence. Quantification of the difference between the two groups 
can be done by using the rank-biserial correlation coefficient. This coefficient is suitable 
because impulsivity is measured on an ordinal rather than metric scale level (see 
(Stevens, 1946)). 
mes(impulse(group==0),impulse(group==1),'rbcorr','nBoot',10000) yields a correlation 
of 0, with CI95 ranging from –0.32 to 0.31. This is reassuring evidence that the groups do 
not differ appreciably in impulsivity. 
 

comments:  one of the few existing nonparametric MES 
if the non-dichotomous variable is metric rather than ordinal, the point-biserial correlation 
coefficient is to be preferred, see above (requivalent). 
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Effect size measures covered in mes1way.m 

 
Introductory notes  
A defining feature of mes1way is the possibility to compute contrast-related MES. Most prominently, this is the 
standardized contrast gψ (g_psi, explained in detail below), which is a oneway equivalent of Hedges' g (explained 
above). As in the case of Hedges' g, confidence intervals of gψ bear a relationship to the p values resulting from t-
tests: 95% confidence intervals not enclosing zero correspond to p<0.05.  
While the computation of the confidence intervals is straightforward for independent data, it merits some 
deliberation for dependent data. The following note explains the computation of confidence intervals of gψ and the t, 
F and p values of the associated contrast for dependent data only. It is placed here because it addresses an 
important general issue.  
A contrast is a single degree of freedom comparison between means. Consequently, we may compute t values 
instead of F values, and the relation t

2
=F holds. (Note that mes1way displays only F values in the results table). 

The t statistic for a contrast for dependent data, with n subjects and assuming a null hypothesis of zero, is (Kline, 
2004) 

ˆ

ˆ

ˆ
)1(

s
nt        (eq.24) 

where ˆ is the contrast and ˆs is the standard error of the contrast. ˆs  and the t value are used to compute the 

approximate confidence intervals of the contrast and the p value associated with the null hypothesis for the 
contrast, respectively. 

The matter of deliberation is ˆs , which can be computed in different ways. In one approach,  

 

n

c

MSs

a

i

i

bjectbetweenxsu
1

2

ˆ      (eq.25) 

where MSbetween x subject is the between-groups x subjects mean square and the ci are the contrast weights. Using 
MSbetween x subject as the effect error term is the standard in repeated measures ANOVA and is fine if the data 
investigated fulfil a number of requirements, among them sphericity. Unfortunately, often they do not. An alternative 

estimator of ˆs is 

n

s
s

D ˆ

ˆ        (eq.26) 

where 
ˆDs  is the standard deviation of the contrast's difference score. This way of computing ˆs and contrast-

associated t statistics has the advantage of not requiring sphericity of the data (Kline, 2004). However, it should be 

noted that 
ˆDs  takes into account only the variability between the groups compared in the contrast; specifically, 

groups with a contrast weight of zero do not play a role. It may be argued that this is not exactly in the spirit of best 
comparability of MES computed from different data layouts, but it must be weighed against the advantage of less 
stringent requirements on the data mentioned above. 

 mes1way permits computation of ˆs  in both ways. Consequently, F and p values of contrasts and confidence 

intervals of gψ will differ depending on the method chosen. The default is the second method, based on 
ˆDs . As 

users familiar with ANOVA may expect the other approach, a message alerting the user to this fact is issued on the 
command line below the table of results. To switch to the method based on MSbetween x subject, the user must specify 

optional input variable 'tDenom' as 'msw'. Confidence intervals of the other standardized contrast available, ψ/SDψ, 

are always based on 
ˆDs . 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   psi (ψ) 

 
data structure:  two or more independent or dependent samples, metric variable 
 

formula: i

a

i

imc
1

       (eq.27) 

 
where ci is the i

th
 contrast weight, mi the i

th
 group mean, and a the number of groups 

 
intuition: oneway equivalent of mean differences, for example the difference between the mean of a 

single group and the combined mean from several other groups, expressed in the original 
units of measurement 

 
complements: analysis of variance & post-hoc tests 

 
range:   -inf to +inf; no effect: 0 
 
confidence intervals: exact analytical (independent & dependent), bootstrap (independent & dependent) 
 
more information: Kline, 2004;  
 
examples: 1. Do the control and first treatment group differ in performance (post-treatment error of 

commission)?  
mes1way(com_post,'psi','group',group,'cWeight',[1 -1 0]) yields ψ=-9.15 with exact 
analytical confidence intervals of [-13.05 -5.25]. In words, subjects in the treatment group 
committed on average 9.15 errors more than subjects in the control group, our confidence 
in the assessment (as per the CI95) ranging from 5.25 to 13.05. Reversing the sign of the 
contrast weights results in identical numerical results with reversed sign. Note that the 
contrast weights define simply the mean difference between the first two groups; hence, 
the values of ψ here and of md in the corresponding example calculation above are 
identical. The confidence intervals are similar, but not identical, because in the oneway 
calculations here data in the third group come into play for the calculation of the contrast's 
standard error, on which the confidence interval is based. 
2. Does the control group differ from the ensemble of both treatment groups (equally 
weighted) in terms of performance?  
mes1way(com_post,'psi','group',group,'cWeight',[1 -0.5 -0.5]) yields ψ=-6.53 (CI95 [-
9.90 -3.15]). The fact that now the value of ψ is lower than in the first comparison implies 
that the effect in the second treatment group is somewhat weaker than in the first 
treatment group. 
3. The same question as in example 2, but now assuming dependent samples: ψ=-6.53 as 
before, because the definition of ψ is identical in the dependent and independent case. 
However, the confidence intervals, [-8.98 -4.07], are slightly more narrow than under the 
assumption of independence, which is to be expected as correlations between subjects 
were built into the data set.  
Please note that the output of mes1way.m (stats.psi) will be a column array in which the 
first element is always NaN: the first position in all output arrays is reserved for the 
omnibus effect, which contrasts by definition are not. From the second row on, stats.psi 
will hold the values for the contrasts (as many rows as contrasts are specified). The same 
applies to stats.psiCi, the confidence intervals. 

