DIPFIT: localizing dipoles

Robert Oostenveld

r.oostenveld@fcdonders.ru.nl
DIPFIT: localizing dipoles

• Motivation
• Ingredients
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
DIPFIT: localizing dipoles

- **Motivation**
- **Ingredients**
 - Source model
 - Volume conductor model
 - Analytical (spherical model)
 - Numerical (realistic model)
 - Comparison EEG and MEG
- **Inverse modeling**
 - Single and multiple dipole fitting
 - Distributed source models
Motivation

• Why fit dipoles?
• Why measure EEG?
• Why do ICA?

• Get extra information about brain processes
 – Time course of activity ----> EEG
 – Location of activity ----> fMRI
Difference between EEG and fMRI

• EEG measures post-synaptic potentials
 – related to neuronal input
• fMRI measures BOLD
 – related to energy consumption
• Different characteristics in the time domain
• Different generators
• Timecourse and location
Why EEG: extra information

- Timecourse
 - ERSP
 - ERP

- Topography
 - Scalp distribution
 - Underlying generators
Source modelling

- forward problem
 - physiological source electrical current
 - body tissue volume conductor
 - observed potential or field

- inverse problem
Overview

• Motivation
• Ingredients
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
Neuronal currents
Symmetry, orientation and activation

radial symmetric

random oriented

asynchronously activated

synchronously activated

parallel oriented
Motivation for current dipoles

• Neurophysiological motivation
Equivalent current dipoles
Motivation for current dipoles

- Neurophysiological motivation

- Physical/mathematical motivation
 - Any current distribution can be written as a multipole expansion
 - First term: monopole (must be zero)
 - Second term: dipole
 - Higher order terms: quadrupole, octupole
Motivation for current dipoles

• Neurophysiological motivation

• Physical/mathematical motivation
 – Any current distribution can be written as a multipole expansion
 – First term: monopole (must be zero)
 – Second term: dipole
 – Higher order terms: quadrupole, octupole

• Convenience
 – Dipoles can be used as building block in distributed source models
Overview

• Motivation and background

• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG

• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
 – Spatial filtering
Volume conductor

• electrical properties of tissue
• geometrical description

• spherical model
• realistic shaped model

→ Describes how the currents flow, not where they originate from
Volume conductor

- Advantages spherical model
 - mathematically accurate
 - reasonably accurate
 - computationally fast
 - easy to use

- Disadvantages spherical model
 - inaccurate, esp. in some regions
 - difficult alignment with anatomy
Volume conductor

- Advantages realistic model
 - accurate solution for EEG

- Disadvantages realistic model
 - more work
 - individual anatomical MRI required
 - computationally slow(er)
 - numerically instable
 - difficult in interindividual comparison

→ The pragmatic solution is to use a standard realistic headmodel for EEG
Realistic volume conductor

- Computational methods for volume conduction problem that allow realistic geometries
 - Boundary Element Method (BEM)
 - Finite Element Method (FEM)

- Geometrical description
 - triangles
 - tetraeders/voxels
Volume conductor: BEM

- **Boundary Element Method**
 - description of geometry by compartments
 - each compartment is
 - homogenous
 - isotropic
 - important tissues
 - skin
 - skull
 - brain
 - (CSF)
 - triangulated surfaces as boundaries
 - surfaces should be closed
Volume conductor: FEM

- Tessellation of 3D volume in tetraeders
- Large number of elements
- Each tetraeder can have its own conductivity

- FEM is most accurate numerical method
- Computationally expensive
- Accurate conductivities are not (well) known
Overview

• Motivation and background
• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – **Comparison EEG and MEG**
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
 – Spatial filtering
EEG volume conduction
EEG volume conduction

- Potential difference between electrodes corresponds to current flowing through skin
- Only tiny fraction of current passes through skull
- Therefore the model should describe skull and skin as accurately as possible
- Problems with skull
 - Not visible in anatomical MRI
 - Thickness varies
 - Conductivity is not homogeneous
 - Complex geometry at base of skull
Electric current \rightarrow magnetic field
MEG volume conduction

- Measures sum of fields associated with
 - Primary currents
 - Secondary currents !!!
MEG volume conduction

- Only tiny fraction of current passes through the poorly conductive skull
- Therefore skull and skin can be neglected in the MEG model
- Local conductivity around dipole important
 - geometry
 - conductivity
Differences between EEG and MEG

- scalp distribution more blurred due to volume conductor in EEG
- MEG is insensitive to radial sources
- EEG sees more, making source characterization more difficult
- EEG more noisy in itself (electrode-skin impedance)
- MEG more sensitive to environmental noise
Differences between EEG and MEG

