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Presentation Outline
• “Classic” Analytical Inferential Statistics

- Parametric & non-parametric

• Resampling-Based Inferential Statistics

- Randomization/permutation tests

- Bootstrap statistics

•Correcting for Multiple Comparisons

- Permutation test based control of family-wise error

- Benjamini methods for control of false discovery rate

- Evaluating multiple comparison correction on simulated 
ERP data



Analytic Parametric Statistics:
Assume Data Come from a Particular Distribution

Gaussian Distribution



Critical Values Analytically Derived

Analytic Parametric Statistics:



T-test: Compare paired/
unpaired 
Samples for continuous data. 
In EEGLAB, used for grand-
average ERPs.

ANOVA: compare several
groups (can test interaction 
between two factors for the 
repeated measure ANOVA) 

Paired

Unpaired

Popular Parametric Tests

Analytic Parametric Statistics:



Analytic Non-Parametric 
Statistics:

Minimal Distribution Assumptions

2.5% 97.5% 2.5% 97.5%

Population A Population B

Mann-Whitney U Test: Null hypothesis is that the 
distribution of Population A and B are the same



Paired t-test    Wilcoxon
Unpaired t-test    Mann-Whitney
One way ANOVA   Kruskal Wallis
 Values Ranks

Parametric Non-Parametric

Analytic Non-Parametric 
Statistics:



Problems with Analytic Statistics:

1. No analytic solution for some situations (e.g., 
comparing the mean of two groups that differ in 
variance)

2. Often, data don’t fit parametric assumptions

3. Non-parametric tests may lack power and rank 
transformation can make it tricky to do things 
like derive confidence intervals
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Resampling-Based Statistics:
Inferential statistics based on “simulating” an experiment 

a large number of times with the observed data

Observed Data
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Resampling-Based Statistics:

Observed Data

Group A Group B

8 5

4 3

6 4

“Simulated Replication”

Group A Group B

Resample
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Inferential statistics based on “simulating” an experiment 
a large number of times with the observed data
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Resampling-Based Statistics:

Observed Data

Group A Group B

8 5

4 3

6 4

“Simulated Replication”

Group A Group B

Resample8

4

6 4

3

5

Inferential statistics based on “simulating” an experiment 
a large number of times with the observed data



Resampling-Based Statistics:
Inferential statistics based on “simulating” an experiment 

a large number of times with the observed data

✓



1.Permutation Tests (also 
called “Randomization Tests”)

2.Bootstrap Statistics

Resampling-Based Statistics:
Two Popular Resampling Methods



Advantages of Permutation Tests & 
Bootstrap Statistics

1. Non-parametric (i.e., make minimal assumptions 
about population distributions) 

2. Can be used in situations for which there is no 
analytic solution

3. Simple to use and easily provide confidence 
intervals

4. Useful for multiple comparison correction



1.Permutation Tests (also 
called “Randomization Tests”)

2.Bootstrap Statistics

Resampling-Based Statistics:
Two Popular Resampling Methods



Permutation Tests
1. Old idea (Neyman, 1923; Fisher, 1935) but too 

computationally intensive to be widely used until 
relatively recently

2. Test the null hypothesis that the observations in 
multiple groups of data are exchangeable (i.e., 
they were just as likely to occur in one 
condition/group as any other)



Hypothetical Experiment #1
•Two conditions: A & B
•Within-subject design
•Three subjects

Observed
Data

from: Blair & Karniski (1993) Psychophysiology



Null Hypothesis
•Observations in Condition A could have just as likely 
come from Condition B (and vice-versa)
•Each possible permutation of observations equally likely

Observed
Data Remaining Possible Permutations

Sub1
Sub2
Sub3

orig orig orig orig flip flip flip flip

orig orig flip flip orig orig flip flip

orig flip orig flip orig flip orig flip

2n possible permutations 



Observed
Data Remaining Possible Permutations

Null Hypothesis
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Observed
Data Remaining Possible Permutations

Null Hypothesis

Permutation 1 2 3 4 5 6 7 8

t -3.46 -1.11 -0.46 0 0 0.46 1.11 3.46



Permutation 1 2 3 4 5 6 7 8

t -3.46 -1.11 -0.46 0 0 0.46 1.11 3.46

Null Hypothesis

Decision Rule: If observed difference is the most positive 
permutation, reject null hypothesis (upper tailed test). 