 
comments: see the introductory paragraph on contrasts in this document. Also, once again it shall be 

noted that in some applications the real units attached to unstandardized statistics may 
convey a better idea of the difference between groups, the drawback being that the 
numerical values cannot readily be compared to unstandardized differences derived in 
other contexts. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   g_psi (gψ) 

 
data structure:  two or more independent or dependent samples, metric variable 
 

formula: 

errorMS
g        (eq.28) 

 
where ψ is a contrast, and MSerror is the pooled within-groups mean square. Thus, gψ is a 
standardized mean difference for a contrast.  

 
intuition: gψ could be viewed as an extension of Hedges' g to more than two groups: the 

denominator takes into account the variability of the data in all groups of the data set, 
regardless of whether they are featured in the contrast. gψ allows for a focused comparison 
of e.g. two groups, and in addition to this for focused comparisons of e.g. one group with a 
weighted ensemble of two other groups. 

 
complements: analysis of variance & post-hoc tests 

 
range:   -inf to +inf; no effect: 0 
 
confidence intervals: bootstrap (independent & dependent); approximate analytical (dependent); exact analytical 

(independent) 
 
more information: (Kline, 2004) 
 
examples: 1. Do the control and first treatment group differ in performance (post-treatment error of 

commission)?  
mes1way(com_post,'g_psi','group',group,'cWeight',[1 -1 0]) yields gψ=-1.49. Exact 
analytical confidence intervals based on noncentral t distribution are [-2.16 -0.80], 
demonstrating a robust effect. The negative sign of gψ indicates that the average values in 
the treatment group are larger than those in the control group. Reversing the sign of the 
contrast weights results in identical numerical results with reversed sign.  
2. Does the control group differ from the ensemble of both treatment groups (equally 
weighted) in terms of performance?  
mes1way(com_post,'g_psi','group',group,'cWeight',[1 -0.5 -0.5]) yields gψ=-1.06 (CI95 
[-1.63 -0.49]), attesting a strong effect to the treatment in both groups. The fact that now 
the value of gψ is lower than in the first comparison implies that the effect in the second 
treatment group is somewhat weaker than in the first treatment group. 
3. The same question as in example 2 above, but now assuming dependent samples: gψ=-
1.06 as above, because the definition of gψ is identical in the dependent and independent 
case. However, the confidence intervals differ; they are now [-1.46 -0.66]. These 
confidence intervals, based on the standard deviation of the difference scores, are 
approximate. They are slightly more narrow than under the assumption of independence 
above, which is to be expected as correlations between subjects were built into the data 
set.  
Please note that the output of mes1way.m (stats.g_psi) will be a column array in which 
the first element is always NaN: by definition, the first position in all output arrays is 
reserved for the omnibus effect, which for gψ does not exist. From the second row on, 
stats.g_psi will hold the values for the contrasts (as many rows as contrasts are 
specified). The same applies to stats.g_psiCi, the confidence intervals. 

 
comments: like Hedges' g it assumes homogeneity of variance in all groups  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   psibysd (ψ/SDψ) 

 
data structure:  two or more dependent samples, metric variable 
 

formula: 

DS
         (eq.29) 

 

where ψ is a contrast, and SDψ is the standard deviation of the difference scores of the 
contrast.  

 
intuition: This MES is an extension of mdbysd to more than two groups. It differs from gψ in its 

standardizer (denominator), which is only defined for dependent (repeated measures) 
data. In dependent data sets with much variability between subjects this MES is more 
sensitive than gψ.  

 
complements: repeated measures analysis of variance & post-hoc tests 

 
range:   -inf to +inf; no effect: 0 
 
confidence intervals: bootstrap, approximate analytical  
 
more information: (Kline, 2004) 
 
examples: 1. Do the control and second treatment groups differ in performance (post-treatment error 

of commission)?  
Given the information that the individuals in both groups were identical, we may wish to 
compute mes1way(com_post,'psibysd','group',group,'cWeight',[1 0 -1],'isDep',1), 

which yields ψ/SDψ=-1.86. Approximate analytical confidence intervals are [-2.33 -1.39]. It 

is important to reiterate (Kline 2004) that this value cannot be compared quantitatively to 
gψ for the same data (which yields -0.63 [-0.79 -0.47]) or gψ from any other data set. The 
reason is that both MES are defined in different metrics: gψ in terms of the pooled standard 

deviation of the data set, ψ/SDψ in terms of the standard deviation of the contrast's 
difference scores.  
Note that as with gψ the output of mes1way.m (stats.psibysd) will be a column array in 
which the first element is always NaN. 

 
comments:  none 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   eta squared (
2
) 

 
data structure:  two or more independent or dependent samples, metric variable 
 

formula: 

total

effect

SS

SS
2

        (eq.30) 

 
where SSeffect is the sum of squares between groups (treatments), and SStotal is the overall 
sum of squares, composed of SSeffect as defined above and SSerror, the sums of squares for 
the effect ANOVA error term (i.e. the within-groups sum of squares, SSwithin). For contrasts, 
the numerator changes to SSΨ , the sum of squares of the contrast (the denominator 
remains the same). 

 
intuition: how much variance in the metric variable is explained by group membership? ratio of the 

variance between groups and the total variance 
 
complements: analysis of variance 
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range:   0 to +1; no effect: 0 
 
confidence intervals: bootstrap (independent & dependent); exact analytical (independent) 
 
more information: (Kline, 2004) 
 
examples: 1. Do the three treatment groups differ in performance?  

[p,table]=anova1(com_post,group) yields a significant main effect of group with 
F(2,57)=11.13 and p=0.00008. So, how much variance is explained by group differences? 

mes1way(com_post,'eta2','group',group) yields 
2
=0.28, tantamount to the statement 

that 28 % of the total variance in the dependent variable is accounted for by treatment. The 
relatively wide range of CI95, computed analytically via noncentral F distribution ([0.09 
0.43]), highlights the variability in the data. Bootstrapped CI95, obtained via 
mes1way(com_post,'eta2','group',group,'nBoot',10000),  are [0.19 0.54]. 
2. What is the outcome of above question assuming dependent (repeated measures) 
data? mes1way(com_post,'eta2','group',group,'isDep',1) yields exactly the same 

numerical results: the definition of 
2
 is identical for dependent and independent data (in 

contrast to partial 
2
 and partial ω

2
, see further below). 

