
 
 

 

  

Abstract—Independent Component Analysis (ICA), applied 
to electroencephalographic (EEG) data, has proven capable of 
separating artifacts and brain sources. Of the variety of ICA 
and blind source separation algorithms now available, which 
are more efficient at processing EEG data? Here, we defined 
efficiency to mean blind separation of the data into near 
“dipolar” components having scalp maps consistent with 
synchronous activity in a single cortical region. We applied 20 
ICA algorithms as well as PCA, whitening, and PROMAX 
decomposition to 71-channel data from 14 subjects, and ranked 
the resulting decompositions by the number of near-dipolar 
components they identified. By this measure, Infomax and 
Pearson ICA ranked highest, though similar near-dipolar 
components were returned by most of the ICA-based 
algorithms.  

I. INTRODUCTION 
ndependent component analysis is now used widely for 
separating artifacts from EEG data. Not only can ICA 

separate brain EEG activity from non-brain artifacts [1, 2], 
increasingly it is used to study brain activities themselves [3-
5]. ICA separates signals from multi-channel data whose 
time courses are maximally independent from each other. 
Because local (< 100 µm) connections are vastly denser in 
cortex than longer-range connections, long-range 
synchronization of cortical field activities should be much 
weaker than short-range synchronization and the far-field 
EEG signals recorded on the scalp should arise within 
compact cortical patches. To first approximation, the 
summed far-field activity of such a patch is equivalent to the 
output of a single equivalent current dipole. In practice, ICA 
decomposition may return 20 or more components whose 
scalp maps are compatible with generation in such a patch 
(or occasionally in two such patches at either end of a 
known white matter bundle) [4, 6]. 

It remains unclear however which ICA algorithm returns 
the most dipolar components when applied to EEG data. To 
date, the three ICA algorithms applied most often to process 
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EEG data are Infomax ICA [7], SOBI [8], and FastICA [9]. 
However, there are a large variety of other available ICA 
algorithms that may possibly be useful for EEG 
decomposition. All ICA algorithms have the same overall 
goal [10], and generally produce near-identical results when 
applied to idealized (model) source mixtures. However, 
since their approaches to independence differ, and since 
EEG brain and non-brain source signals are likely not 
perfectly independent, different ICA algorithms may likely 
return somewhat different results when applied to the same 
EEG data. Here, we tested this issue. 

II. MATERIAL AND METHODS 

A. EEG data used for testing 
Fourteen subjects (7 male, 7 female) participated in the 

study [5]. Series of 8 consonant letters were presented 
visually at screen center, 3-7 of which were black (to be 
memorized) the rest green (to be ignored). A central fixation 
symbol was presented for 5 sec at the beginning of each 
trial. A series of letters was then presented for 1.2 sec each 
with 200 ms gaps. Following these, a dash appeared on the 
screen for 2-4 s to signal a memory maintenance period 
during which the subject had to retain the sequence of 
memorized letters until a (red) probe letter was presented. 
The subject then had to press one of two buttons with their 
dominant hand (index finger or thumb) to indicate whether 
or not the probe letter was part of the memorized letter set. 
Auditory feedback 400 ms after the button press informed 
the subject whether their answer was correct or not (Fig 1). 
The next trial began when the subject pressed another 
button. Each subject performed 100-150 task trials.  

EEG data were collected from 71 channels (69 scalp and 
two periocular electrodes, all referred to right mastoid) at a 
sampling rate of 250 Hz with an analog pass band of 0.01 to 
100 Hz (SA Instrumentation, San Diego). Input impedances 
were brought under 5 kΩ by careful scalp preparation. Data 
were analyzed by custom Matlab scripts built on the open 
source EEGLAB toolbox [6]. Continuous data was first 
high-pass filtered above 0.5 Hz using a FIR filter. Epochs 
were selected 0.7 s before and after each letter presentation 
in the experiment (memorize, ignore, and probe). The mean 
channel values were removed from each epoch, and between 
1 and 16 noisy data epochs were removed prior to ICA 
decomposition. Criteria for epoch removal were high-
amplitude, high-frequency abnormalities such as those 
accompanying coughs, sneezes, jaw clenching, etc. The 

Comparing Results of Algorithms Implementing Blind Source 
Separation of EEG  Data 

A. Delorme, J. Palmer, R. Oostenveld, J. Onton, and Scott Makeig 

I 



 
 

 

number of data samples in each dataset was about 250,000. 

