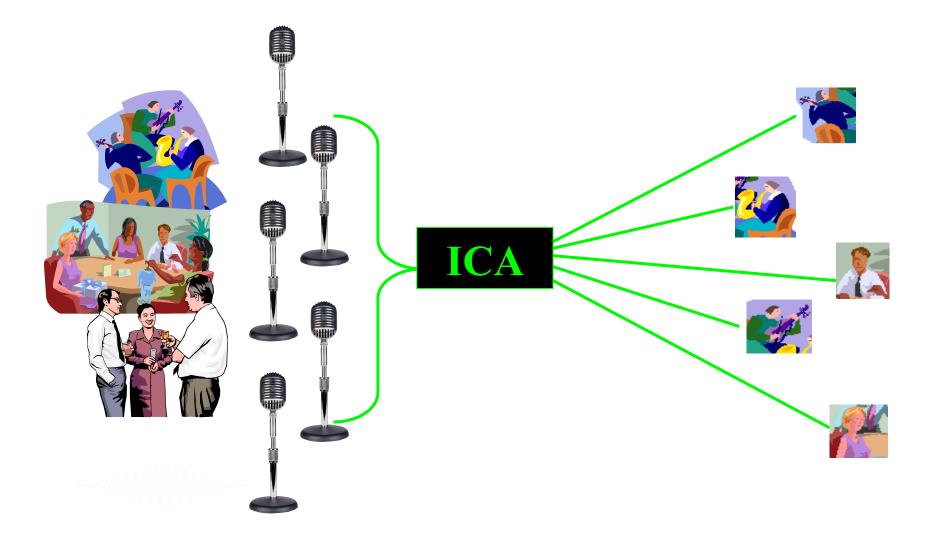
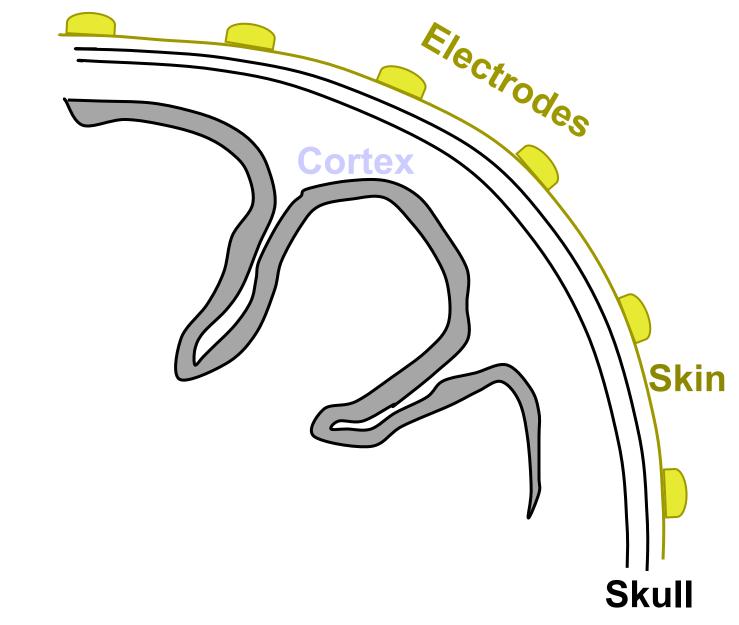
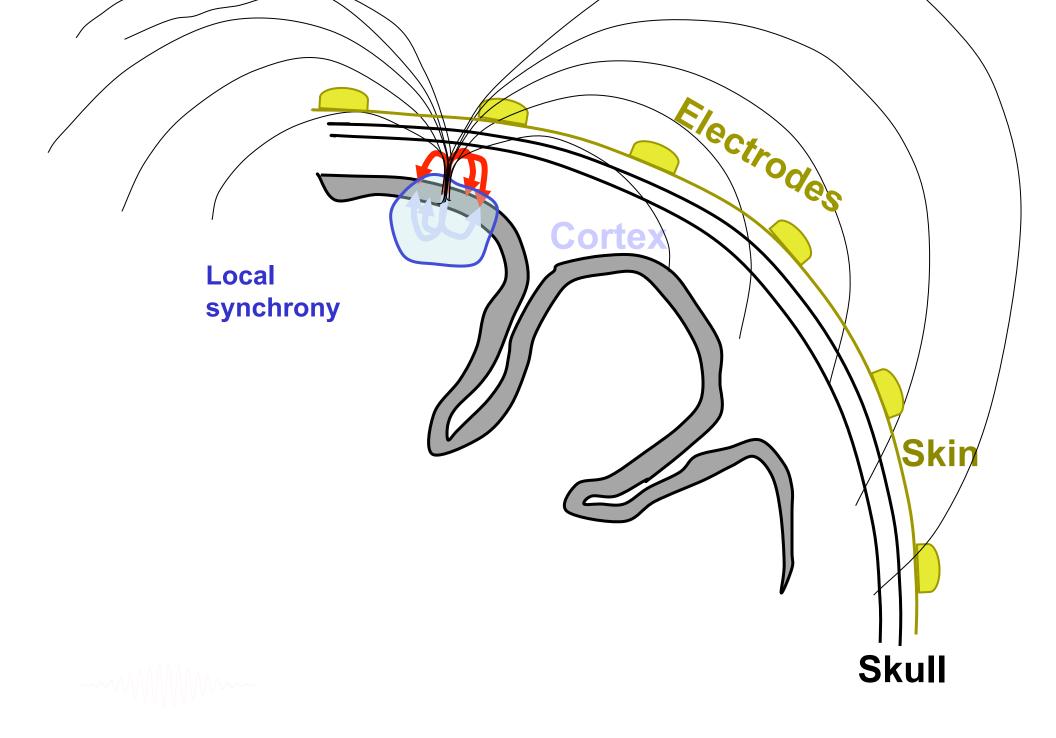
Independent component analysis applied to biophysical time series and EEG