3. 
2
 may also be computed for contrasts. In order to obtain values for two contrasts in one 

step, compute  
mes1way(com_post,'eta2','group',group,'cWeight',[1 -1 0; 1 0 -1]).  

2
 values for the two contrasts are 0.28 and 0.05, respectively, confirming that the 

treatment effects are much more consistent in the first group. Exact analytical CI95 of 
2
 

for contrasts cannot be computed because the concrete formula, SSΨ/(SSbetween + SStotal), 
is composed of three different terms and thus does not directly relate to F distributions. 

However, CI95 of partial 
2
 are amenable to exact analytical computation, see there.  

 
comments:  frequently used 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   partial eta squared ( p
2
) 

 
data structure:  two or more independent or dependent samples, metric variable 
 

formula: the general form of p
2
 is  

 

erroreffect

effect

p
SSSS

SS2
      (eq.31) 

where SSeffect is the sum of squares between groups (treatments) and SSerror is the sums of 
squares for the effect ANOVA error term (i.e. the within-groups sum of squares, SSwithin). 
For contrasts, SSeffect corresponds to SSΨ , the sum of squares of the contrast: 

error

p
SSSS

SS2
       (eq.32) 

 If the data are dependent (repeated measures) SSerror corresponds to SSwithin x subject , the 
within-groups sum of squares minus the between-subjects sum of squares: 

subjectwithineffect

effect

p
SSSSSS

SS2
     (eq.33) 

 
 

intuition: how much variance in the metric variable is explained by group membership, corrected for 
variability between subjects? 

 
complements: (repeated measures) analysis of variance 

 
range:   0 to +1; no effect: 0 
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confidence intervals: bootstrap (independent & dependent); exact analytical (independent) 
 
more information: (Kline, 2004) 
 
example: 1. Do the three treatment groups differ in performance? 

mes1way(com_post,'partialeta2','group',group,'cWeight',[1 -1 0; 1 0 -1]) yields 

p
2
=0.28 [0.09 0.43] for the omnibus effect, the same value as for 

2
 above. For the 

omnibus effect in a 1-way design with independent data partial eta squared is always 
identical to eta squared. However, the values for one of the two contrasts are different: 

0.28 [0.10 0.44] and 0.07 [NaN 0.21], respectively. p
2
 values computed for contrasts are 

always equal to or larger than the corresponding values for 
2
 as the denominator is by 

design devoid of between-conditions sources of variability stemming from effects other 

than the one under consideration. Compare equations 30 and 32: while for 
2
 the 

denominator contains SSeffect + SSerror = SSbetween +SSerror, for p
2
 it is SSΨ + SSerror. 

Summed squares from groups not featuring in the contrast have been partialled out. Note 
also that the lower CI of the second contrast is too close to zero to be computable via the 
iterative procedure involving noncentral F distributions, hence its value is automatically set 
to NaN to indicate this fact. 
2. Assuming that the subjects tested were identical in all three treatment groups, do the 
groups differ in performance? mes1way(com_post,'partialeta2','group',group,'isDep',1) 

yields p
2
 =0.39, higher than under the assumption of an independent design. The reason 

is that in dependent 1-way designs 'subject' is a factor which can be partialled out, leading 
to smaller denominator values (eq. 33). Confidence intervals can be obtained via 

bootstrapping; including the same contrasts as used above for 
2
 via 

mes1way(com_post,'partialeta2','group',group,'cWeight',[1 -1 0; 1 0 -
1],'isDep',1,'nBoot',10000) 
yields 0.39 [0.29 0.74], 0.39 [0.28 0.74] and 0.10 [0.04 0.43] for the main effect and the two 
contrasts, respectively. 
 

comments:  partial eta squared is always equal to or higher than eta squared 
acknowledges that the total variance in the data is brought about by several independent 
variables, and that, hence, the more variables in the ANOVA, the smaller the contribution 
of each individual variable to the total variance 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   omega squared (
2
) 

 
data structure:  two or more independent or dependent samples, metric variable 
 

formula: For independent data, 

errortotal

erroreffect

MSSS

MSJSS )1(
2

   (eq.34) 

 
where SSeffect is the sum of squares between groups (treatments), SStotal is the overall sum 
of squares, J is the number of levels of the factor (groups), and MSerror is the mean 
squared error within groups. 
For dependent data assuming an additive model (i.e. no subject x treatment interaction), 

errorsubjecteffect

effect

222

2
2

ˆˆˆ

ˆ
     (eq.35) 

where 

)(
1

ˆ 2

jectwithinxsubeffecteffect MSMS
JN

J
 

)(
1

ˆ 2

jectwithinxsubsubjectsubject MSMS
J

 

jectjwithinxsuberror MS2ˆ
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and (in addition to the notation above) N is the number of samples per group,  
MSeffect is the between-groups mean squares, MS within x subject  is the within-groups x 
subjects mean squares, and MSsubject the between-subjects mean squares. For contrasts,  

)(
1

ˆ 2

jectwithinxsubeffect MSSS
JN  

where SSΨ is the mean summed squares for the contrast. Note that while 
2
 is a positively 

biased descriptive measure of effect size, ω
2
 is an inferential measure which corrects for 

the bias due to small sample sizes, hence the different symbols. 
 
intuition: how much variance in the metric variable is explained by group membership? ratio of the 

variance between groups and the total variance 
 
complements: analysis of variance 

 
range:   0 to +1; no effect: 0 
 
confidence intervals: bootstrap (independent & dependent); exact analytical (independent) 
 
more information: (Kline, 2004) 
 
examples: 1. Do the three treatment groups differ in performance? 

mes1way(com_post,'omega2','group',group) yields ω
2
=0.25 [0.06 0.41], possibly a 

more realistic estimate of variance explained by group membership given the 
comparatively low sample size (20 per group). Taking into account a  repeated measures 
design and computing CI95 via bootstrapping yields ω

2
=0.25 [0.17 0.50]. ω

2
 for contrasts 

may be computed in the same manner as explained for 
2
. 