B. ICA algorithms 
We used a total of 23 linear decomposition algorithms, 20 

ICA algorithms plus principal component analysis (PCA), 
whitening/sphering, and Promax [11]. We downloaded 
Matlab code for most of the algorithms from the Internet 
(see Table 1). The ICA algorithms all performed complete 
decomposition in which the number of returned components 
is equal to the number of channels: 

S WA=           (1) 
where A is the data matrix of size number of channels by 
number of time points, W is an unmixing matrix of size 
number of ICA components by number of channels, and S is 
the ICA component activation time courses of size number 
of ICA components by number of time points.  

ICA learns the unmixing weight matrix that makes the 
component time courses as temporally independent from 
each other as possible. However, the approach of each ICA 
algorithm to estimating and/or approaching this 
independence is different. Extended Infomax [10], Infomax 
[7], Pearson ICA [12], and ERICA [13] belong to the class 
of natural gradient algorithms [14], differing only in the way 
they estimate the component probability distributions. SOBI 
[8] is a second-order method that takes advantage of 
temporal correlations in the source activities. SOBI, SONS, 
AMUSE, icaMS, FOBI, EVD, and EVD 24 all use time 
delay covariance matrices [15]. Other algorithms, such as 
so-called FastICA [9], maximize the negentropy of their 
component distributions or their fourth order cumulant 
(JADE) [16]. For all these algorithms, we selected the 
default time delays (4) implemented in the downloaded 
software implementations. Possibly better ICA 
decompositions might be obtained in some cases with other 
choices. We refer the reader to more complete 
documentation [9, 15] for the implementation of each 
algorithm.  

ICA differs from PCA in that it identifies sources of 
distinct information in the data, thereby relaxing PCA’s 
spatial orthogonality constraint. Because it has been used to 
decompose EEG and ERP data (e.g. [17]), we also applied 
Promax, another non-orthogonal linear decomposition 
method that maximizes some higher power (such as the 
fourth power) of the projection of the data on each 
component axis. Finally, we included sphering or whitening, 
often used as pre-processing before ICA decomposition. 
Sphering decorrelates the signals between all pairs of 
channel-centered components [7].  

C. Method for testing ICA algorithms 
After computing all 23 decompositions for each of the 14 

EEG datasets, we localized a best-fitting single equivalent 
dipole corresponding to each component using a single 
equivalent dipole in a spherical 4-shell head model (radius: 
71, 72, 79, 85 mm; conductances: 0.33, 0.0042, 1, 0.33 μS) 
in the DIPFIT plugin (version 1.02) of the EEGLAB toolbox 

(version 4.515) [6].  Peri-ocular (eye) channels were 
excluded from dipole fitting. Note that modeling each 
component maps with a single dipole is somewhat idealistic, 
since in particular some ICA components represent 
apparently bilateral synchronous source activities (see, e.g., 
Fig 2b of [4]). However, here such components appeared to 
be rare here, as in other decompositions of more than 32 
channels. 

We also computed a measure of independence between 
component maps based on a log likelihood function. This 
measure presents limitations as it is based on the assumption 
of a source activity probability distribution proportional to 
1/cosh(x). It thus should not be taken as an absolute measure 
of the independence of the returned component activities.  

( ) cosh( )ln det( ) .ln( )SLL W M
N

π⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

∑∑   (2) 

where W representing the weight matrix, S representing the 
ICA activities, N the number of time points and M the 
number of components.  

