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Source Information Flow Toolbox

Mullen, et al, Journal of Neuroscience Methods (in prep, 2012)
Mullen, et al, Society for Neuroscience, 2010
Delorme, Mullen, Kothe et al, Computational Intelligence and Neuroscience, vol 12,201 |

» Atoolbox for (source-space) electrophysiological information flow and causality
analysis (single- or multi-subject) integrated into the EEGLAB software environment.

* Emphasis on vector autoregression and time-frequency domain approaches

« Standard and novel interactive visualization methods for exploratory analysis of
connectivity across time, frequency, and spatial location
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Welcome to the repository for the Source Information Flow Toolbox (SIFT)

Developed and Maintained by: Tim Mullen (SCCN, INC, UCSD)
Web: http://www.antillipsi.net &
Email: <Tim's first name> (at) sccn (dot) ucsd (dot) edu

SIFT is an EEGLAB-compatible toolbox for analysis and visualization of multivariate causality and information flow between sources of electrophysiological
(EEG/ECoG/MEG) activity. It consists of a suite of command-line functions with an integrated Graphical User Interface for easy access to multiple features. There are
currently four modules: data preprocessing, model fitting and connectivity estimation, statistical analysis, and visualization.



The Dynamic Brain

* A key goal: To model temporal changes in neural dynamics
and information flow that index and predict task-relevant

changes in cognitive state and behavior
* Open Challenges:
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Large-scale brain connectivity

(Bullmore and Sporns, Nature, 2009)
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Functional connectivity
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Bastos AM, Schoffelen J-M: A Tutorial Review of Functional Connectivity Analysis
Methods and Their Interpretational Pitfalls. Front Sys Neurosci2016,9:413.



The problem of spurious connectivity

....... spurious

e indlirect true flow

— direct true flow

C,(f)= -

Coherency

T S(DS, )

(Bendat and Piersol, 1986)

Bivariate measures such as coherence (but also original GC),
find spurious connections between nodes if they share a
common input.



Ground Truth Coherence Partial coherence




A deeper problem — unobserved nodes

With EEG, it's unavoidable that there will be contributing
network nodes (e.g. thalamus) that we cannot observe.

We also can't be sure ICA will identify all important
sources...



Granger-causality

* A measure of statistical causality
based on prediction.

* Widely used in time-series econometrics.
* Nobel Prize in economics, 2003.

If a signal A causes a signal B, then knowledge of the
past of both A and B should improve the predictability
of B, as compared to knowledge of B alone.



AR Models (prediction of future of a signal by its past)

Xq(t) =

—0.5X4(t-1) + 03X (t-2) + 0.1X,(t-3)...



AR Models (prediction of future of a signal by its past)
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AR Models (prediction of future of a signal by its past)
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VAR Models (prediction of future of a signal by its past + the other signal's past)

Incorporating information about X; improves the prediction of X,! We say "X; granger
causes X"



AR Models (prediction of future of a signal by its past)
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VAR Models (prediction of future of a signal by its past + the other signal's past)

X5 NW\WJW\A,/W\[\J\W Xo(t)= =5Xq(t -1)-0.1Xo(t -1) +

Incorporating information about X; improves the prediction of X,! We say "X; granger
causes X"

X1(t)= =0.5X;(t -1) + 0.3X,(t -1) + ...



Calculation of GC

time series data

Spectral estimation using
Fourier decomposition and
multitapering

Autoregressive model
estimation

model coefficients
and residuals

Cross-spectral
density matrix

parametric epproach
non-parametric approach

Factorization of spectral
density matrix

Fourier transformation
of model coefficients

noise covariance matrix
spectral transfer function

Estimation of Granger causality

Granger causality



Vector Autoregressive
(VAR / MAR / MVAR) Modeling
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VAR|[p] model

The Linear Vector Auto-
regresswe (VAR) Model

Ordinary Least-Squares
x,(t) '
X(@®)= *2 (t) vad \rvv'\\\.'.v\"}\f\flr\'f\f V
Xy ()
model order
p (k) random noise process
X(t)=), APOX(t-k)+E(@)
M-channel data vector M x M matrix of (possibly time-varying) multichannel data k
at current time t model coefficients indicating variable samples in the past

dependencies at lag k

| <';m ag';;(t)
A®@) = E(t)=N(0,V)
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aﬁu’l(t) aﬁm’u ®) |




Selecting a VAR Model Order

* Model order is typically determined by minimizing information
criteria such as Akaike Information Criterion (AIC) for varying
model order (p):

AIC(p) = 2log(det(V)) + M2p/N <«— Penalizes highmodel orders (parsimony)

entropy rate (amount of prediction error)

* Optimal model order
depends on sampling
rate (higher sampling
rate often requires
higher model orders)

Error e

optimal order 22

model order



Granger Causality

Does X4 granger-cause X1? S
(conditioned on X2, X3) (variance of resicuais E)




Granger-causality quiz

X ()= —0.5X(t-1) + + E (1)
Xz(t): v 02X (1-1) 4 E (1)




Ground Truth
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Time-Frequency GC

« Brain network dynamics often change rapidly with
time

« event-related responses

* transient network changes during sequential information
processing

 Electrophysiological processes often exhibit
oscillatory phenomena, making them well-suited for
frequency domain analysis



Adapting to Non-Stationarity

* The brain is a dynamic system and measured brain
activity and coupling can change rapidly with time (non-
stationarity)

 event-related perturbations (ERSP, ERP, etc)

» structural changes due to learning/feedback

 How can we adapt to non-stationarity?

