

Neuroelectromagnetic Forward Head Modeling Toolbox

Zeynep Akalin Acar

May 25, 2010

NFT: Introduction

- MATLAB Toolbox for realistic head modeling and forward problem solution.
- Ability to use available subject information
 - T1-weighted 3D MR images
 - Digitized sensor (electrode) locations
- Implements all steps of head modeling
 - Segmentation of MR images
 - Mesh generation
 - Warping of a template head model to sensors
 - Sensor co-registration
 - Forward problem solution

NFT External Programs

- ♦ 3rd Party Tools and Libraries Used:
 - ASC:
 - High quality triangulation
 - Qslim
 - Mesh Coarsening
 - MATITK
 - MATLAB interface to ITK image processing toolkit
 - METU-BEM
 - Boundary Element Method (BEM) Solver

Source code is available for all these components.

NFT: Operation

- T1 MR Images
 - Choose subject
 - Generate head model for subject
 - Segmentation
 - Mesh generation
 - Register sensors to mesh
 - Each set of sensors is a separate session
 - Generate forward model
 - Generate LFM for each session

- Template Mesh
 - Choose subject
 - Select subj sensors
 - Warp template to sensors

- Generate forward model
- Generate LFM for sensors

NFT Main Menu

leuroelectromagnetic_Forward_Modeling_Toolbox					
Subject Folder					
Subject Name	Session Name				
	deling				
Head Wo	deling				
From a magnetic	From electrode				
Resonance Image	Position Data				
Image Segmentation					
Mesh Generation					
Source Space Generation	Template Warping				
Electrode Co-Registration					

Subject Selection

Head Modeling

Forward Model Generation

Forward Modeling

Subject Selection

Subject Folder	
Subject Name	Session Name

- Select subject folder
- Specify subject name
- Specify session name

Head Modeling from MR Images

T1-weighted

From a magnetic Resonance Image

Image Segmentation

Mesh Generation

Source Space Generation

Electrode Co-Registration

Electrode Registration

Segmentation

Preparing MR image for segmentation

Using FREESURFER:

Inhomogeneity correction
Convert to 1x1x1mm volume
Arrange direction of the image
Save in analyze format

Image Segmentation

Interface for Segmentation of MR Images

Image Segmentation Flowchart

Classifies four tissues from T1-weighted images

 Scalp, Skull, CSF and Brain

Mesh Generation

	Head Modeling Toolbox: Mesh Generation						
			¥۲.				
From a magnetic							
Resonance Image		Load Segmentation C:\Users\Zeynep\Documents\Post-doc\Toolbox\Subject_Zeynep\ze ynep_segments					
Image Segmentation		Output Folder C:\Users\Zeynep\Documents\Post-doc\Toolbox\Subject_Zeynep					
Mesh Generation		4 # of layers Mesh name: zeynep					
Source Space Generation		Local mesh refinement Edge length/ Start Mesh Generation					
Electrode Co-Registration		Distance between meshes					
		Status					

 Generate Mesh for a 3 or 4 layer head model – Triangulation, correction, coarsening, refinement

Source Space Generation

	🛃 Head Modeling Toolbox: Source space generation	×
From a magnetic Resonance Image	Mesh Folder D:WHM_Toolbox_Subjects	
Image Segmentation		
Mesh Generation	8 Grid spacing (mm) Comparison of the mesh (mm) Comparison of the mesh (mm)	
Source Space Generation		
Electrode Co-Registration		

Generate a simple source space
 – Regular Grid inside the brain
 – With a given spacing and distance to the mesh

Electrode Co-Registration

From a magnetic	
Resonance Image	<u>,</u>
····· · ··· · ···· · ···· · ··········	

Image Segmentation

Mesh Generation

Source Space Generation

Electrode Co-Registration

📣 F	igur	e: (Co-regi	stered e	electr	ode	locati	ions	(initial)		
File	Ed	it	View	Insert	То	ols	Deskt	top	Windo	w	Н
Ľ	2		8	ß	€	Q	ংশ	۲	V.		

Save complete reg.