2. Do the treatment groups differ in their predrug performance?  
[p,table] = anova1(com_pre,group) yields a nonsignificant main effect of group with 
F(2,57)=0.68 and p=0.51. Still, one can ask how much variance is explained by group: 
mes1way(com_pre,'omega2','group',group) yields ω

2
=-0.01. Negative values may result 

when MSerror, the mean squared error within groups (MS within x subject for dependent data) is 
large compared to SSbetween so that the numerator in the formulae above attains a negative 
value. As Kline (Kline, 2004) noted, weak effects or small samples are the likely cause. 
Accordingly, the lower bootstrapped CI95 is 0. The upper CI95 of 0.09 confirms that the 
effect is likely very small.  

 
comments: less frequently used than eta squared; has the advantage of being a more accurate 

estimator of the population effect size at small sample sizes, but the disadvantage of being 
less intuitive 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   partial omega squared ( p
2
) 

 
data structure:  two or more independent or dependent samples, metric variable 
 
formula: For independent data,  

erroreffect

erroreffect

p
MSJNSS

MSJSS

)1(

)1(2
     (eq.36) 

 
where SSeffect is the sum of squares between groups (treatments), J is the number of levels 
of the factor (groups), and MSerror is the mean squared error within groups. 
For dependent data (assuming an additive model as for partial eta squared), 
 

erroreffect

effect

22

2
2

ˆˆ

ˆ
       (eq.37) 

where 
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)(
1

ˆ 2

jectwithinxsubeffecteffect MSMS
JN

J
 

jectjwithinxsuberror MS2ˆ

 
and (in addition to the notation above) N is the number of samples per group,  
MSeffect is the between-groups mean squares, MS within x subject  is the within-groups x 
subjects mean squares, and MSsubject the between-subjects mean squares. For contrasts,  

)(
1

ˆ 2

jectwithinxsubeffect MSSS
JN  

where SSΨ is the mean summed squares for the contrast. 
 
intuition: how much variance in the metric variable is explained by group membership? ratio of the 

variance between groups and the total variance 
 
complements: analysis of variance 

 
range:   0 to +1; no effect: 0 
 
confidence intervals: bootstrap (independent & dependent); exact analytical (independent) 
 
more information: (Kline, 2004) 
 
examples: 1. Do the three treatment groups differ in performance? 

mes1way(com_post,'partialomega2','group',group) yields ωp
2
=0.25 [0.06 0.41], the 

same values as for ω
2
. The same reasoning as in the case of 

2
 and  p

2
  applies: in 1-way 

designs with independent samples the values are identical for omnibus comparisons.. 
2. Taking into account a repeated measures design and computing CI95 via bootstrapping 
yields ω

2
=0.27 [0.18 0.64]. ω

2
 for contrasts may be computed in the same manner as 

explained for 
2
. 

 
comments: like partial eta squared, partial omega squared disregards non-effect between-conditions 

variance sources; therefore, its value for contrasts or in analyses with dependent data 
always has a larger value than omega squared. Like omega squared, it is a more accurate 
estimator of the population effect size at small sample sizes. 
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Figure 8. Example of a 2-way analysis design, different types of contrast analysis and required format of the input variable 

cWeight. The large grid in the upper left part represents a 2 by 3 factorial design. In main comparisons (upper right), 

contrasts of marginal means are computed; accordingly, cWeight must be a 2-element column vector or a 3-element row 

vector. In the simple comparison shown in the lower right corner, a contrast of the factor 2 effect at level 1 of factor 1 is 

computed. Note that cWeight must be of the same dimensions as the analysis design and that except for the row or 

column of interest the entries must be NaN. The lower left corner represents contrast weights for an interaction contrasts. 

Effect size measures covered in mes2way.m 
 
Introductory notes  
There are numerous ways of conducting factorial analyses with two or more factors. The model can include or 
exclude interactions between the factors, factors may be fixed or random, the data may be dependent across one 
or both factors; in case of independent data cell sizes may be balanced or unbalanced, and in the latter case 
summed squares may be computed in several different ways. Therefore, we restricted the defaults and set of 
options to what we believe is a reasonable standard and starting point for further developments. Concretely,  

 factors are fixed  

 interactions between the factors are included in the underlying model 

 data may be dependent across either of the factors (mixed between-subjects design), both (completely 
within-subjects), or none (completely between-subjects) 

 the data may be unbalanced in a completely between-subjects design but must be balanced in any other 
design  

 'Method 1/Type III' summed squares are computed (which is also the standard in the Matlab ANOVA 
functions). This implies that if the data is unbalanced the cause is an occasional, random loss of a datum in 
an experimental design that strives for equal cell sizes 

Like its 1-way counterpart, mes2way.m computes contrast-related measures of effect size. 2-way contrasts fall into 
two categories: single factor contrasts and interaction contrasts. Among the former, there may be simple or main 
comparisons. Input variable 'cWeight' (in short, c) must be shaped accordingly (Figure 8):  

 MAIN COMPARISON CONTRAST: c must be a single-column array (comparison of levels of the first 
factor) or a single-row array (ditto for second factor) 

 SIMPLE COMPARISON CONTRAST: c must match the analysis design, i.e. in a 2x3 analysis c must have 
two rows and three columns, but all elements except the row or the column of interest must be NaN 

 INTERACTION CONTRAST: c must match the analysis design and it should also be doubly centered, that 
is, row sums and column sums must all be zero 

 
Please note that mes2way.m, in contrast to its 1-way counterpart, allows only one set of contrast weights to be 
specified in its optional input variable 'cWeight'. 
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The example computations are 2-way analyses with group (experimental treatment) the first factor and gender 
the second factor. In some of the terms listed below subscripts for the two factors are A and B, that is, e.g. MSA are 
the mean squares of the first factor, MSB those of the second factor, and MSAB those of the interaction of both. 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   psi (ψ) 

 
data structure:  factorial 2-way design, metric variable 
 

formula: i

a

i

imc
1

 (main comparison of factor A)     (eq.38) 

where a is the number of levels of factor A, mi is the i
th
 marginal mean of the factor 