+

mV

time



Segmentation-based VAR

(Jansen et al., 1981;Florian and Pfurtscheller, 1995; Ding et al,2000)

Analogous to short-
time Fourier transform
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Segmentation-based VAR

(Jansen et al., 1981;Florian and Pfurtscheller, 1995; Ding et al,2000)

O Analogous to short-
‘ time Fourier transform
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Important Choices

« Model Order

— Determines complexity of spectrum you can model
— Larger orders need more data

* Window Length

— Window must be long enough to contain sufficient
data for your chosen model order

— Must be long enough to encompass the time-scale of
interactions

— Yet not too long as to smear temporal dynamics or
iInclude non-stationary data

— If trials are present, can optimize AR model over trials



Consideration: Local Stationarity

1 point window —
10 point window
20 point window —

Too-large, windows may not
be locally-stationary
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How does brain plan visually guided movements?

TARGETHIT  5¢ . upper right PhaseSpace EyeLink 1000
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ICA source space analysis

Independent Component Analysis Cortical ROIs

Decompose snngle subject data with AMICA
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Channels
|

Time

Estimate IC equivalent dipole locations

IC1 IC2 IC3

Identify & remove non-brain artifact ICs

QOO0

Group SIFT: Project ICs onto cortical surface
using LORETA; extract ROl time series.
Advantage: Same ROlIs for all subjects enables
statistical comparison. (Use BCILAB srcpot)

Blink Saccade L Pre-auric R Pre-auric
EMG EMG




Changed causal flow during reaching
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Occipital -> ACC

Planning

Execution

I0cc -> ACC

0.1 0.2 0.3 0.4 0.5 0.6
Time (sec)
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Result discussion

SIFT is a capable toolkit for causal

dynamical analysis at source level
Parietal network expected for visually

guided action (e.g. Heider, et al.,
2010)

ACC more strongly driven by Occipital Motor. Locus for
translation of intention into action (Paus, 2001; Srinivasan, et
al. 2013). ACC drives SMA (not shown).

Causal network results depend on the number of nodes

— E.g. Occipital " ACC could be mediated by region not
included in model

— There will always be a tradeoff between network size and
amount of data needed to fit the model.

— Regularization




Scalp or Source”?







Source Information Flow Toolbox

Mullen, et al, Journal of Neuroscience Methods (in prep, 2012)
Mullen, et al, Society for Neuroscience, 2010
Delorme, Mullen, Kothe et al, Computational Intelligence and Neuroscience, vol 12,201 |
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« Atoolbox for (source-space) electrophysiological information flow and causality
analysis (single- or multi-subject) integrated into the EEGLAB software environment.

* Emphasis on vector autoregression and time-frequency domain approaches

« Standard and novel interactive visualization methods for exploratory analysis of
connectivity across time, frequency, and spatial location



SIFT Workflow

Simulation >
Pre-processing

Model fitting and validation »
Connectivity
Statistics >
Locate dipoles using DIPFIT 2.x  » | Visualization »
Peak detection using EEG toolbox Help »
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File Edit Ii:!:lu Plot Study Datasets Help
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Pre-processing

- Create a new or load an existing
Use "File > Import data*”

Or "File > Load existing dataset"™ Model Fit‘ting

= If new,
"File > Import evoch info" (data d V I'd t'
"File > Import event info" (continuous an al a Ion
"Edit > Dataset info" (add/edit
"File > Save dataset™ (save dataset)

- Prune data: "Edit > Select data” Connectlvrty

= Reject data: "Tools > Reject

- Epoch data: "Tools > Extract epochs®™

= Remove baseline: "Tools > Remove

= Run ICA: "Tools > Run ICA"™

Statistics

Group Analysis Visualization
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Frequencies 1:40

dDTFO8: Direct DTF (with full causal normalization)
fiDTF: Full-frequency DTF
+ PARTIAL DIRECTED COHERENCE MEASURES
PODC: Partial Directed Coherence
nPDC: Normalized PDC
CPDC: GCeneralized Partial Directed Coherence
POCF: Partial Directed Coherence Factor
RPDC: Renormalized Partial Directed Coherence
+ CRANCER-CEWEKE CAUSALITY MEASURES
CCC: Cranger-Ceweke Causality
+ SPECTRAL COHERENCE MEASURES

pCoh: Partial Coherence
mCoh: Multiple Coherence

+ SPECTRAL DENSITY MEASURES
S Complex Spectral Density

v | owes | [ o

20000000&00&O0®O
SO FEFFERELTE

g




MM Figure 2. Subj eb79. Cond RespWrong

File Edit View nsert Tools Desktop Window Help

@H) Aouenbau g

Time (sec)




9 Visualization: )
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