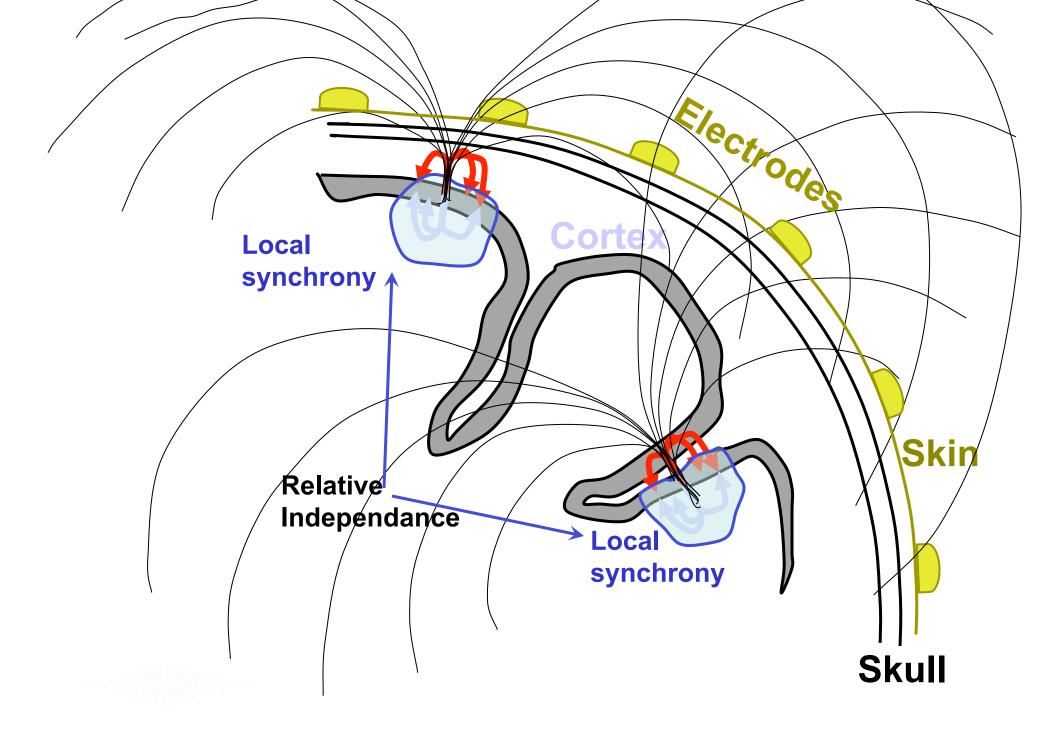
EEGLAB Workshop, Aspet, Arnaud Delorme

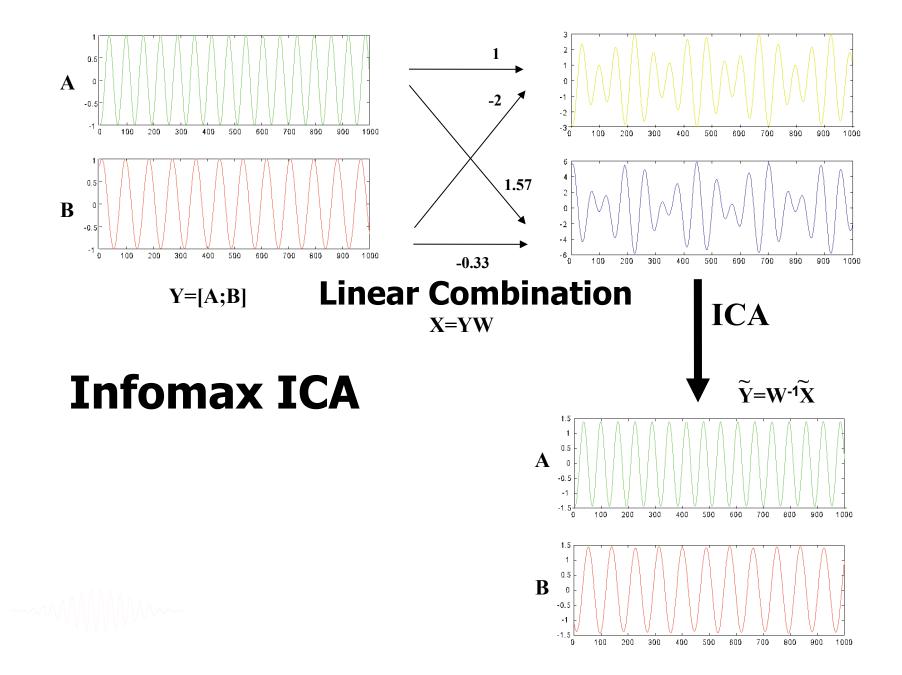
Example: Speech Separation





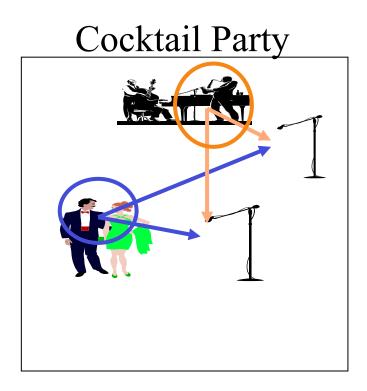


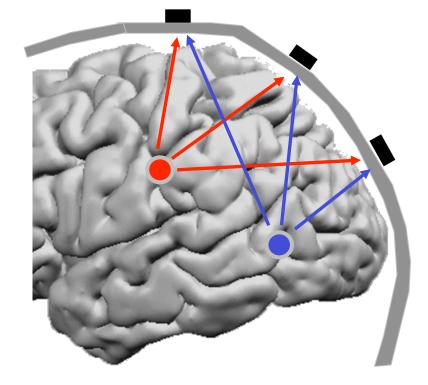


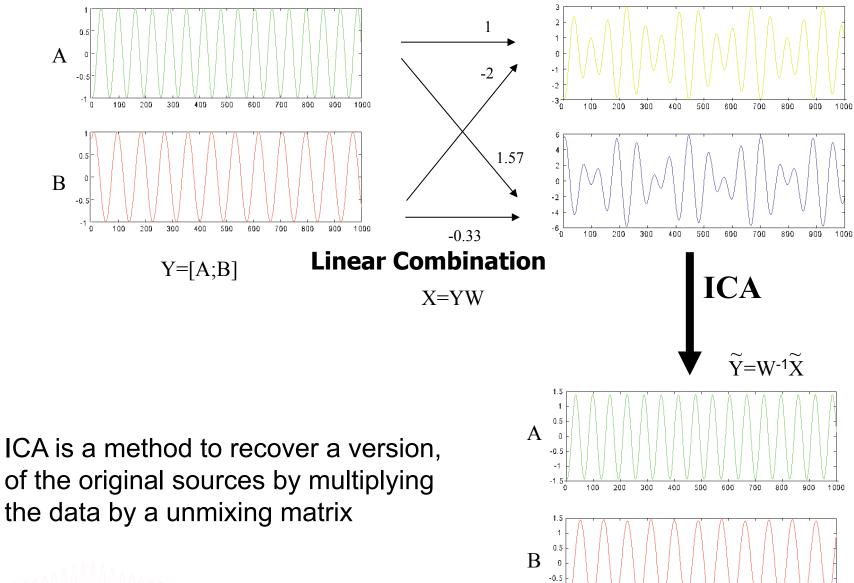


Independent component analysis

Mixture of Brain source activity







-1 -1.5

100

200 300

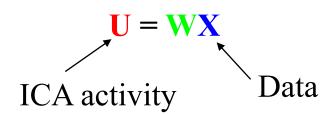
400

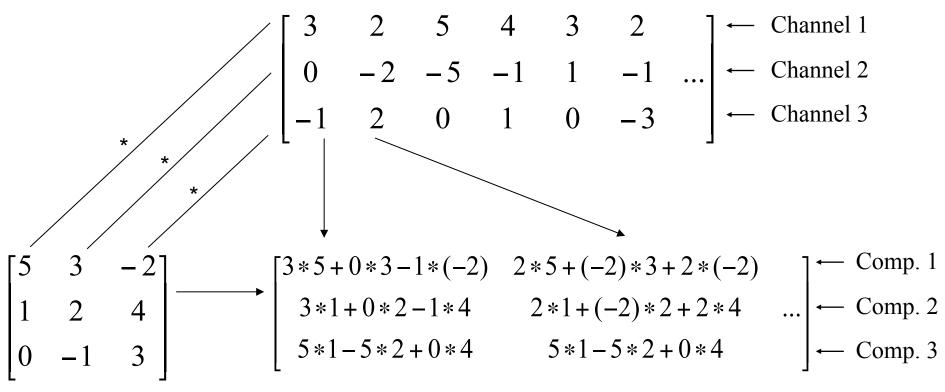
500 600

700

800 900

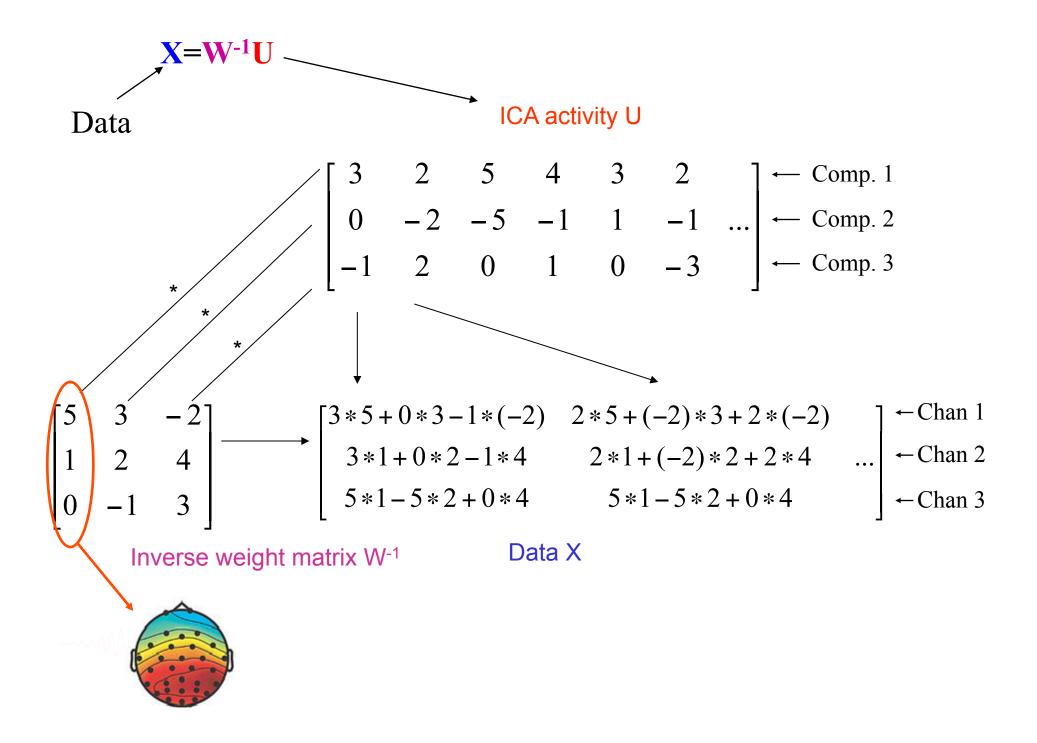
1000





Weight matrix W

ICA activity U



Historical Remarks