 

TABLE I 
MEAN COMPONENT  DIPOLARITY 

 
Algorithm (Matlab func.) D% LL Origin 
Extended Infomax (runica) 29.9 178 EEGLAB 4.515 
Pearson  29.1 169 ICAcentral (6) 
Infomax (runica) 28.2 160 EEGLAB 4.515 
ERICA 26.9 184 ICALAB 1.5.2 

SONS 25.4 183 ICALAB 1.5.2 
SHIBBS 23.7 169 ICAcentral (5) 
FastICA* 23.5 169 ICAcentral (2) 
JADE (jader) 23.4 169 EEGLAB 4.515 
TICA 23.4 169 ICALAB 1.5.2 
JADE optimized (jade_op) 21.4 169 ICALAB 1.5.2 
JADE w/ time delay (jade_td) 20.2 169 ICALAB 1.5.2 
eeA 19.0 305 ICAcentral (8) 
Infomax (icaML) † 18.8 212 ICA DTU Tbox 
FOBI 18.6 169 ICALAB 1.5.2 
SOBIRO (acsobiro) 17.9 167 EEGLAB 4.515 
EVD 24 17.7 169 ICALAB 1.5.2 
EVD 17.0 169 ICALAB 1.5.2 
SOBI 16.1 583 EEGLAB 4.515 
icaMS† 10.6 169 ICA DTU Tbox 
AMUSE 8.5 169 ICALAB 1.5.2 
PCA 3.1 583 EEGLAB 4.515 
Promax 33.7 467 EEGLAB 4.515 
Whitening/Sphering 57.6 164 EEGLAB 4.515 

 

* A symmetric approach to optimizing the weights for this algorithm returned similar results. 
† No whitening by default. 
 
Table 1: ICA component dipolarity for each algorithm. The first column 
gives the algorithms tested (and in parenthesis the Matlab function, when 
ambiguous). The second column (near-dipole, ND%) indicates the 
percentage of returned components having an equivalent dipole projection 
to the scalp with less than 10% residual variance from the component scalp 
map. The third column, log likelihood (LL), gives a rough estimate of 
component time course independence (2) (here lower numbers suggest more 
independence). The fourth column (Origin) indicates the online source. 
EEGLAB (here, former version 4.515) is available at sccn.ucsd.edu/eeglab, 
the ICALAB toolbox at www.bsp.brain.riken.go.jp/ICALAB/. The ICA 
DTU Toolbox is available at mole.imm.dtu.dk/toolbox/ica. An ICAcentral 
database giving links to code for these and other algorithms is available at 
www.tsi.enst.fr/icacentral. Numbers (in parentheses) to the right of the 
ICAcentral source label indicate the respective entry number in the 
ICAcentral database.  



 
 

 

III. RESULTS 

A. Dipolarity of ICA components 
Table 1 indicates, for each ICA algorithm, the percentage 

of equivalent dipoles whose scalp projection had residual 
map variance from the returned component map below 10%. 
(vertical line in Fig. 2) The cumulative numbers of 
equivalent dipoles at each residual variance for each 
algorithm are represented in Figure 1. 

Extended Infomax, implemented in EEGLAB runica, 
returned the largest number of such components among all 
ICA algorithms, although Pearson, simple (super-Gaussian) 
Infomax, and ERICA gave near-equivalent results. All these 
algorithms use natural gradient descent [14]. Two 
implementations of infomax ICA (Infomax and icaML) did 
not perform the same. The Infomax version (runica) in the 
EEGLAB toolbox was been specifically developed to 
process large amount of EEG data. icaML does not use 
whitening by default, whereas EEGLAB Infomax does. 
Also, Pearson ICA uses the same optimization procedure as 
FastICA, yet returned more dipolar components. These 
differences point to the importance of details of the method 
used to separate ICA components.  

SOBI, another widely used algorithm for decomposing 
EEG data, and the other time-dependent algorithms did not 
return as many dipolar components as the natural gradient-
based algorithms. As mentioned previously, some other 
choices of time delays for these algorithms might change 
their results. Interestingly component time courses returned 
by SOBI were far from maximally independent by our log 
likelihood (LL) measure, which returned a value equal to the 
one obtained for PCA. However, SOBIRO, a variant of 
SOBI using a robust orthogonalization method (Section of 
4.3.1 [15]) returned a LL value similar to other ICA 
algorithms.  

As expected, Principal Component Analysis returned only 
a small number of dipolar components (those accounting 
mostly for large eye artifacts). Promax returned a quite high 
number of near-dipolar components, but visual inspection 
revealed that their maps looked quite similar, all seeming to 
account in part for eye movement artifacts. The mean log 
likelihood measure for Promax decomposition (467) was, as 
expected, also considerably higher than those for the ICA 
decompositions. 