α=1/8=0.125

Observed
Difference
p=0.125



Permutation 1 2 3 4 5 6 7 8

t -3.46 -1.11 -0.46 0 0 0.46 1.11 3.46

Null Hypothesis

Observed
Difference

p=0.25
Decision Rule: If observed difference is the most 

positive or negative, reject null hypothesis (two tailed test). 

α=2/8=0.25



Hypothetical Experiment #2
•Two conditions: A & B
•Within-subject design
•25 subjects

   225 (i.e., 33,554,432) permutations   
 

Approximate distribution of null hypothesis 
with thousands of random permutations.



Hypothetical Experiment #3
•Two groups: A & B
•Between-subject design
•3 “A” subjects, 2 “B” subjects

Group
Observed 

Data

A

A

A

B

B

5

18

-23

9

3



Group
Observed 

Data Perm 2 Perm 3 Perm 4

A

A

A

B

B

5 5 5 5

18 9 18 18

-23 3 9 3

9 -23 -23 -23

3 18 3 9

etc...

Null Hypothesis
•Observations in Group A could have just as likely come 
from Group B (and vice-versa)
•Each possible permutation of observations equally likely

€ 

5
3
 

 
 
 

 
 =

5!
3!(5 − 2)!

=10

Possible 
Permutations:



1.Permutation Tests (also 
called “Randomization Tests”)

2.Bootstrap Statistics

Resampling-Based Statistics:
Two Popular Resampling Methods



Sample Population

What we observed What we sampled from

Sample and Population

Bootstrap Statistics: Treat the sample 
as if it is the population



Observed Data

A B

8 5

4 3

6 4

A-B

3

1

2

2

Observed
Difference

Mean Difference:

Hypothetical Experiment #4
•Two conditions: A & B
•Within-subject design
•Three subjects



Observed
Difference

Mean Difference:

Make a “bootstrap” 
sample by randomly 
selecting one of the 

difference values 
three times

A-B

3

1

2

2

A-B A-B*

3

1

2

2

Bootstrap 
Sample

3

2

3

Hypothetical Experiment #4
•Two conditions: A & B
•Within-subject design
•Three subjects



A-B A-B*

3 2

1 3

2 3

2 2.7Mean Difference:

Make a “bootstrap” 
sample by randomly 
selecting one of the 

difference values 
three times

Bootstrap 
SampleObserved

Difference

Hypothetical Experiment #4
•Two conditions: A & B
•Within-subject design
•Three subjects



Permutation

Each data point gets 
picked exactly once

Bootstrap versus Permutation
Bootstrap

Each data point can be 
picked zero, one, or 

multiple times



A-B A-B* A-B* A-B*

3 2 2 3

1 3 2 2

2 3 1 2

2 2.7 1.7 2.3Mean Difference:

Make lots 
(thousands) of 

bootstrap samples

Bootstrap 
SamplesObserved

Difference

etc...

Hypothetical Experiment #4
•Two conditions: A & B
•Within-subject design
•Three subjects



Distribution of Mean of 
10,000 Bootstrap Samples
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Distribution of Mean of 
10,000 Bootstrap Samples
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Summary:



Advantages of Permutation Tests & 
Bootstrap Statistics

1. Non-parametric (i.e., make minimal assumptions 
about population distributions) 

2. Can be used in situations for which there is no 
analytic solution

3. Simple to use and easily provide confidence 
intervals

4. Useful for multiple comparison correction

Coming up next!