- Herault & Jutten ("Space or time adaptive signal processing by neural network models", *Neural Nets for Computing Meeting*, Snowbird, Utah, 1986): Seminal paper, neural network
- Bell & Sejnowski (1995): Information Maximization
- Amari et al. (1996): Natural Gradient Learning
- Cardoso (1996): JADE
- Applications of ICA to biomedical signals
 - EEG/ERP analysis (Makeig, Bell, Jung & Sejnowski, 1996).
 - fMRI analysis (McKeown et al. 1998)

ICA Theory – Cost Functions

Family of BSS algorithms

- Information theory (Infomax)
- Bayesian probability theory (Maximum likelihood estimation)
- Negentropy maximization
- Nonlinear PCA
- Statistical signal processing (cumulant maximization, JADE)

A unifying Information-theoretic framework for ICA

- Pearlmutter & Parra showed that InfoMax, ML estimation are equivalent.
- Lee et al. (1999) showed negentropy has the equivalent property to InfoMax.
- Girolami & Fyfe showed nonlinear PCA can be viewed from information-theoretic principle.

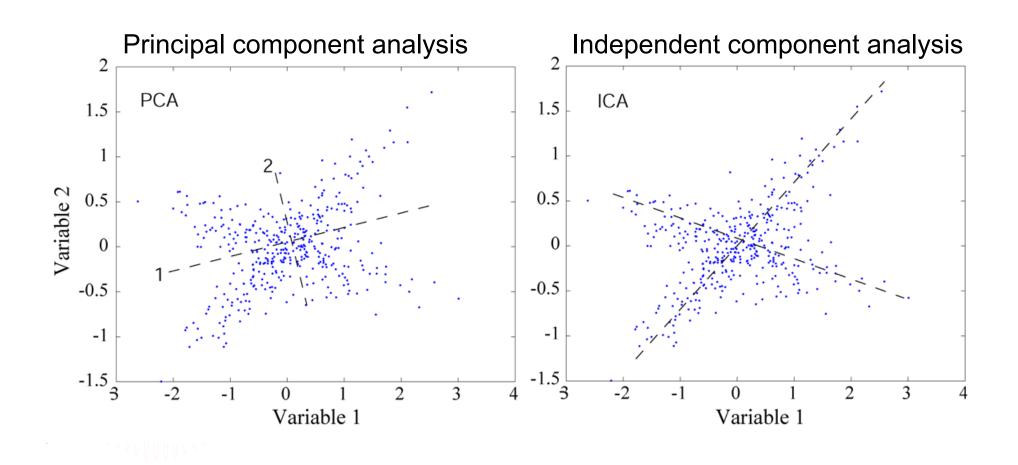
Independent Component Analysis

ICA is a method to recover a version, of the original sources by multiplying the data by a unmixing matrix,