(weighted by sample size), and ci is the corresponding contrast weight;  
 

i

a

i

imc
1

 (simple comparison of factor A at specific level of factor B) (eq.39) 

where a is the number of levels of factor A, mi the i
th
 mean of groups of factor A at the 

chosen level of factor B, and ci is the corresponding contrast weight; 
 

a

i

b

j

ijijmc
1 1

 (interaction contrast)     (eq.40) 

 
where a and b are the numbers of levels of factors A and B, respectively, mij is the group 
mean at level i of factor A and level j of factor B, and cij is the corresponding contrast 
weight 

 
intuition: twoway equivalent of mean differences, expressed in the original units of measurement 
 
 
complements: analysis of variance & post-hoc tests 

 
range:   -inf to +inf; no effect: 0 
 
confidence intervals: exact analytical (all designs), bootstrap (all designs). Analytical confidence intervals for 

designs with dependent data across one or both factors are derived from estimates of the 
standard error of the contrast based on standard ANOVA terms. See the introductory notes 
to mes1way. 

 
more information: Kline (2004), Rosenthal et al. (2000) 
 
examples: 1. Do the control and first treatment group differ in performance? This question may be 

cast in two different ways. First, we may perform a main comparison along the first factor: 
mes2way(com_post,[group sex],'psi', 'cWeight',[1 -1 0]') yields ψ=-9.15. Exact 
analytical confidence intervals are [-13.12 -5.18]. Compare this to the results of the 
corresponding 1-way analysis: the values are very similar, as is expected (and desirable) 
for an analysis designed to ignore the effect of the second factor. Second, we may perform 
simple comparisons along the first factor (treatment) for different levels of the second 
factor (gender): mes2way(com_post,[group sex],'psi','cWeight',[1 NaN;-1 NaN;0 NaN]) 
yields ψ=-7.50. Exact analytical confidence intervals are [-13.12 -1.88]. In words, men in 
the first treatment group commit 7.5 errors more than those in the control group (placebo 
treatment). However, the uncertainty of this result as expressed in the CI95 is much larger 
than in the main comparison. This is to be expected given that the sample size of the 
simple comparison is half of that of the main comparison. For women, ψ=-10.80 [-16.42 -
5.18]. 
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 2. The previous analysis demonstrated that the first treatment clearly has a sizeable effect. 
Ignoring this insight, we may pursue the (implausible) idea that the second treatment has 
opposite effects in men and women: it could increase commission error rates in men and 
decrease them in women. In other words, this would be a very specific interaction of 
treatment with gender. Standard analysis of variance will deliver F and p values for this 
interaction (e.g. via mes2way(com_post,[group sex],{}) ), but is generally not very 
helpful because i) F and p do not inform us on effect size, and ii) our interest lies in an 
interaction which is more specific than the one addressed by the ANOVA term. The 
problem can be cast as an interaction contrast via  mes2way(com_post,[group 
sex],'psi','cWeight',[1 -1;0 0;-1 1]). In words, we first compute the second treatment's 
effect for men and women separately, namely as the number of errors in the control group 
minus the number of errors in the second treatment group, and then subtract these results 
from each other. The result is ψ=0.20, a gender-specific difference of the treatment of 
much less than a single error. This difference is small, particularly compared to the 
variability in the number of commission errors in the whole data set (the standard deviation 
of commission errors pooled over all groups is 6.3). However, the confidence intervals, [-
7.75 8.15], are quite wide. In order to enlarge our confidence in the result of a virtually 
absent interaction of second treatment with gender we would have to increase sample 
sizes. 

 
comments: see the introductory paragraph on contrasts in this document. Also, once again it shall be 

stated that in some applications the real units attached to unstandardized statistics may 
convey a better idea of the difference between groups, the drawback being that the 
numerical values cannot readily be compared to unstandardized differences derived in 
other contexts. See g_psi below. 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   g_psi (gψ) 

 
data structure:  factorial 2-way design, metric variable 
 

formula: 

errorMS
g        (eq.41) 

 
where ψ is a contrast, and MSerror is the pooled within-cell mean square. Thus, gψ is a 
standardized mean difference for a contrast.  

 
intuition: gψ could be viewed as an extension of Hedges' g to a 2-way factorial design: the 

denominator takes into account the variability of the data in all cells of the data set, 
regardless of whether they are featured in the contrast (see Kline (2004) for other 
standardizers). gψ allows for a focused comparison of specific subsets of the data. 

 
complements: analysis of variance & post-hoc tests 

 
range:   -inf to +inf; no effect: 0 
 
confidence intervals: exact analytical (completely between-subjects), bootstrap (all other designs)  
 
more information: (Kline, 2004) 
 
examples: 1. Do the control and first treatment group differ in performance? This question may be 

cast in two different ways. First, we may perform a main comparison along the first factor:  
mes2way(com_post,[group sex],'g_psi', 'cWeight',[1 -1 0]') yields gψ=-1.46. Exact 
analytical confidence intervals based on noncentral t distribution are [-2.13 -0.78]. 
Compare this to the results of the corresponding 1-way analysis: the values are very 
similar, as is expected (and desirable) for an analysis designed to ignore the effect of the 
second factor. Second, we may perform simple comparisons along the first factor 
(treatment) for different levels of the second factor (gender): mes2way(com_post,[group 
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sex],'g_psi','cWeight',[1 NaN;-1 NaN;0 NaN]) yields gψ=-1.20. Exact analytical 
confidence intervals are [-2.1 -0.29]. In words, the mean performance of men after the first 
treatment is 1.2 'standard deviations' (the square root of the pooled within-cell mean 
squares) away from that after the placebo treatment. However, the uncertainty of this 
result as expressed in the CI95 is much larger than in the main comparison. This is to be 
expected given that the sample size of the simple comparison is half of that of the main 
comparison. For women, gψ=-1.72 [-2.65 -0.78]. 

 
comments:  like Hedges' g it assumes homogeneity of variance in all groups. 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   eta squared (
2
) 

 
data structure:  factorial 2-way design, metric variable 
 

formula: the general form is 

total

effect

SS

SS
2

     (eq.42) 

 
where SSeffect is the effect sum of squares and SStotal is the overall sum of squares. 
Concretely, for the main effect of the first factor, SSeffect =SSA, for the main effect of the 
second factor, SSeffect=SSB, for the interaction effect, SSeffect=SSAB, and for contrasts, 
SSeffect =SSΨ .The denominator is SSA+SSB+SSAB+SSerror. 

 
intuition: how much variance in the metric variable is explained by group membership? ratio of the 

variance between groups and the total variance 
 
complements: analysis of variance 

 
range:   0 to +1; no effect: 0 
 
confidence intervals: bootstrap 
 
more information: (Kline, 2004) 
 
examples: 1. Is there a difference in performance across treatment groups and gender?  

mes2way(com_post,[group sex],'eta2') computes 
2
 values for both main effects and 

the interaction effect. For the first factor (treatment) 
2
=0.28, as in the 1-way case. 