Like the ICA algorithms, whitening or sphering also 
returned many dipolar components and a low mean log 
likelihood estimate. Whitening performs second-order 
decorrelation whereas ICA algorithms explicitly or 
implicitly optimize independence using higher-order 
statistics. Most ICA algorithms (see Table 1) use data pre-
whitening as a starting point for ICA decomposition. 
Whitened components have stereotyped scalp maps 
consisting of a diffuse projection peaking at each respective 
data channel. This might only represent physiologically 
plausible projections of cortical EEG sources if the cortex 

were smooth and unfolded, whereas the largest portion of 
the human cortex is in its many folds or sulci. The low 
independence log likelihood value (164) for whitening was 
only about 4% higher than the LL values for Infomax and 
Extended Infomax). Therefore, Infomax and other ICA 
decomposition approaches that begin with pre-whitening 
actually reduce their number of dipolar component maps 
during training, as these maps more flexibly adapt to the 
spatial projections of the brain and non-brain sources of 
information in the data. 

B. Comparison of ICA algorithms 
We compared ICA algorithms using the Amari measure 

[18] of distance between weight matrices. Although Amari 
distance has typically been used in simulations to measure 
the deviation of a given ICA decomposition from ground 
truth, it may also be used to compare any set of weight 
matrices from ICA decompositions. 

We computed the pairwise distance between all pairs of 
decompositions for all datasets, took the means across 
datasets, projected the resulting 23-by-23 matrix into its 
principal 3-dimensional subspace using PCA, and then 
rotated this subspace using Infomax (runica) for 
visualization.  

Figure 2 represents axes of this projection. The ICA 
algorithms were clustered into two groups (circled manually 
in Figure 2A), the first group consisting of the instantaneous 
ICA algorithms which all returned relatively large numbers 
of near-dipolar components with low residual variance. The 
second group consists of algorithms that depend on time-
domain relationships. These returned a lower number of 

 
 
Fig. 1.  Number of dipolar component returned as a function of residual 
variance for each algorithm. Since there was 71 channels in each dataset, 
the ordinate indicate the cumulative number of component at each 
residual variance. The algorithms are ranked according to their 
intersection with the vertical line at 10% of residual variance (see Table 
1). 



 
 

 

near-dipolar components (see Table 1). In this second group, 
two subgroups (left and right) can be discerned. 

The instantaneous ICA algorithms that returned the 
fewest near-dipolar components, icaML and eeA, stand 
appart in Fig. 2; eeA and icaML also had an unusual log 
likelihood (Table 1). Unlike other ICA algorithms, icaML 
did not use sphering. The results of PCA (Fig. 2) are clearly 
isolated from those of the ICA algorithms. Results of 
Promax and whitening (sphering) also appear relatively 
isolated.  

 Instantaneous ICA decompositions tended to return more 
near-dipolar components than blind decompositions using 
temporal differences. To test whether the most dipolar 
components returned by these two classes differed, we 
repeated the visualization using only the scalp maps of the 
10 most dipolar components for each algorithm (Fig. 2B). 
Clearly, results of PCA, Whitening/Sphering, and Promax 
decompositions stand apart from the results of ICA and 
other blind source decompositions. A distinction between 
instantaneous ICA (clustered on the right) and blind source 
decompositions using time delays (clustered on the left) 
remains, with one noticeable exception – the results of the 
time-sensitive optimized SOBIRO algorithm closer to those 
of the instantaneous ICA decompositions. Overall, the most 
nearly dipolar components returned by all the ICA 
algorithms were similar, but differed from those of the other 
linear decompositions. 

IV. CONCLUSIONS 
We have shown that some ICA and blind source 

algorithms return larger numbers of EEG components with 
nearly dipolar scalp maps than others. For decomposition of 
EEG data, timing-insensitive and timing-sensitive ICA or 
blind source separation algorithms return somewhat 
different decompositions that differ somewhat in the degree 
of dipolarity of their component maps. However, the most 
nearly dipolar components returned by the two 
decomposition classes do not appear to differ strongly. 
Results of blind source separation clearly differ, however, 
from component scalp maps isolated using the second-order 
variance-based methods PCA, whitening, and Promax. 

