GLM in EEGLAB/LIMO

Arnaud Delorme (with slides from C. Pernet)

Tor Wager's slide

200

20%

ses 15% 10%

0%

° 5%

Varying factor: Contrast of image

N/8 N/16 N/32

500

600

Outcome: Reaction time

Mace, M., Delorme, A., Richard, G., Fabre-Thorpe, M. (2010) Spotting animals in natural scenes: efficiency of humans and monkeys at very low contrasts. *Animal Cognition*, 13(3):405-18.

Reaction time (ms)

400

300

- We have an experimental measure x (e.g. contrast)
- We then do the expe and collect data RT (e.g. reaction time)

- We have an experimental measure x (e.g. contrast)
- We then do the expe and collect data RT (e.g. reaction time)
- Model: RT = $\beta_0 + x\beta_1 + \varepsilon$

- We have an experimental measure x (e.g. contrast)
- We then do the expe and collect data RT (e.g. reaction time)
- Model: RT = $\beta_0 + x\beta_1 + \varepsilon$
- Do some maths / run a software to find β_1 and β_0
- RT^ = 23.6 + 2.7x

An ANOVA is a linear model

Varying factor: Type of image

Outcome: Reaction time (go/no-go)

Delorme, A., Richard, G., Fabre-Thorpe, M. (2010). Key visual features for rapid categorization of animals in natural scenes. *Frontier in psychology*, 1:21

$$\mathsf{RT}_{i,j} = \beta_0 + \beta_i + \varepsilon_{i,j}$$

that is to say the data (e.g. RT) = a constant term (grand mean β_0) + the effect of a treatment (β_1 for fishes 1 and β_2 , β_3 for birds and reptiles) and the error term ($\epsilon_{i,j}$)

$$\mathsf{RT}_{i,j} = \beta_0 + \beta_i + \varepsilon_{i,j}$$

that is to say the data (e.g. RT) = a constant term (grand mean β_0) + the effect of a treatment (β_1 for fishes 1 and β_2 , β_3 for birds and reptiles) and the error term ($\epsilon_{i,j}$)

For trial 4 (for example first trial of birds) we have

 $\mathsf{RT}_{2,1} = \beta_0 + 0^* \beta_1 + 1^* \beta_2 + 0^* \beta_3 + \varepsilon_{2,1}$

$$\mathsf{RT}_{i,j} = \beta_0 + \beta_i + \varepsilon_{i,j}$$

that is to say the data (e.g. RT) = a constant term (grand mean β_0) + the effect of a treatment (β_1 for fishes 1 and β_2 , β_3 for birds and reptiles) and the error term ($\epsilon_{i,j}$)

For trial 4 (for example first trial of birds) we have

 $\mathsf{RT}_{2,1} = \beta_0 + 0^* \beta_1 + 1^* \beta_2 + 0^* \beta_3 + \varepsilon_{2,1}$

For trial 13 (for example second trial of birds) we have

 $RT_{2,2} = B_2 + 0^* B_4 + 1^* B_2 + 0^* B_2 + \varepsilon_{2,2}$

$$RT_{i,j} = \beta_0 + \beta_i + \varepsilon_{i,j}$$

that is to say the data (e.g. RT) = a constant term (grand mean β_0) + the effect of a treatment (β_1 for fishes 1 and β_2 , β_3 for birds and reptiles) and the error term ($\epsilon_{i,i}$)

For trial 4 (for example first trial of birds) we have

 $\mathsf{RT}_{2,1} = \beta_0 + 0^* \beta_1 + 1^* \beta_2 + 0^* \beta_3 + \varepsilon_{2,1}$

For trial 13 (for example second trial of birds) we have

 $\mathsf{RT}_{2,2} = \beta_0 + 0^* \beta_1 + 1^* \beta_2 + 0^* \beta_3 + \varepsilon_{2,2}$

Statistics: if there is an effect of treatment then error of the simplified model $RT_{i,j} = \beta_0 + \varepsilon_{i,j}$ should be lower than the original model $RT_{i,j} = \beta_0 + \beta_i + \varepsilon_{i,j}$

Compare these errors

This is a GLM that is also equivalent to running an ANOVA

The GLM can do both a Regression and an ANOVA (ANCOVA)

Varying factor: Type of image AND contrast Outcome: Reaction time (go/no-go)

Categorical var. Continous var. ANOVA REGRESSION

The design matrix

_			
Y	Gp		
8	1		
9	1		
7	1		
5	2		
7	2		
3	2		
3	3		
4	3		
1	3		
6	4		
4	4		
9	4		

 $y(1..3) = 1x\beta1+0x\beta2+0x\beta3+0x\beta4+c+error$ $y(4..6) = 0x\beta1+1x\beta2+0x\beta3+0x\beta4+c+error$ $y(7..9) = 0x\beta1+0x\beta2+1x\beta3+0x\beta4+c+error$ $y(10..12) = 0x\beta1+0x\beta2+0x\beta3+1x\beta4+c+error$

Linear Modeling of EEG data

Linear Modeling of EEG data: level 1

Electrode 1

GLM: ordinary least square (OLS) versus weighted least square (WLS) **Significance:** bootstrap trials to get confidence interval of beta parameters

Linear Modeling of EEG data: level 1

Electrode 1

Hypotheses:

- 1. Effect of stimulus 1 -> is beta 1 significant (0 outside of beta1 confidence interval)
- 2. Difference between stimulus 1 and 2 (faces vs house) -> is beta 1 minus beta 2 significant (are the confidence intervals overlapping)

Significance based on beta params.