Disadvantages of Permutation 
Tests & Bootstrap Statistics

1. Poor performance with small sample sizes

• Might be inaccurate

• Limited set of possible p-values

2. Not practical for computationally intensive 
analyses (e.g., non-linear regression)

Sample Population

What we observed What we sampled from



Permutation Bootstrap

Always Accurate Asymptotically 
Accurate

Asymptotically 
Accurate

or Not Applicable

Asymptotically 
Accurate

✓

✓

Simple Analyses 
(e.g., t-tests, 
correlation)

Complex 
Analyses (e.g., 

multifactor 
ANOVAS)



Disadvantages of Permutation 
Tests & Bootstrap Statistics

1. Poor performance with small sample sizes

• Might be inaccurate

• Limited set of possible p-values

2. Not practical for computationally intensive 
analyses (e.g., non-linear regression)



Disadvantages of Permutation 
Tests & Bootstrap Statistics

1. Poor performance with small sample sizes

• Might be inaccurate

• Limited set of possible p-values

2. Not practical for computationally intensive 
analyses (e.g., non-linear regression via gradient 
descent)
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Potentially Lots of Possible Statistical Tests

Conventional ERP study:
-2 conditions
-26 electrodes
-218 time points (50-920 ms)
-5,668 dependent variables



Potentially Lots of Possible Statistical Tests

Even more dependent variables with time-
frequency analyses!!

DANGER: Lots of statistical tests 
means a high likelihood of false 

discoveries!!



Hypothetical Experiment #4
•Two conditions: A & B
•Within-subject design
•Three subjects
•Two dependent variables: X & Y

A B A-B A B A-B

Sub1

Sub2

Sub3

-4 28 -32 141 -121 262

3 -13 16 142 72 70

36 30 6 67 163 -96

X Y

tx=-0.23 ty=0.76



Control of Family-Wise Error Rate (FWER)

€ 

FWER = P(RF > 0) =α fam

RF = number of false discoveries in the family of tests



Control of Family-Wise Error Rate (FWER)

€ 

FWER = P(RF > 0) =α fam

RF = number of false discoveries in the family of tests

A B A-B A B A-B

Sub1

Sub2

Sub3

-4 28 -32 141 -121 262

3 -13 16 142 72 70

36 30 6 67 163 -96

X Y

tx=-0.23 ty=0.76

This “family” consists of two tests:

FWER control provides same degree 
of certainty as a priori tests!!



€ 

FWER = P(RF > 0) =α fam

RF = number of false discoveries in the family of tests

€ 

Desired "family - wise alpha"= Desired α fam = 0.05

Bonferroni "test - wise alpha"=α test = Desired α fam

#  of comparisons
= 0.05

2
= 0.025

True α fam ≤Desired α fam

Bonferroni Correction:

Control of Family-Wise Error Rate (FWER)



€ 

Desired "family - wise alpha"= Desired α fam = 0.05

Bonferroni "test - wise alpha"=α test = Desired α fam

#  of comparisons
= 0.05

2
= 0.025

True α fam ≤Desired α fam

Bonferroni Correction:
€ 

FWER = P(RF > 0) =α fam

RF = number of false discoveries in the family of tests

Might be overly conservative

Control of Family-Wise Error Rate (FWER)
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Estimated true family-wise α
level (95% Confidence Intervals) 

4.9(±0.3)% 4.1(±0.3)%

Bonferroni Correction
•Desired αfam: 5%
•Bonferroni αtest: 2.5%

2.3(±0.3)%
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4.9(±0.3)% 4.1(±0.3)%

Bonferroni Correction
•Desired αfam: 5%
•Bonferroni αtest: 2.5%

2.3(±0.3)%

PERMUTATION TESTS CAN DO 
BETTER!!



A B A-B A B A-B

Sub1

Sub2

Sub3

-4 28 -32 141 -121 262

3 -13 16 142 72 70

36 30 6 67 163 -96

X Y

tx=-0.23 ty=0.76

Permutation Test

Observed Values (Permutation #1)

tmax=most extreme t-score=0.76



A B A-B A B A-B

Sub1

Sub2

Sub3

28 -4 32 -121 141 -262

3 -13 16 142 72 70

36 30 6 67 163 -96

X Y

tx=2.38 ty=-1.00

Permutation Test

Permutation #2

tmax=most extreme t-score=2.38



Null Hypothesis

Permutation 1 2 3 4 5 6 7 8

tmax -2.377 -2.372 -1.27 -0.76 0.76 1.27 2.372 2.377

Decision Rule: If observed difference is most positive 
or negative, reject null hypothesis (two tailed test). 

Critical t=±2.377



Null Hypothesis

Permutation 1 2 3 4 5 6 7 8

tmax -2.377 -2.372 -1.27 -0.76 0.76 1.27 2.372 2.377

Decision Rule: If observed difference is most positive 
or negative, reject null hypothesis (two tailed test). 