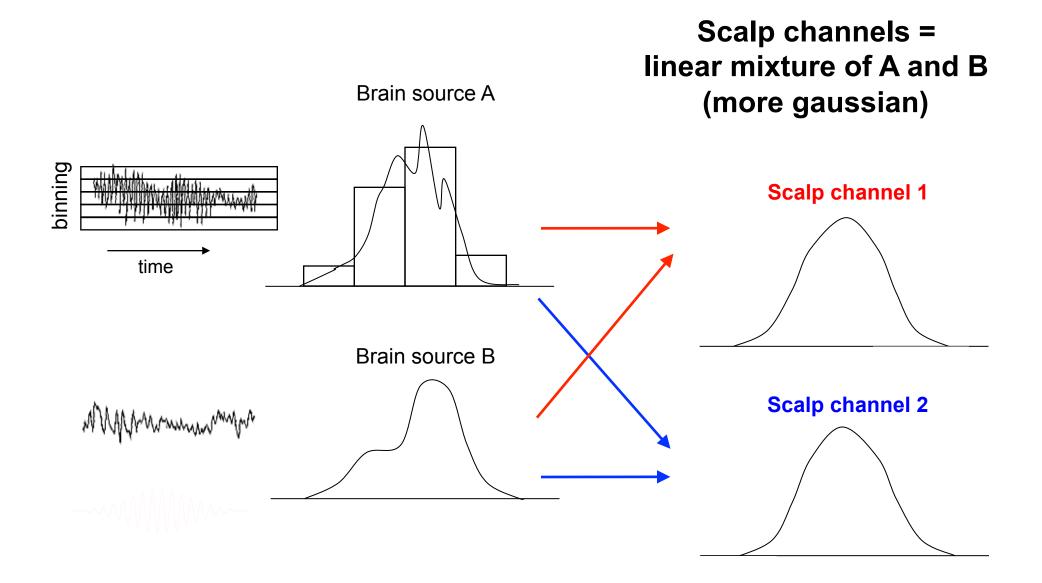
U= WX,

While PCA simply decorrelates the outputs (using an orthogonal matrix **W**), ICA attempts to make the outputs **statistically independent**, while placing no constraints on the matrix **W**.

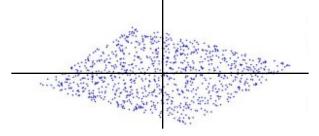
ICA and PCA



Central limit theorem



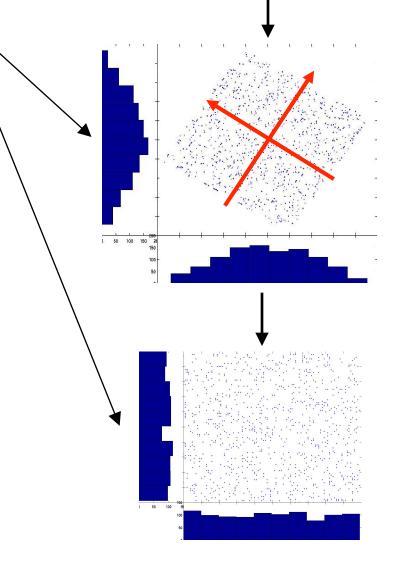
ICA Training Process



Central limit theorem

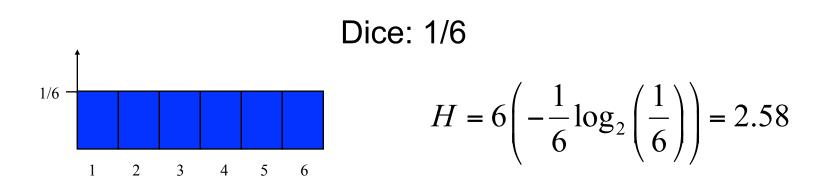
- Remove the mean
 x = x <x>
- 'Sphere' the data by diagonalizing its covariance matrix, x = <xx^T>^{-1/2}(x-<x>).
- Update W according to

 $\sim\sim\sim\wedge\Delta\mathbf{W}\proptorac{\partial H(\mathbf{y})}{\partial\mathbf{W}}\mathbf{W}^T\mathbf{W}$

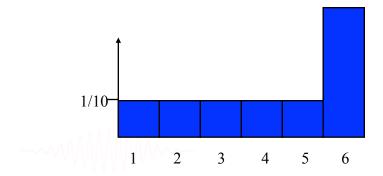


Entropy

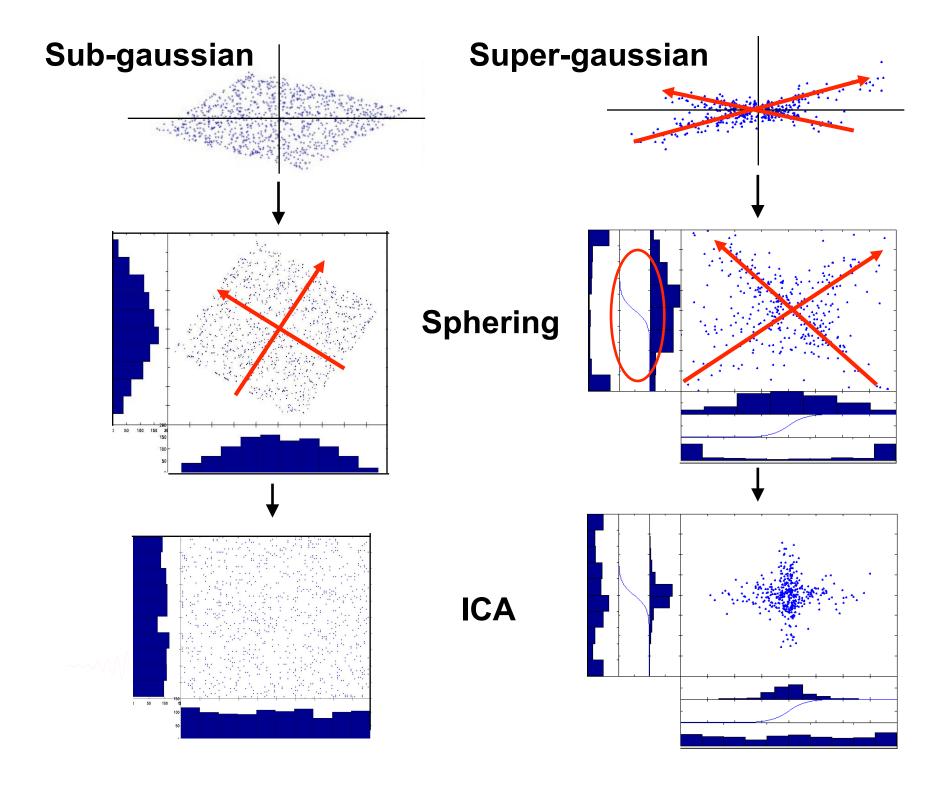
$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_b p(x).$$