Linear Modeling of EEG data: 1st level

Scalp topography of **beta difference** at a given latency It is possible to plot the **potential difference** between condition at a given latency and assess significance using the beta difference

Limit of the regions masked for significance

1. Interaction design (EEGLAB default)

Use beta as direct input into repeated measure ANOVA 2nd level to compute main effect and interaction effect (no need to build contrasts)

www.nature.com/scientificdata

SCIENTIFIC DATA

A multi-subject, multi-modal OPEN human neuroimaging dataset

SUBJECT CATEGORIES

» Electroencephalography

-FFG

» Brain imaging

Daniel G. Wakeman^{1,2} & Richard N. Henson²

- Scientific Data 2, Article number: 150001 (2015)
- doi:10.1038/sdata.2015.1

https://www.nature.com/articles/sdata20151

Unfamiliar

- 3 types of stimuli: Famous faces, Non-famous faces, Scrambled faces
- 3 levels of repetition: 1st time, 2nd time (right after), 3rd time (delayed)

→Priming experiment with a possible interaction with the type of stimuli.

We need the conditions computed per subject (1st level) and then do the repeated measure ANOVA to test main effects and interactions.

What are we going to do?

• 1 – Replicate Henson et al. – faces vs. scrambled

Topography 170 ms

 2 – learn about HLM, robust statistics and multiple comparison corrections

Preprocessing in EEGLAB

- Step 1. Raw data importation
- Step 2: Downsample the data
- Step 3: High-pass filter the data
- Step 4: Remove strong line noise
- Step 5: Detect and reject bad channels
- Step 6: Re-reference the scalp-channel data to average reference
- Step 7: Extract epochs centered on Famous, Unfamiliar, and Scrambled face presentations
- Step 8: Further clean the data by rejecting noisy epochs
- Step 9: Perform ICA decomposition
- Step 10: Select independent components
- Step 11: Fit equivalent current dipole models to components

Assessing Event-Related EEG Brain Dynamics Using EEGLAB

Scott Makeig, Ramon Martinez-Cancino, Makoto Miyakoshi, Zeynep Akalin Acar, Luca Pion-Tonachini, John Iversen, Cyril Pernet, Arnaud Delorme

In preparation for a special issue of Frontiers in Neuroimaging methods

Let's get started

- Open Matlab
- Start eeglab
- Move to the folder containing the data

Create study designs

Here, we pick the 'type' and select all 9 conditions (events tagged during preprocessing appear here)

Uncorrected

FDR corrected

Cluster corrected

• • •		Figure 3: Ch	annel ERP		
File Edit View	v Insert Tools	Desktop V	/indow Help		لا الا
🗋 🗃 🛃 🎍 🛛	👌 🔍 🔍 🖑 💆) 🧶 🏄 - 🧔			
ERP - face,	170ms	ERP - notafa	ace, 170ms 3.8 0.7 -2.3 -5.3 -8.3	cestatus (p-value) Fieldtri	p montecarlo with cl 0.1 0.01

Estimate Model Parameter

Have generated single trials, specified the model, we now do the stats \rightarrow Restrict 'timelim' [-50 650]

Are Beta significant?

List of factors		📃 📖 🚟 🖌 📄 whdata_processed_cuttin 🗘	🖞 🖸 Q Sear	ch
	Fauralitas	Name		Kind
1. type = famous new	Pavorites	P parameter_5		Folde
		parameter_4		Folder
type = famous_second_early	Applications	parameter_3		Folder
3. type = famous_second_late	data	parameter_2		Folder
1 tune – corombied pour	😭 arno	parameter_1		Folder
. type = scrambled_new	Desktop	▶ H0		Folder
. type = scrambled_second_early	🕑 Downloads	one_sample_ttest_parameter_1.mat		MATLA
S. type = scrambled_second_late	MailDownload	Yr.mat		MATLA
	🖄 Documents	LIMO.mat		MATLA
7. type = unfamiliar_new	GoogleDrive	betas ai Maan of Rotas mat		MATLA
3. type = unfamiliar_second_early		betas_ci_wean_oi_betas.mat		WATER
the second late	Options		Cancel	pen
3. type = untaminar_second_late				
10. Constant				

• • •

Ok

Grouping betas and differences between conditions

List of factors	Faces vs non-faces	Famous	Scrambled	Unfamiliar	ANOVA (famous/scambled/unfamiliar)	ANOVA (new/early/late)
1. type = famous_new	1	1	0	0	1 0 0	1 0 0
2. type = famous_second_early	1	1	0	0	1 0 0	0 1 0
3. type = famous_second_late	1	1	0	0	1 0 0	0 0 1
4. type = scrambled_new	-2	0	1	0	0 1 0	1 0 0
5. type = scrambled_second_early	-2	0	1	0	0 1 0	0 1 0
6. type = scrambled_second_late	-2	0	1	0	0 1 0	0 0 1
7. type = unfamiliar_new	1	0	0	1	0 0 1	1 0 0
8. type = unfamiliar_second_early	1	0	0	1	0 0 1	0 1 0
9. type = unfamiliar_second_late	1	0	0	1	0 0 1	0 0 1
10. Constant	0	0	0	0	0 0 0	0 0 0
Ok			-			

ANOVA (famous/scambled/unfamiliar)