αfam=2/8=0.25
Critical t=±2.377



A B A-B A B A-B

Sub1

Sub2

Sub3

-4 28 -32 141 -121 262

3 -13 16 142 72 70

36 30 6 67 163 -96

X Y

tx=-0.23 ty=0.76

Permutation Test

Observed Values (Permutation #1)

Perm Test Critical t=±2.377



A B A-B A B A-B

Sub1

Sub2

Sub3

-4 28 -32 141 -121 262

3 -13 16 142 72 70

36 30 6 67 163 -96

X Y

tx=-0.23 ty=0.76

Permutation Test

Observed Values (Permutation #1)

Perm Test Critical t=±2.377
Retain null hypothesis 

(i.e., neither X nor Y significantly differ across A & B)



A B A-B A B A-B

Sub1

Sub2

Sub3

-4 28 -32 141 -121 262

3 -13 16 142 72 70

36 30 6 67 163 -96

X Y

tx=-0.23 ty=0.76

Corrects for Multiple Comparisons 
by Raising Critical t

Perm Test Critical t=±2.377
Repeated Measures t-test Critical t 

(no correction for two comparisons)=±2.353
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tmax Permutation Test
•Desired αfam: 5%

4.8(±0.3)%

Estimated true family-wise α
level (95% Confidence Intervals) 

4.9(±0.3)% 5.1(±0.3)%
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tmax Permutation Test
•Desired αfam: 5%

4.8(±0.3)%

Estimated true family-wise α
level (95% Confidence Intervals) 

4.9(±0.3)% 5.1(±0.3)%

PERMUTATION TESTS DID 
BETTER!!



Blair & Karniski  (1993)
Psychophysiology
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tmax Distribution from 5000 Permutations

Critical Regions

2.9% 2.9%



−100 0 100 200 300 400 500 600 700 800 900

−10

−5

0

5

10

15

t−
sc

or
e

Time (ms)

Test Window

Target-Standard Difference Wave (26 electrodes)

P2 effect
P3b effect

Slow WavePermutation 
Test

Critical 
Values

(αfam=.057)

?
?



−100 0 100 200 300 400 500 600 700 800 900

−10

−5

0

5

10

15

t−
sc

or
e

Time (ms)

Test Window

Target-Standard Difference Wave (26 electrodes)

P2 effect P3b effect

Slow Wave
Bonferroni

Critical 
Values

(αfam=.057)

Test-Wise
αtest=.00001



−100 0 100 200 300 400 500 600 700 800 900

−10

−5

0

5

10

15

t−
sc

or
e

Time (ms)

Test Window

Target-Standard Difference Wave (26 electrodes)

P2 effect
P3b effect

Slow WavePermutation 
Test

Critical 
Values

(αfam=.057)

?
?Test-Wise

αtest=.00005



1. FWER control provides the same degree of 
certainty as more selective a priori tests

2. Guaranteed accuracy for simple tests (e.g., t-
tests, correlation)

3. Relatively powerful when dependent variables are 
highly correlated (like EEG)

Permutation Tests: Some Pros



1. For more complicated tests (e.g., two factor 
ANOVAs) the results are only “asymptotically 
exact” (like bootstrapping).

2. Power can still be rather weak with a larger 
number of comparisons

Permutation Tests: Some Cons
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Control of Family-Wise Error Rate (FWER)

If FWER=5%, you have a 5% chance that one or more of your 
significant p-values is a mistake.

€ 

FWER = P(RF > 0) =α

RF = number of false discoveries in the family of tests



Control of Family-Wise Error (FWER)

Control of False Discovery Rate (FDR)

If FDR=5%, on average, 5% of your significant p-values are 
mistakes.

€ 

FWER = P(RF > 0) =α

RF = number of false discoveries in the family of tests

€ 

False Discovery Proportion = FDP =
RF

R
 if R > 0

0 if R = 0

 
 
 

  

R = number of rejected null hypotheses
FDR = E(FDP) =α

If FWER=5%, you have a 5% chance that one or more of your 
significant p-values is a mistake.
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Imagine you replicate an experiment thousands of times



Most Popular FDR Control Algorithm
Benjamini & Hochberg (1995)

€ 

pi ≤
i
m
 

 
 

 

 
 α

1. Sort the p-values from the entire family of m tests (i.e., m is the total 
number of hypothesis tests) in order of smallest to largest. pi refers to the ith 
largest p-value.