Fake dice (make a 6 half of the time): entropy 2.16 (base 2)

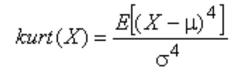


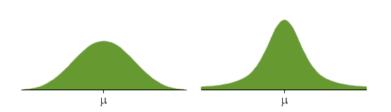
$$H = 5\left(-\frac{1}{10}\log_2\left(\frac{1}{10}\right)\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) = 2.16$$



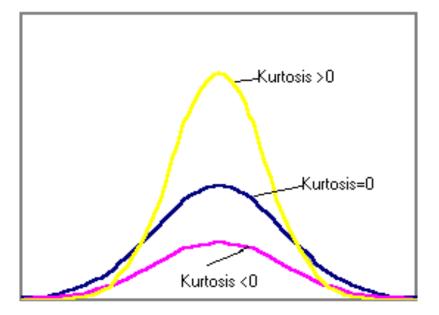
Kurtosis, Super- and Sub-Gaussian

Kurtosis: a measure of how peaked or flat of a probability distribution is.





Gaussian Dist. Kurtosis = 0 Super-Gaussian: kurtosis > 0 Sub-Gaussian: kurtosis < 0



Moments, Cumulants

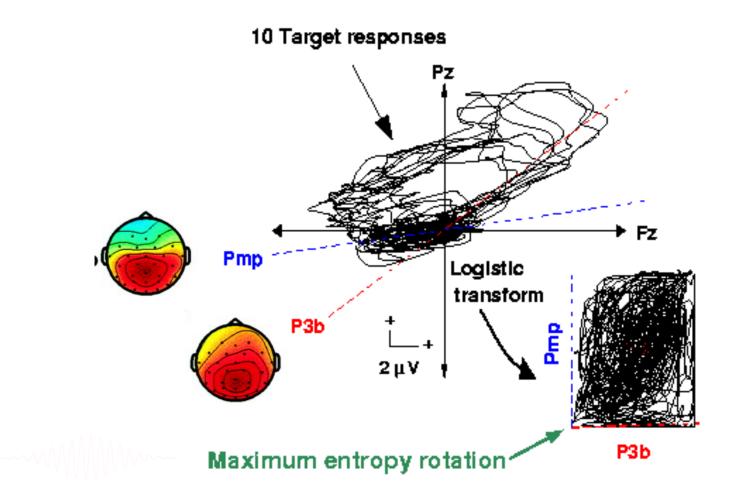
Moments

$$\mu_x(n) = E\{x^n\}$$

Central moments $m_x(n) = E\{(x - m_x)^n\}$

Cumulants	c_1	=	$m_1 = \mu$	•	mean
	c_2	=	$m_2 = \sigma^2$	•	variance
	c_3	=	m_3	←───	skewness
	c_4	=	$m_4 - 3m_2^2$	←	kurtosis

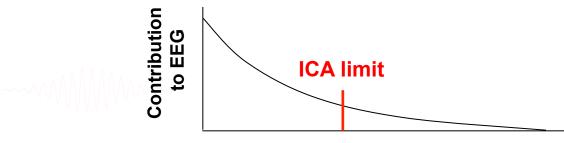
Independent components of EEG/ERP



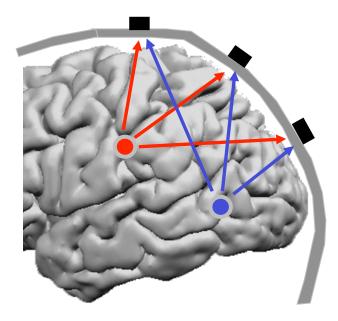
ICA/EEG Assumptions

OK

- Mixing is linear at electrodes **OK**
- Propagation delays are negligible
- Component time courses are
 independent
- Number of components less than the number of channels.