2
 of 

the second factor is almost zero, which means that gender contributes very little (< 1%) to 

the total variability of the data. Confidence intervals of 
2
 cannot be computed analytically 

via noncentral F distribution. Bootstrapped CI95 values are [0.19 0.54] and [0 0.06] for 

treatment and gender, respectively. 
2
 values are identical for all designs (between vs. 

within subjects-factors). 

2. 
2
 may also be computed for contrasts: mes2way(com_post,[group 

sex],'eta2','cWeight',[1 -1 0]') yields 
2
=0.28, barely smaller than the main treatment 

effect (a difference which is visible only in the third decimal digit).  
 
comments:  frequently used 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   partial eta squared ( p
2
) 

 
data structure:  factorial 2-way design, metric variable 
 

formula: the general form of p
2
 is  
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erroreffect

effect

p
SSSS

SS2
      (eq.43) 

where SSeffect is the effect sum of squares and SSerror is the sum of squares for the effect 
ANOVA error term. In analogy to the 1-way case, the concrete terms depend on the design 
of the analysis; in 2-way designs they also depend on which effect (main, interaction, 
contrast-related) is under consideration. As an example, for the effect of the first factor 
(treatment) in a mixed within-subjects analysis with treatment being the within-subjects 
factor, 

BAxsubjA

A
p

SSSS

SS

/

2
      (eq.44) 

where SSA x subj/B is the within-subjects sum of squares, computed separately for each level 
of the between-subjects factor and added up. This term excludes variability due to the 
between-subjects factor and the individuals (subjects) themselves. 
 

intuition: how much variance in the metric variable is explained by group membership, corrected for 
sources of variability not to do with the effect(s) under consideration? 

 
complements: (repeated measures) analysis of variance 

 
range:   0 to +1; no effect: 0 
 
confidence intervals: exact analytical or bootstrap (completely between-subjects) 
 
more information: (Kline, 2004) 
 
examples: 1. Is there a difference in performance across treatment groups and gender?  

mes2way(com_post,[group sex],'partialeta2')  yields p
2
 =0.28 [0.09  0.44] (exact 

analytical CI95) for the first factor, treatment. This is surprising insofar as p
2
 values are 

generally expected to be larger than 
2
 values. Examination of the ANOVA table of results 

in the command window reveals the reason: the summed squares of the second factor and 
those of the interaction between both factors are dwarfed by the summed squares of the 
first factor and SSwithin, the within-cells sums of squares. As the former two terms are all the 
difference between the denominators in the partialled and unpartialled variant of eta 
squared, their presence or absence is negligible for the whole expression. However, the 

picture changes if treatment is assumed to be a within-subjects factor. Now, p
2
 =0.40, 

illustrating that interindividual variability masked a substantial proportion of the treatments' 
effects, similar to the insight gleaned from the 1-way analysis.  

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   omega squared (
2
) 

 
data structure:  factorial 2-way design, metric variable 
 

formula: the general form is 
total

effect

2

2
2

ˆ

ˆ
      (eq.45) 

 

As in the case of 
2
 the terms depend on the design (presence of within-subjects factors) 

and on the factor(s) under consideration. Kline (Kline, 2004) presents tables of variance 
component estimators for various analysis designs; these can be used to assemble the 
concrete formulas. For example, the (simplified) formula for a completely between-subjects 
design is  

errortotal

erroreffecteffect

MSSS

MSdfSS
2

        (eq. 46) 

where dfeffect is the degrees of freedom of the factor(s) under consideration, and all other 
terms are the same as explained before 



Matlab Toolbox Measures of Effect Size  
 

34 
 

 
intuition: how much variance in the metric variable is explained by group membership? ratio of the 

unbiased estimated variance between groups and the unbiased estimated total variance 
 
complements: analysis of variance 

 
range:   0 to +1; no effect: 0 
 
confidence intervals: bootstrap 
 
more information: (Kline, 2004) 
 
examples: 1. Do the three treatment groups differ in performance? mes2way(com_post,[group 

sex],'omega2','nBoot',10000) yields, for factor treatment, ω
2
=0.25 [0.16 0.52], similar to 

the 1-way equivalent. Please note that mes2way.m does not compute ω
2
 for data with 

within-subjects factors. 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   partial omega squared ( p
2
) 

 
data structure:  factorial 2-way design, metric variable 
 

formula: the general form is 
erroreffect

effect

p 22

2
2

ˆˆ

ˆ
     (eq.47) 

 

As for 
2
 and ω

2
 illustrated above, the terms depend on the design (presence of within-

subjects factors) and on the factor(s) under consideration. Kline (2004) presents tables of 
variance component estimators for various analysis designs; these can be used to 
assemble the concrete formulas. For example, the (simplified) formula for a completely 
between-subjects design is  

NFdf

Fdf

effecteffect

effecteffect

p
)1(

)1(2
        (eq.48) 

where dfeffect and Feffect are the degrees of freedom and F value of the factor(s) under 
consideration, respectively, and N is the total number of samples. 

