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Motivations



Motivation for whole channel/IC analyses

• Data collection consists in recording electromagnetic events over the
whole brain and for a relatively long period of time, with regards to neural
spiking. In the majority of cases, data analysis consists in looking where we
have signal and restrict our analysis to these channels and components.

➢ Are we missing the forest by choosing working on a single, or a few trees?

➢ By analysing where we see an effect, we increase the type 1 FWER
because the effect is partly driven by random noise (solved if chosen based
on prior results or split the data)

Rousselet & Pernet – It’s time to up the Game Front. Psychol., 2011, 2, 107



Motivation for hierarchical models

• Most often, we compute averages per condition and do statistics on peak
latencies and amplitudes

➢Univariate methods extract information among trials in time and/or 
frequency across space

➢Multivariate methods extract information across space, time, or both, in 
individual trials  

➢Averages don’t account for trial variability, fixed effect can be biased –
these methods allow to get around these problems

Pernet, Sajda & Rousselet – Single trial analyses, why bother? Front. Psychol., 2011, 2, 322



Framework



LIMO Hierarchical Linear Model Framework



• Scientific Data 2, Article number: 150001 (2015)
• doi:10.1038/sdata.2015.1
https://www.nature.com/articles/sdata20151



The Data

• 3 types of stimuli: Famous faces, Non-famous faces, Scrambled faces

• 3 levels of repetition: 1st time, 2nd time (right after), 3rd time (delayed)

→Priming experiment with a possible interaction with the type of 
stimuli.

Famous Unfamiliar Scambled

We need the conditions computed per subject (1st level) and then do 
the repeated measure ANOVA to test main effects and interactions.



What are we going to do?

• 1 – Replicate Henson et al. – faces vs. scrambled

• 2 – learn about HLM and apply multiple comparison corrections

Topography 170 ms





Hierarchical Linear Modelling



Fixed, Random, Mixed and Hierarchical

Fixed effect: Something the experimenter directly manipulates  

y=XB+e data = beta * effects + error
y=XB+u+e data = beta * effects + constant subject effect + error

Random effect: Source of random variation e.g., individuals drawn (at random) from a 
population. Mixed effect: Includes both, the fixed effect (estimating the population level 
coefficients) and random effects to  account for individual differences in response to an 
effect

Y=XB+Zu+e data = beta * effects + zeta * subject variable effect + error

Hierarchical models are a mean to look at mixed effects.



Hierarchical model = 2-stage LM

For a given effect, the whole group is modelled
Parameter estimates apply to group effect/s 

Each subject’s EEG trials are modelled
Single subject parameter estimates

Single 
subject

Group/s of 
subjects

1st

level

2nd

level

Single subject parameter estimates or 
combinations taken to 2nd level 

Group level of 2nd level parameter estimates are 
used to form statistics



Fixed effects:

Intra-subjects variation

suggests all these subjects 

different from zero

Random effects:

Inter-subjects variation

suggests population 

not different from zero
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Fixed vs Random



Fixed effects

❑Only source of variation (over trials)

is measurement error

❑True response magnitude is fixed



Random effects

• Two sources of variation

• measurement errors

• response magnitude (over subjects)

• Response magnitude is random

• each subject has random magnitude



Random effects

• Two sources of variation

• measurement errors

• response magnitude (over subjects)

• Response magnitude is random

• each subject has random magnitude

• but note, population mean magnitude is fixed



An example

Example: present stimuli from
intensity -5 units to +5 units
around the subject perceptual
threshold and measure RT

→ There is a strong positive
effect of intensity on responses



Fixed Effect Model 1: average subjects

Fixed effect without subject effect → negative effect



Fixed Effect Model 2: constant over subjects

Fixed effect with a constant (fixed) subject effect → positive effect but biased result



HLM: random subject effect

Mixed effect with a random subject effect → positive effect with good estimate of the truth



MLE: random subject effect

Mixed effect with a random subject effect → positive effect with good estimate of the truth



General Linear Model



Linearity

• Means created by lines

• In maths it refers to equations or functions that satisfy 2 properties: 
additivity (also called superposition) and homogeneity of degree 1 (also 
called scaling)

• Additivity → y = x1 + x2 (output y is the sum of inputs xs)

• Scaling → y =  x1 (output y is proportional to input x)

http://en.wikipedia.org/wiki/Linear



What is a linear model?