2. Define k, as the largest value of i for which the following is true:

3. If at least one value of i satisfies that relationship, then hypotheses 1 
though k are rejected.  If not, no hypotheses are rejected.
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Most Popular FDR Control Algorithm

1. If the dependent variables are independent or exhibit positive regression 
dependency, the BH algorithm guarantees:

where m0 equals the number of null hypotheses that are true and m 
equals the total number of null hypotheses.  

€ 

FDR ≤ m0

m
 

 
 

 

 
 α

2. If the dependent variables are Gaussian, then positive regression 
dependency means that none of the variables are negatively correlated.

Benjamini & Yekutieli (2001) The Annals of Statistics

Benjamini & Hochberg (1995)



Most Popular FDR Control Algorithm

1. If the dependent variables are independent or exhibit positive regression 
dependency, the BH algorithm guarantees:

€ 

FDR ≤ m0

m
 

 
 

 

 
 α

2. If the dependent variables are Gaussian, then positive regression 
dependency means that none of the variables are negatively correlated.

Benjamini & Yekutieli (2001) The Annals of Statistics

Problem
Benjamini & Hochberg (1995)

where m0 equals the number of null hypotheses that are true and m 
equals the total number of null hypotheses.  



More General Variant of BH FDR Control Algorithm

€ 

pi ≤
i
m
 

 
 

 

 
 α

1. Sort the p-values from the entire family of m tests (i.e., m is the total 
number of hypothesis tests) in order of smallest to largest. pi refers to the ith 
largest p-value.

2. Define k, as the largest value of i for which the following is true:

3. If at least one value of i satisfies that relationship, then hypotheses 1 
though k are rejected.  If not, no hypotheses are rejected.

Original
BH Criterion
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pi ≤
i

m 1
jj=1

m

∑

 

 

 
 
 
 

 

 

 
 
 
 

α

Benjamini & Yekutieli (2001)

New BY 
Criterion



1. Regardless of dependent variable dependency structure, BY algorithm 
guarantees:

€ 

FDR ≤ m0

m
 

 
 

 

 
 α

Benjamini & Yekutieli (2001) The Annals of Statistics

More General Variant of BH FDR Control Algorithm

Benjamini & Yekutieli (2001)

where m0 equals the number of null hypotheses that are true and m 
equals the total number of null hypotheses.  
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1. With a large number of comparisons, FDR is generally 
more powerful than FWER control (especially if an 
appreciable proportion of null hypotheses are false).

2. If all null hypotheses are true, FDR control=FWER 
control.  Thus, if you find effects with FDR control you 
can be 1-α confident that some effect is present.

3. Benjamini procedures can be used with any hypothesis 
test (simply requires test p-values).

FDR Control: Pros



1. FDR control may lead to a high proportion of false 
positives with some frequency

2. FDR can be difficult to interpret as effects may 
disappear when analyses become more selective

3. Most powerful FDR control algorithms (BH, BKY) are 
not guaranteed to work for data with negatively 
correlated variables

When applied to simulated data and an α-level 
of 10%, Korn et al. (2004) found that the BH 

algorithm produces 29% or more false 
discoveries 10% of the time.

FDR Control: Cons



1. FDR control may lead to a high proportion of false 
positives with some frequency

2. FDR can be difficult to interpret as effects may 
disappear when analyses become more selective

3. Most powerful FDR control algorithms (BH, BKY) are 
not guaranteed to work for data with negatively 
correlated variables

FDR Control: Cons
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1. FDR control may lead to a high proportion of false 
positives with some frequency

2. FDR can be difficult to interpret as effects may 
disappear when analyses become more selective

3. More powerful and popular FDR control algorithm 
(BH) is not guaranteed to work for data with 
negatively correlated variables

- ERP analysis surely have some negatively correlated variables 
(sources can contribute to different electrodes with 
opposite polarities)