 
intuition: how much variance in the metric variable is explained by group membership? ratio of the 

variance between groups and the total variance 
 
complements: analysis of variance 

 
range:   0 to +1; no effect: 0 
 
confidence intervals: exact analytical or bootstrap (completely between-subjects) 
 
more information: (Kline, 2004) 
 
examples: 1. Do the three treatment groups differ in performance? mes2way(com_post,[group 

sex],'partialomega2') yields, for factor treatment, ωp
2
=0.25 [0.05 0.41], similar to the 1-

way equivalent. Please note that mes2way.m does not compute ωp
2
 for data with within-

subjects factors. 
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Effect size measures covered in mestab.m 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   risk difference (RD) 

 
data structure:  absolute frequency in a fourfold table 
 

formula:  
TC

        (eq.49) 

where C is proportion of relapses in the control group and T is the proportion of relapses 
in a treatment group 
 

intuition: difference between proportion relapsed in control group and proportion relapsed in 
treatment group 

 
complements: chi square, Fisher’s exact test 
 
range:   –1 to +1; no effect: 0; +1 indicates maximum superiority of treatment, –1 indicates 
maximum adverse effect of treatment 
 
confidence intervals: analytical 
 
more information: (Kline, 2004) 
 
example: smoking and coronary heart disease (CHD): 78 of 137 smokers have CHD, so the risk for 

this group is 78/137=0.57. 42 out of 103 nonsmokers have CHD, too, so the risk is 
42/103=0.41. The observed risk difference is RD=0.57–0.41=0.16, so smokers have a 
16% greater risk for CHD than nonsmokers (CI95 [0.04 0.29]. Code: 
mestab([smokesick,smokewell;nsmokesick,nsmokewell]) 
 

comments:  also known as “proportion difference” 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   risk ratio (RR) 

 
data structure:  absolute frequency in a fourfold table 
 

formula:  

T

C
         (eq.50) 

where C is proportion of relapses in the control group and T is the proportion of relapses 
in a treatment group 
 

intuition: ratio between proportion relapsed in control group and proportion relapsed in treatment 
group; how much more likely is a relapse in the control group? if RR<1, relapse in the 
control group is less likely 

 
complements: chi square, Fisher’s exact test 
 
range:   0 to +inf; no effect: 1;  

0 indicates no relapses in control group, a high number indicates superiority of treatment, –
1 indicates maximum adverse effect of treatment 

 
confidence intervals: analytical 
 
more information: (Kline, 2004) 
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example: smoking and coronary heart disease (CHD): 78 of 137 smokers have CHD, so the risk for 
this group is 78/137=0.57. 42 out of 103 nonsmokers have CHD, too, so the risk is 
42/103=0.41. The observed risk ratio is RR=0.57/0.41=1.4 with CI95 [1.06 1.84], so 
smokers have a 1.4 times higher risk for for CHD than nonsmokers; code: 
mestab([smokesick,smokewell;nsmokesick,nsmokewell]) 
 

comments:  also known as “relative risk” or “rate ratio” 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   odds ratio ( , OR) 

 
data structure:  absolute frequency in a fourfold table 
 

formula:  
)1/(

)1/(

TT

CC

T

C
      (eq.51) 

where C is proportion of relapses in the control group and T is the proportion of relapses 

in a treatment group; accordingly, C is the odds for relapse in the control population and 

T is the odds for relapse in the treatment population 
 

intuition: ratio of the within-populations odds for the undesirable outcome 
 
complements: chi square, Fisher’s exact test 
 
range:   0 to +inf; no effect: 1;  

0 indicates no relapses in control group, a high number indicates superiority of treatment, –
1 indicates maximum adverse effect of treatment 

 
confidence intervals: analytical 
 
more information: (Kline, 2004) 
 
example: smoking and coronary heart disease (CHD): 78 of 137 smokers have CHD, so the odds for 

this group are 78/59=1.32. 42 out of 103 nonsmokers have CHD, too, so the odds in this 

group are 42/61=0.69. The observed odds ratio is =1.32/0.69=1.92 with CI95 [1.14 3.22], 
so smokers have twice the odds for CHD compared to smokers. Code: 
mestab([smokesick,smokewell;nsmokesick,nsmokewell]) 
 

comments:  has nothing to do with 
2
, the effect size used for analysis of variance 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

name:   phi ( ) 

 
data structure:  absolute frequency in a fourfold table 
 

formula:  

NRRTC

TRCNRTNRCR
      (eq.52) 

where C is proportion of relapses in the control group, T is the proportion of relapses in a 

treatment group, R is the proportion of cases relapsed, NR is the proportion of cases not 

relapsed, CR is the proportion relapsed in the control group, TR is the proportion relapsed 

in the treatment group, TCNR is the proportion not relapsed in the control group, and TNR is 
the proportion not relapsed in the treatment group 
 

intuition: Pearson correlation between the row and column variables; can be interpreted the same 
way 
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complements: chi square, Fisher’s exact test 
 

range: –1 to +1; no effect: 0; Cohen suggested =0.1, =0.3, and =0.5 to denote small, medium, 
and large effects, respectively 
 

confidence intervals: exact analytical 
 
more information: (Kline, 2004) 
 
example: smoking and coronary heart disease (CHD) 

The strength of the relationship between smoking and CHD, expressed as a correlation, is 

=0.16, with exact analytical CI95 [0.07 0.29]. 
 
comments: is algebraically equivalent to Pearson’s product-moment correlation computed for two 

dichotomous variables (e.g. relapsed and not relapsed (coded as 1 and 0, respectively) for 
two groups) 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   sensitivity 

 
data structure:  absolute frequency in a fourfold table 
 

formula:  
)(

)|(

Dp

DPp
ysensitivit       (eq.53) 

 
where p(P|D) is the proportion of cases diagnosed with a disease among those cases that 
actually suffer from that disease, divided by the total number of cases suffering from that 
disease, p(D) 
 

intuition: probability of being positively diagnosed with a disease when actually suffering from that 
disease 

 
complements: chi square, Fisher’s exact test 
 
range: 0 to +1; generally speaking: the higher, the better 

 
confidence intervals: not applicable 
 
more information: (Kline, 2004) 
 
example: mammography screening: 1,000 women (age 40) are screened for breast cancer; 10 of 

them actually have breast cancer, 8 of them are screened positively by mammography; 
thus, the sensitivity of mammography is 8/10=0.8 

 
comments:  high sensitivity, by itself, is of little value when specificity is low 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   specificity 

 
data structure:  absolute frequency in a fourfold table 
 

formula:  
)(

)|(

Dp

DPp
yspecificit       (eq.54) 