ACKNOWLEDGMENTS 
We wish to thank Tony Bell, Te-Won Lee and Terry 

Sejnowski for their help and collaboration, Jean-Francois 
Cardoso for the JADE code, and Andrejz Chichocki for 
contributing the source code for the ICALAB algorithms. 

REFERENCES 
[1]  T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. McKeown, V. 

Iragui, and T. J. Sejnowski, "Removing electroencephalographic 
artifacts by blind source separation," Psychophysiology, vol. 37, pp. 
163-78., 2000. 

[2]  T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, 
and T. J. Sejnowski, "Removal of eye activity artifacts from visual 

event-related potentials in normal and clinical subjects," Clin 
Neurophysiol, vol. 111, pp. 1745-58., 2000. 

[3]  S. Makeig, M. Westerfield, T. P. Jung, S. Enghoff, J. Townsend, E. 
Courchesne, and T. J. Sejnowski, "Dynamic brain sources of visual 
evoked responses," Science, vol. 295, pp. 690-4, 2002. 

[4]  S. Makeig, S. Debener, J. Onton, and A. Delorme, "Mining event-
related brain dynamics," Trends Cogn Sci, vol. 8, pp. 204-10, 2004. 

[5]  J. Onton, A. Delorme, and S. Makeig, "Frontal midline EEG 
dynamics during working memory," Neuroimage, 2005. 

[6]  A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for 
analysis of single-trial EEG dynamics including independent 
component analysis," J Neurosci Methods, vol. 134, pp. 9-21, 2004. 

[7]  A. J. Bell and T. J. Sejnowski, "An information-maximization 
approach to blind separation and blind deconvolution," Neural 
Comput, vol. 7, pp. 1129-59., 1995. 

[8]  A. Belouchrani and A. Cichocki, "Robust whitening procedure in 
blind source separation context," Electronics Letters, vol. 36, pp. 
2050-2053, 2000. 

 
 
Fig. 2.  A. Clustering of the results of all 23 decomposition using Amari 
distance between each pair of decomposition weight matrices. Infomax 
ICA (runica) applied to the 3-dimensional principal PCA subspace was 
used to project this multidimensional matrix onto axes of maximal interest 
for visualization. The two indicated decomposition clusters were selected 
visually. B. Visualizing relationships among the same decompositions 
considering only their 10 most dipolar components. Here PCA, sphere, 
and Promax clearly stand apart from the ICA decompositions. 



 
 

 

[9]  A. Hyvarinen and E. Oja, "Independent component analysis: 
algorithms and applications," Neural Netw., vol. 13, pp. 411-30, 2000. 

[10] T. W. Lee, M. Girolami, A. J. Bell, and T. J. Sejnowski, "A Unifying 
Information-theoretic Framework for Independent Component 
Analysis," Comput. Math. Appl., vol. 31, pp. 1-21, 2000. 

[11] A. E. Hendrickson and P. O. White, "A quick method for rotation to 
oblique simple structure," British Journal of Statistical Psychology, 
vol. 17, pp. 65-70, 1964. 

[12] J. Karvanen and V. Koivunen, "Blind separation methods based on 
Pearson system and its extensions," Signal Processing, vol. 82, pp. 
663-673, 2002. 

[13] S. Cruces, L. Castedo, and A. Cichocki, "Robust blind source 
separation using cumulants," Neurocomputing, vol. 49, pp. 87-117, 
2002. 

[14] S. Amari, "Natural gradient learning for over- and under-complete 
bases In ICA," Neural Comput, vol. 11, pp. 1875-83, 1999. 

[15] A. Cichocki and S. Amari, Adaptive Blind Signal Processing: Wiley, 
2002. 

[16] J. F. Cardoso, "Higer-order contrasts for independent component 
analysis," Neural Comput, vol. 11, pp. 157-192, 1999. 

[17] J. Dien, W. Khoe, and G. R. Mangun, "Evaluation of PCA and ICA of 
simulated ERPs: Promax vs. infomax rotations," Hum Brain Mapp, 
2006. 

[18] S. Amari, A. Cichocki, and H. Yang, "A new algorithm for blind 
signal separation," in Advances in Neural Information Processing 
Systems, vol. 8, M. M. D. Touretzsky, and M. Hasselmo, Ed. 
Cambridge, MA: MIT press, 1996, pp. 757-763. 

 