Number of independent components

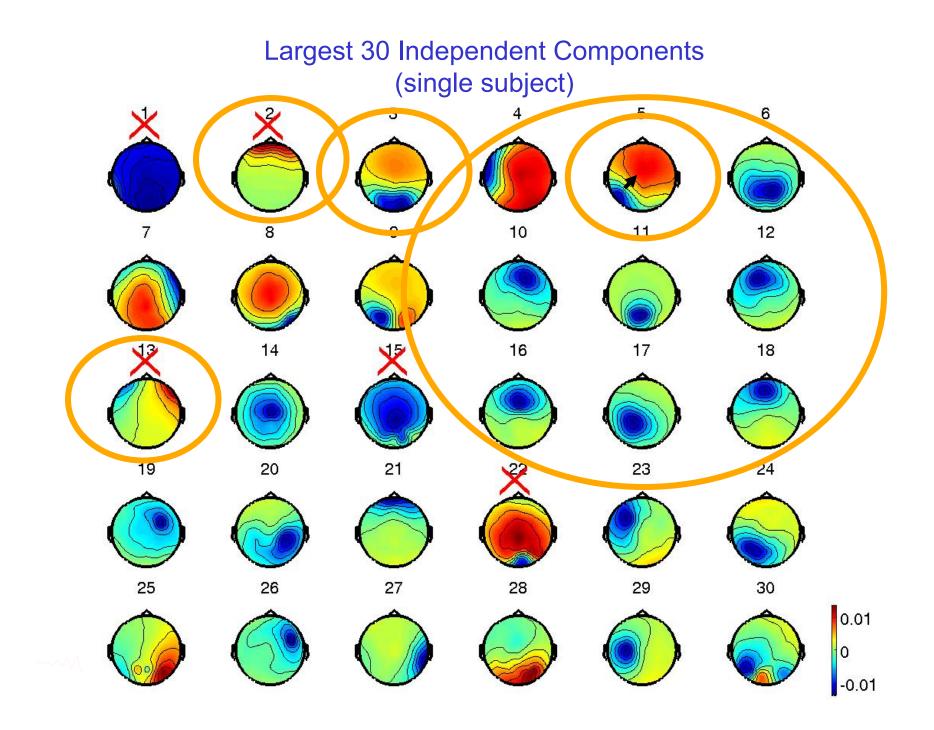


Independent Component Categories

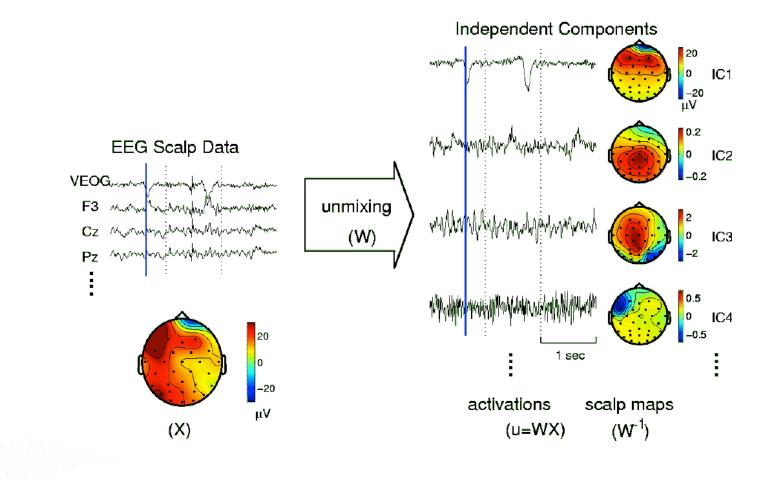
- Artifacts
- Stimulus-locked activity
- Response-locked activity
- Non-phase locked activity
- Event-modulated oscillatory activity

Characteristics of Independent Component of the EEG

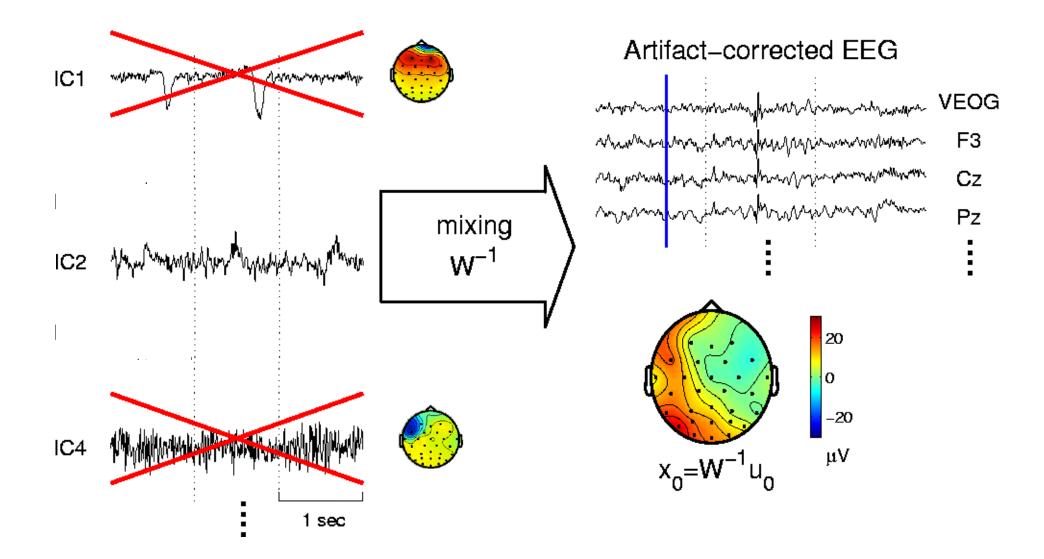
- Concurrent Activity
- Maximally Temporally Independent
- Overlapping Maps and Spectra
- Dipolar Scalp Maps
- Functionally Independent
- Between-Subject Regularity