 

where p( P| D) is the proportion of cases not diagnosed with a disease among those 
cases that do not have that disease, divided by the total number of cases that do not have 

that disease, p( D) 
 

intuition: probability of being not diagnosed with a disease when actually not having that disease 
 
complements: chi square, Fisher’s exact test 
 
range: 0 to +1; generally speaking: the higher, the better 
 
confidence intervals: not applicable 
 
more information: (Kline, 2004) 
 
example: mammography screening: 1,000 women (age 40) are screened for breast cancer; 990 of 

them are healty; still, 99 of them are (incorrectly) tested positive with mammography; thus, 
the specificity of mammography is 891/990=0.9 (which is quite good) 

 
comments:  high specificity, by itself, is of little value when sensitivity is low 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   positive predictive value (PPP) 

 
data structure:  absolute frequency in a fourfold table 
 

formula:  
)(

)|(

Pp

PDp
valuepredictivepositive     (eq.55) 

 
where p(D|P) is the proportion of cases having a disease among all those cases tested 
positive for a disease, and p(P) is the proportion of cases tested positive for a disease 
 

intuition: probability of having a disease when tested positive for that disease 
 
complements: chi square, Fisher’s exact test 
 
range: 0 to +1; generally speaking: the higher, the better 
 
confidence intervals: not applicable 
 
more information: (Kline, 2004) 
 
example: mammography screening: 1,000 women (age 40) are screened for breast cancer; 990 of 

them are healty; overall, 107 of them are tested positive with mammography; thus, the 
positive predictive value of mammography is 8/107=0.07 (which is quite low) 

 
comments:  none 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   negative predictive value (NPP) 

 
data structure:  absolute frequency in a fourfold table 
 

formula:  
)(

)|(

Pp

PDp
valuepredictivepositive     (eq.56) 

 

where p( D| P) is the proportion of cases not having a disease among all those cases 

tested negative for a disease, and p( P) is the proportion of cases tested negative for a 
disease, regardless of true status 
 

intuition: probability of not having a disease when tested negative for that disease 
 
complements: chi square, Fisher’s exact test 
 
range: 0 to +1; generally speaking: the higher, the better 
 
confidence intervals: not applicable 
 
more information: (Kline, 2004) 
 
example: mammography screening: 1,000 women (age 40) are screened for breast cancer; 893 are 

tested negative; of these, 891 are truly healthy; thus, the negative predictive value of 
mammography is 891/893=0.99776 

 
comments:  none 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   binomial effect size display (BESD) 

 
data structure:  absolute frequency in a fourfold table 
 

formula: 
2/5.

2/50.

rsuccess

rsuccess

control

alexperiment  

 
where r corresponds to the phi coefficient (Pearson correlation between two dichotomous 
variables), success 
the BESD is created by setting raw frequencies in a fourfold table into standardized 
percentages, such that all margins are equal (see Table 3 for an example) 
 

intuition: change in success rate of (e.g. survival or improvement of a condition) brought about by a 
new treatment procedure 

 
complements: chi square, Fisher’s exact test, phi correlation 

 
range: 0 to +1; generally speaking: the higher, the better 
 
confidence intervals: not applicable 
 
more information: (Rosenthal and Rubin, 1981) 
 
example: Rosenthal and Rubin (1981) give an example where the correlation between two 

dichotomous measures (treatment vs. control, alive vs. dead) was a mere .32, and point 
out that this translates to an increase in survival rate from 34% to 66%, brought about by 
the treatment 
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comments: Rosenthal and Rubin (1981) suggest using the BESD also when the two variables are not 
dichotomous but metric 

 although the authors label the BESD a “simple” display, that is “easily understood by 
researchers, students, and lay persons”, the interpretation of the BESD is all but 
straightforward; see e.g. (Randolph and Edmondson, 2005) 

 
 
 

 Treatment outcome  

Condition Alive Dead  

Treatment 66 34 100 
Control 34 66 100 

 100 100 200 

 
Table 3: The Binomial Effect Size Display for a correlation of phi=0.32, accounting for 10% of the variance (from Rostenthal & Rubin, 
1981); this correlation translates to an increase in the survival rate from 34% to 66% (i.e., reducing the death rate from 66% to 34%). 

 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
name:   Cramer’s V 

 
data structure: absolute frequency in rectangular tables; can have more than 2 rows and 2 columns 
 

formula:  
Ncr

cr
V

)1,1min(

)1,1(2

      (eq.57) 

 

where 
2
 is the chi-square statistic with degrees of freedom equal to the product of the 

number of rows (r) minus one and the number of columns (c) minus one; the denominator 
holds the product of the sample size, N, and the smaller dimension of the table minus one 
 

intuition: can be interpreted as a correlation coefficient for 2*2 tables 
 
complements: chi square, Fisher’s exact test 
 
range: 0 to +1, with 1 indicating the strongest possible relationship 
 
confidence intervals: exact analytical 
 
more information: (Kline, 2004) 
 
example: taken from Kline, 2004 (pp157), based on Woodward et al. (2000), who examined the 

relation between attentional problems assessed at age 13 and driving records assessed at 
age 21; portions of the data is presented in Table 4. 

 An increase in the percentage of cases caught driving without license is readily visible in 
the raw data and highly significant (p<0.001). The strength of the relationship, however, is 
moderate at best, with Cramer’s V = 0.23, which results from mestab([39 19 44 13 15; 436 
166 144 34 31]). Exact CI95 are [0.17 0.30].  

 
comments: extension of the phi coefficient to larger tables; if r=c=2, V reduces to phi 
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Driving 
outcome at age 
21 

 
Attentional difficulties at age 13 

 

 

1 
(low) 

2 3 4 5 
(high) 

 

n 475 185 188 47 46 Χ
2
 Cramer’s 

V 

Driving without 
license (%) 

8.2 10.3 23.4 27.7 32.6 50.21 .23 

 
 
Table 4  Data and results of example calculation for Cramer's V 
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