• An equation or a set of equations that models data and which

corresponds geometrically to straight lines, planes, hyper-planes and satisfy

the properties of additivity and scaling.

• Simple regression: y = x++

• Multiple regression: y = x+x++

• One way ANOVA: y = u+i+

• Repeated measure ANOVA: y=u+i+

• 



A regression is a linear model

• We have an experimental 
measure x (e.g. stimulus 
intensity from 0 to 20)



A regression is a linear model

• We have an experimental 
measure x (e.g. stimulus 
intensity from 0 to 20)

• We then do the expe and 
collect data y (e.g. RTs)



A regression is a linear model

• We have an experimental 
measure x (e.g. stimulus intensity 
from 0 to 20)

• We then do the expe and collect 
data y (e.g. RTs)

• Model: y = x+

• Do some maths / run a software 
to find  and 

• y^ = 2.7x+23.6



Linear algebra for regression

• Linear algebra has to do with solving linear
systems, i.e. a set of linear equations

• For instance we have observations (y) for a
stimulus characterized by its properties x1 and x2
such as y = x1 β1+ x2β2

 -  = 0

- +  = 

 =  ;  = 



Linear algebra for regression

• With matrices, we change the perspective and try to
combine columns instead of rows, i.e. we look for the
coefficients with allow the linear combination of vectors

 -  = 0

- +  = 
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 =  ;  = 



Linear algebra for ANOVA

• In text books we have y = u + xi + , that is to say 
the data (e.g. RT) = a constant term (grand mean u) 
+ the effect of a treatment (xi) and the error term 
()

• In a regression xi takes several values like e.g. 
[1:20]

• In an ANOVA xi is designed to represent groups 
using 1 and 0



y(1..3)1= 1x1+0x2+0x3+0x4+c+e11
y(1..3)2= 0x1+1x2+0x3+0x4+c+e12
y(1..3)3= 0x1+0x2+1x3+0x4+c+e13
y(1..3)4= 0x1+0x2+0x3+1x4+c+e13

→ This is like the
multiple regression
except that we have
ones and zeros
instead of ‘real’
values so we can
solve the same way

8             1 0 0 0 1                           e1
9             1 0 0 0 1
7             1 0 0 0 1

5             0 1 0 0 1            β1
7             0 1 0 0 1            β2
3      =    0 1 0 0  1   *       β3     +
3             0 0 1 0 1 β4
4             0 0 1 0 1 c
1             0 0 1 0 1
6             0 0 0 1 1
4             0 0 0 1 1
9             0 0 0 1 1                          e13

Y Gp

8 1

9 1

7 1

5 2

7 2

3 2

3 3

4 3

1 3

6 4

4 4

9 4

Linear algebra for ANOVA



Linear Algebra, geometry and Statistics

• Y = 3 observations X = 2 regressors

• Y = XB+E → B = inv(X’X)X’Y → Y^=XB

Y

XB

E

SS total = variance in Y
SS effect = variance in XB
SS error = variance in E
R2 = SS effect / SS total
F = SS effect/df  /  SS error/dfe



Linear Algebra, geometry and Statistics

y = x + c
Projecting the points on the line at 
perpendicular angles minimizes the distance^2

Y

y^

e

Y = y^+e
P = X inv(X’X) X’ 
y^ = PY
e = (I-P)Y

An ‘effect’ is defined by 
which part of X to test
(i.e. project on a subspace)

R0 = I - (X0*pinv(X0));
P = R0 - R;
Effect  = (B'*X'*P*X*B);



Linear Algebra, geometry and Statistics

• Projections are great because we can now constrain
Y^ to move along any combinations of the columns of
X

• Say you now want to contrast gp1 vs gp2 in a ANOVA
with 3 gp, do C = [1 -1 0 0]

• Compute B so we have XB based on the full model X
then using P(C(X)) we project Y^ onto the constrained
model (think doing a multiple regression gives
different coef than multiple simple regression →

project on different spaces)



T-tests

Simple regression

ANOVA

Multiple regression

General linear model
• Mixed effects/hierarchical

• Timeseries models (e.g., 
autoregressive)

• Robust regression

• Penalized regression (LASSO, 
Ridge)

Generalized linear 
models

• Non-normal errors

• Binary/categorical outcomes 
(logistic regression)
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The GLM Family

Tor Wager’s slide