- Recent work by Clarke & Hall (2009) shows that for light 
tailed data (e.g., Gaussian) multiple comparison correction 
procedures will behave as if the data were independent if 
the number of variables is large enough

FDR Control: Cons



1. FDR control may lead to a high proportion of false 
positives with some frequency

2. FDR can be difficult to interpret as effects may 
disappear when analyses become more selective

3. More powerful and popular FDR control algorithm 
(BH) is not guaranteed to work for data with 
negatively correlated variables

- However, recent work by Clarke & Hall (2009) shows that 
for light tailed data (e.g., Gaussian) multiple comparison 
correction procedures will behave as if the data were 
independent if the number of variables is large enough

FDR Control: Cons



Presentation Outline
• “Classic” Analytical Inferential Statistics

- Parametric & non-parametric

• Resampling-Based Inferential Statistics

- Randomization/permutation tests

- Bootstrap statistics

•Correcting for Multiple Comparisons

- Permutation test based control of family-wise error

- Benjamini methods for control of false discovery rate

- Evaluating multiple comparison correction on simulated 
ERP data



ERP Simulations

• Simulation Parameters

- Simulated ERP noise estimated from ERP noise in a real ERP 
study

- 26 electrodes, 201 time points (100-900 ms)

- Average & bimastoid reference

- Negatively correlated dependent variables ranged from 13-51% 

• ERP Effects

1. Null effect: 0% of comparisons differ from 0

2. Focal effect (“N170”): 0.2% of comparisons differ from 0

3. Broad effect (“P300”): 18.9% of comparisons differ from 0

4. Combined focal & broad effect: 19.1% of comparisons differ from 0

Groppe, Urbach, & Kutas (in prep)
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Probability of 20% or More False Discovery Proportion
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Mean Proportion of Effects Detected
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Presentation Outline
• “Classic” Analytical Inferential Statistics

- Parametric & non-parametric

• Resampling-Based Inferential Statistics

- Randomization/permutation tests

- Bootstrap statistics

•Correcting for Multiple Comparisons

- Permutation test based control of family-wise error

- Benjamini methods for control of false discovery rate

- Evaluating multiple comparison correction on simulated 
ERP data

Summary:



1. FWER control via permutation tests:

• Pros:

- Relatively powerful because EEG is highly correlated

- Same degree of error control as a priori analyses

• Cons:

- May sacrifice considerable power when applied to 
large numbers of comparisons

- Only guaranteed to work for simple analyses

Summary



2. FDR control via BH & BY procedures:

• Pros:

- Relatively powerful because of less conservative error 
measure

- More general than permutation test procedures and 
often more powerful

• Cons:

- Can be difficult to interpret due to invalid statistical 
assumptions, potentially high proportions of false 
discoveries, and interactions between variables

- Simulations found no evidence that these FDR 
procedures are prone to the former two problems 
when applied to ERPs  

Summary



Yet More Multiple 
Comparison Correction Procedures 

1. Control of False Discovery Exceedance (FDX)
(also called control of FDP)

€ 

FDX = P(FDP > c)

€ 

FDP =
RF

R
 if R > 0

0 if R = 0

 
 
 

  

3. Control of Local False Discovery Rate:
Bootstrap based control of FDR (Efron, 2004)

2. Control of Generalized Family-Wise Error Rate (GFWER) 

€ 

GFWER = P(RF > u)
u = an acceptable number of false discoveries



Original 
difference  

2.5% 97.5%  

44 pixels  

Difference bootstrap 1  Difference bootstrap 2  Difference bootstrap 3  

….  

35 pixels  27 pixels  

Cluster correction for multiple comparisons  

Maris & Oostenveld (2007) Jnl of Neuro Methods 
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- Permutation test based control of family-wise error

- Benjamini methods for control of false discovery rate

- Evaluating multiple comparison correction on simulated 
ERP data
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Thanks to G. Rousselet  
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Thanks!

Questions:
dgroppe@cogsci.ucsd.edu

EEGLAB Compatible Software 
for ERP Analysis

http://openwetware.org/wiki/Mass_Univariate_ERP_Toolbox







Non-parametric statistics
Do not assume a distribution for the data

χ2 is used to compare 2 or 
more unpaired samples
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