- EEG potential differences, requires choice of reference electrode
- MEG sensors are measured independent of each other
- MEG can use simple but accurate volume conduction model
 - multiple non-concentric sphere model, i.e. each sensor has its own local sphere fitted to the head
- position of brain relative to MEG sensors
 - may vary within a long session
 - is different between sessions
Overview

• Motivation
• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
Source modelling

Forward problem

physiological source
electrical current

body tissue
volume conductor

observed
potential or field

Inverse problem
Inverse methods

• Single and multiple dipole models
 – Minimize error between model and measured potential/field

• Distributed dipole models
 – Perfect fit of model to the measured potential/field
 – Minimize additional constraint on sources
 – LORETA (smoothness)
 – Minimum Norm (L2)
 – Minimum Current (L1)

• Spatial filtering
 – Scan whole brain with single dipole and compute the filter output at every location
 – MUSIC
 – Beamforming (e.g. LCMV, SAM, DICS)
Overview

• Motivation and background
• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
 – Spatial filtering
Single or multiple dipole models

• Manipulate source parameters to minimize error between measured and model data
 – Location of each source
 – Orientation of each source
 – Strength of each source

• Orientation and strength together correspond to the “dipole moment” and can be estimated linearly

• Position is estimated non-linearly

• Source parameter estimation
Parameter estimation

\[Y = f(X; a, b) = a \times X + b \]

\[\xi = a, b, c, \ldots \]
Parameter estimation: model

forward model
volume conductor
source
measured potential
model for the data
select “optimal” model

\[\Psi_i = \Psi(r_i) = \Psi(r_i; \xi) \]

\[V_i = V(r_i) + \text{Noise} \]

\[V_i = \Psi(r_i; \xi) + \text{Noise} \]

\[\min_{\xi} \left\{ \sum_{i=1}^{N} (\Psi_i(r_i; \xi) - V_i)^2 \right\} \]
Select optimal model

$$\text{error}(\xi) = \sum_{i=1}^{N} (Y_i(\xi) - V_i)^2 \Rightarrow \min_{\xi} (\text{error}(\xi))$$

$$\xi = a, b, c, ...$$
Dipole *scanning*: grid search

- define grid with allowed dipole locations
- compute optimal dipole moment for each location
- compute value of goal-function
- plot value of goal-function on grid

- number of evaluations:
 - single dipole, 1 cm grid: ~4 000
 - single dipole, ½ cm grid: ~32 000
 - two dipoles, 1 cm grid: ~16 000 000
Dipole fitting: nonlinear search

- start with an initial guess
- evaluate the local derivative of goal-function
- “walk down hill” to the most optimal solution

- number of evaluations: ~100
Overview

• Motivation and background
• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
 – Spatial filtering
Distributed source model

• Position of the source is **not estimated** as such
 – Pre-defined grid (3D volume or on cortical sheet)
• Strength is estimated
 – In principle easy to solve, however…
 – More “unknowns” (parameters) than “knowns” (measurements)
 – Infinite number of solutions can explain the data perfectly
 – Additional constraints required
 – Linear estimation problem
Distributed source model

- Linear estimation

\[
\vec{\Psi} = q_1 \vec{\Psi}_1 + q_2 \vec{\Psi}_2 + \ldots = \begin{bmatrix} \Psi_{1,1} & \Psi_{2,1} & \ldots \\ \Psi_{1,2} & \Psi_{2,2} & \ldots \\ \vdots & \vdots & \ddots \\ \Psi_{1,N} & \Psi_{2,N} & \ldots \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ \vdots \end{bmatrix} = L \cdot \vec{q}
\]

\[
\vec{q} = L^{-1} \cdot \vec{\Psi}
\]
Distributed source model

\[V = L \cdot q + \text{Noise} \]

\[
\min_q \{ \| V - L \cdot q \|^2 \} = 0
\]

- Regularized linear estimation:

\[
\min_q \{ \| V - L \cdot q \|^2 + \lambda^2 \cdot \| D \cdot q \|^2 \}
\]

- Constrained linear estimation:

\[
\min_q \{ q^T \cdot W \cdot q \} \quad \text{while} \quad \| V - L \cdot q \|^2 = 0
\]
Summary 1

• Forward modelling
 – Required for the interpretation of scalp topographies
 – Interpretation of scalp topography is “source estimation”
 – Mathematical techniques are available that aid in interpreting scalp topographies -> inverse modeling
Summary 2

- Inverse modeling
 - Model assumption for volume conductor
 - Model assumption for source (i.e. dipole)
 - Additional assumptions on source
 - Single point-like source
 - Multiple point-like sources
 - Distributed source
 - Different mathematical solutions
 - Dipole fitting (linear and nonlinear)
 - Linear estimation (regularized)