Head Modeling from Electrode Position Data

Warp a template mesh to electrode positions When no MR images are available Non-rigid thin-plate spline warping

Template Warping

Forward Model Generation

Forward Model Generation

Generates the Forward Model from Meshes

 Uses the Boundary Element Method

Three Structures

- Mesh
- Model (Mesh + Electrical Properties)
- Session (Model + Sensors)

Forward Problem Solution

orward Problem Solution		
BEM Mesh Info Mesh Name	BEM Model Model Name	Session Session Name
Show Mesh Number of Layers Number of Nodes Number of Elements	Enter conductivity values: 0.33 Scalp 0.0042 Skull 0.33 Brain Modified (Isolated Problem Approach) Create Model	Load Sensors Mesh Node List Mesh Coordinates Show Sensors Generate transfer matrix
Number of Nodes/Element	No Model	No Session
	Forward Problem Solution	
Load Source Space	Compute Lead Field Matrix	Plot Potential Distribution

Forward Problem Solver

MATLAB interface to numerical solvers

Boundary Element Method

- EEG Only (for now)
- Supports IPA and Accelerated BEM
- Interfaces to the Matrix generator executable written in C++
- Other computation done in MATLAB
- Generated matrices are stored on disk for future use.
- Other solvers under construction
 - Finite Element Method (FEM)
 - Analytic

Solution of inverse problem

MF1	r: Dipole fitting	_ X
Component indices	[1:10]	
Lo /data/projec	ad sensor locations	3.elp
	dipole fitting	
	Plot dipoles	

Results on Mesh Complexity

Mesh Name 👘	Layers	Nodes	Elements	LMR Ratio
Mesh 3	3	10337	20678	None
Mesh 3_1	3	12057	24118	2
Mesh 3_2	3	14769	29542	1.5
Mesh 4	4	13775	27550	None
Mesh 4_1	4	18499	36998	2
Mesh 4_2	4	20789	41578	1.6

Mesh Name	Emean	Emin	Emax
Mesh 3	17.1	7.11	23.67
Mesh 3_1	16.12	3.91	26.23
Mesh 3_2	16.9	4.07	29.31
Mesh 4	5.58	2.61	9.06
Mesh 4_1	0.86	0.23	1.8
Mesh 4_2	0	0	0

Localization error (mm)

Compared with Mesh 4_2

Source localization comparisons

MNI head model
Warped MNI head model
4-layer MR-based realistic head model
3-layer MR-based realistic head model

3- and 4-layer MR-based realistic head model

Scalp maps of 2 components

Sources of 2 components green dipoles - 4-layer yellow dipoles - 3-layer

Warped MNI head model

Scalp maps of 2 components Sources of 2 components

MNI head model

Scalp maps of 2 components Sources of 2 components

Future Functions

- Magnetic field calculations.
- Analytical solutions for spherical models.
- Use of T2-weighted and PD images in segmentation => better CSF segmentation.
- 4-layer template head model.
- Finite Element Method.

NFT Download

www.sccn.ucsd.edu/nft

NFT Paper

Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journal homepage: www.elsevier.com/locate/jneumeth

Neuroelectromagnetic Forward Head Modeling Toolbox*

Zeynep Akalin Acar*, Scott Makeig

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego 0961, La Jolla, CA 92093-0961, United States

ARTICLE INFO

Article history: Received 10 September 2009 Received in revised form 28 April 2010 Accepted 29 April 2010

Keyword:

ABSTRACT

This paper introduces a Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) running under MATLAB (The Mathworks, Inc.) for generating realistic head models from available data (MRI and/or electrode locations) and for computing numerical solutions for the forward problem of electromagnetic source imaging. The NFT includes tools for segmenting scalp, skull, cerebrospinal fluid (CSF) and brain tissues from T1-weighted magnetic resonance (MR) images. The Boundary Element Method (BEM) is used for the numerical solution of the forward problem. After extracting segmented tissue volumes, surface

NEUROSCIENCE METHODS

Estimated time to calculate results for each step...

 Image Segmentation takes totally ~25 minutes. The status of segmentation is written just below the 'prev run next' buttons. It says 'segmenting scalp...', 'scalp segmented', etc.

2) Mesh Generation takes ~25 min There are some waitbars in mesh generation and if there are not, the status is written on the GUI.

3) Source space generation takes 2-3 minutes, There is a waitbar.

4) Automatic coregistration takes ~20 minutes. There is no waitbar and no messages, so you have to be patient.

5) Warping takes a couple of minutes, there are waitbars for this

6) Forward model generation take ~5-6 hours depending on the mesh. Status of bem matrix generation is written on the 'model' module of the GUI. There is a waitbar in the transfer matrix generation, and the status of LFM generation is written on the GUI.