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Multiple Comparison Correction 
 

The type I error rate across tests increases with the number n of statistical tests. This family 

wise error rate, or FWER = 1 - (1 - alpha)
n
. This formula is for n independent tests, and 

therefore the actual FWER is even higher for MEEG because data are correlated in space and 

time. 

 

For a single test, the frequentist framework uses the distribution of t or F values under the 

null hypothesis to estimate the conditional probability p to observe an effect as large or larger 

than the one observed in the data, given that the null hypothesis is correct. LIMO EEG deals 

with multiple testing by estimating the null distribution of maximum statistics across the 

whole data space. For a t-test or an ANOVA, the null hypothesis is created by centering the 

distribution for each condition. Then the data are sampled with replacement, and for each 

bootstrap sample, t and F values are computed. To correct for multiple comparisons, one 

strategy consists in saving, for each bootstrap, the maximum t or F value across channels and 

time frames. After N bootstraps, the null distribution of this max statistics can be used to 

threshold the original results: for instance original F values could be considered significant if 

they are larger than the 95
th

 percentile of the max bootstrapped F distribution. However, this 

max statistics approach tends to be conservative because it does not account for the 

correlation of the data in space and time. As alternatives, we can compute, under H0, the 

distribution of maximum cluster mass (Pernet et al., in prep) or the distribution of maximum 

TFCE scores (Smith & Nichols, 2009). 

 

The neighbourhood matrix 
 

To create clusters, we need to describe the relationship among observed data. Across time 

points, neighbours are simply successive data points. Across channels, we need to consider 

channels’ positions to define a neighbourhood matrix.  

 

      Here is an example of a neighbourhood matrix: 

 
 

This is an Ne x Ne matrix, where Ne is the number of electrodes. White cells indicate pairs of 

neighbouring electrodes; black cells indicate electrodes that are not neighbours. 
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A neighbouring matrix can be created in 3 ways: 

 

(i)   by calling the limo tools GUI and selecting ‘Create an expected chanloc files’. 

(ii)  by using limo_get_channeighbstructmat, with this syntax: 

[neighbours,channeighbstructmat]=limo_get_channeighbstructmat(EEG,neighbourdist) 

(iii) by assigning values directly to a channeighbstructmat matrix, and saving it to disk. 

 

For options (i) and (ii), you need to input neighbourdist, the threshold distance that defines 

neighbour electrodes. For instance, 0.37 is a good distance for Biosemi standard 128 

electrode configuration. However, that value could be very different for your own montage. 

You can check the accuracy of the neighbourhood matrix for your electrode montage by 

using the output neighbours from limo_get_channeighbstructmat: neighbours is a structure 

that defines for each channel a list of its neighbours, and in which a channel is not a 

neighbour of itself – for instance: 

 

neighbours{1}.label = 'Fz'; 

neighbours{1}.neighblabel = {'Cz', 'F3', 'F3A', 'FzA', 'F4A', 'F4'}; 

neighbours{2}.label = 'Cz'; 

neighbours{2}.neighblabel = {'Fz', 'F4', 'RT', 'RTP', 'P4', 'Pz', 'P3', 'LTP', 'LT', 'F3'}; 

neighbours{3}.label = 'Pz'; 

neighbours{3}.neighblabel = {'Cz', 'P4', 'P4P', 'Oz', 'P3P', 'P3'}; 

and so on… 

 

Finding an appropriate neighbourdist for your electrode montage will probably require 

several attempts. Ensure that you check all the electrodes to be sure their neighbours are 

correct. In some cases, and in particular for 32 or 64 electrode montages, it might be difficult 

to find an appropriate neighbourdist. You may have to decide subjectively to include or not 

certain neighbours. In such cases, you might also find useful to get as good a neighbourhood 

matrix as you can using options (i) or (ii), which you would then tweak manually to adjust the 

status of certain borderline electrodes (iii). 

 

 

Clustering Data 
 

Cluster mass 
 

For a given set of statistical results, an uncorrected, univariate, threshold is applied (e.g. 

p<0.05) to create a thresholded map of clusters. Cluster mass corresponds, for a given cluster, 

to the sum of statistical values inside that cluster. Cluster mass thus reflects both the height 

(the strength of the statistical values) and the size (the number of statistical values) of the 

cluster. 

Clustering 
 

To threshold data, we need:  

(i) maps of observed t or F values, and their corresponding p values; 

 (ii) a set of maps of t or F values, and their matching p values obtained under H0; 
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 (iii) a neighbourhood matrix, which describes the relationship among  channels. 
 

For channels*time frames maps, the cluster mass is obtained using limo_getclustersum. For 

instance under H0 do something like 
for boot=1:nboot 

     boot_maxclustersum(boot) = limo_getclustersum(...); 

end 

 

This bootstrapped distribution is then sorted to obtain a threshold for a given alpha  
U = round((1-alpha)*nboot); % bootstrap threshold 

sort_boot_maxclustersum = sort(boot_maxclustersum,2); 

maxclustersum_th = sort_boot_maxclustersum(U); % the threshold under H0 

         

Finally, we threshold the observed map using limocluster_test2 
[mask,cluster_p]= limo_cluster_test2(...); 

         

The same technique can be applied to 1D data using limo_ecluster_make and 

limo_ecluster_test. 

TFCE (Threshold Free Cluster Enhancement) 
 

As explained above, thresholding based on clustering implies a cluster forming threshold: for 

instance a p value <= 0.05 is used as a threshold to define clusters in bootstrapped and in 

original. The TFCE technique instead integrates statistical values through ‘all’ cluster forming 

thresholds – in LIMO  by discreet steps of 0.1 between some minimum and maximum 

values). A TFCE score is thus a statistical value (t or F) weighted by the strength of the 

cluster to which it belongs. belonging to a cluster and tThe weight depends on the extent  and 

the height of this cluster. TFCE scores for observed data (3D) and data under H0 (4D) can be 

obtained using limo_tfce. Finally, a significance test can be obtained by comparing the 

observed TFCE scores to a percentile (e.g. 95th) of the bootstrapped maximum TFCE scores 

(across all electrodes and time frames). This strategy effectively controls for multiple 

comparisons. 
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