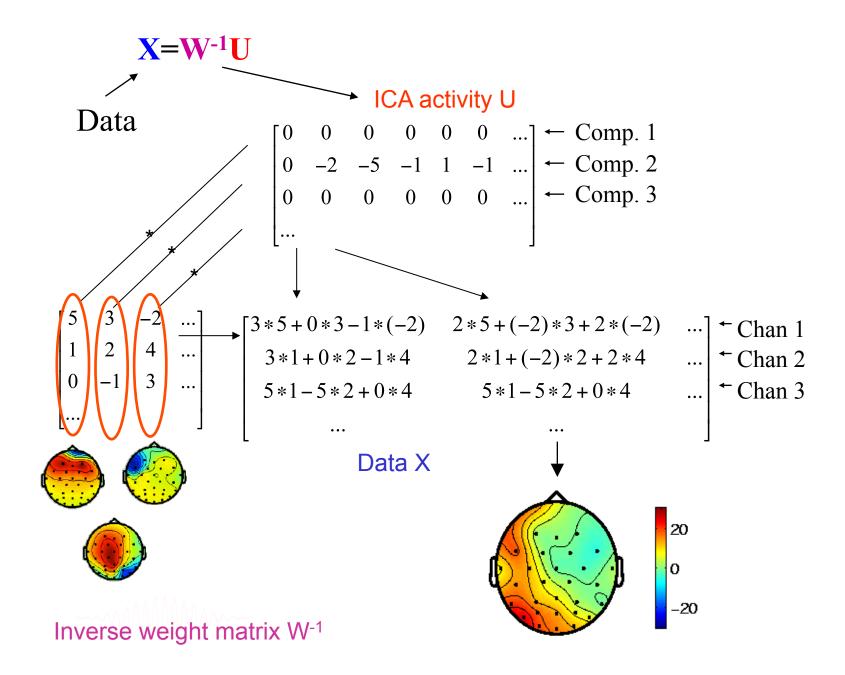


ICA Decomposition into Independent Components



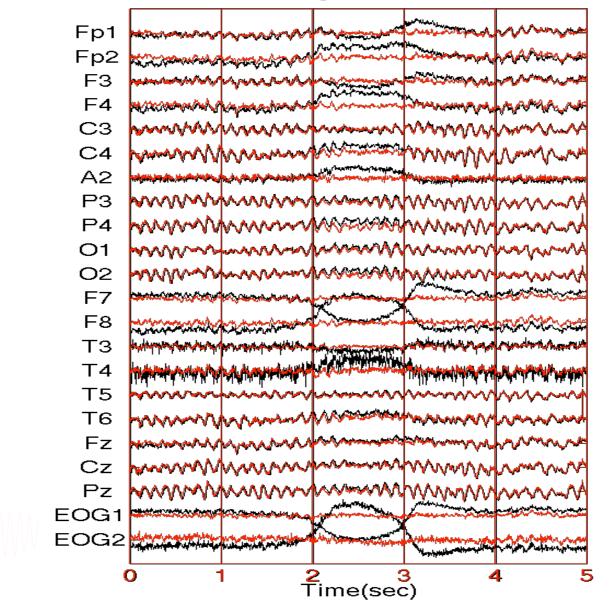
Selective Projection onto Scalp Channels



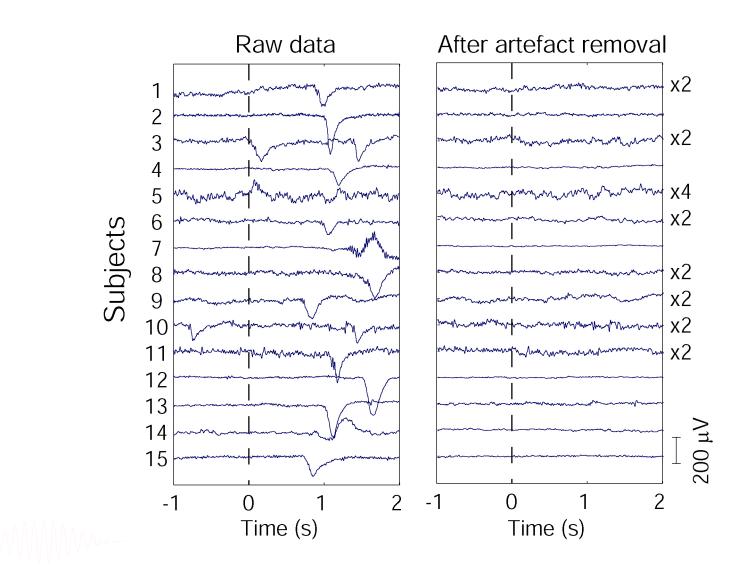


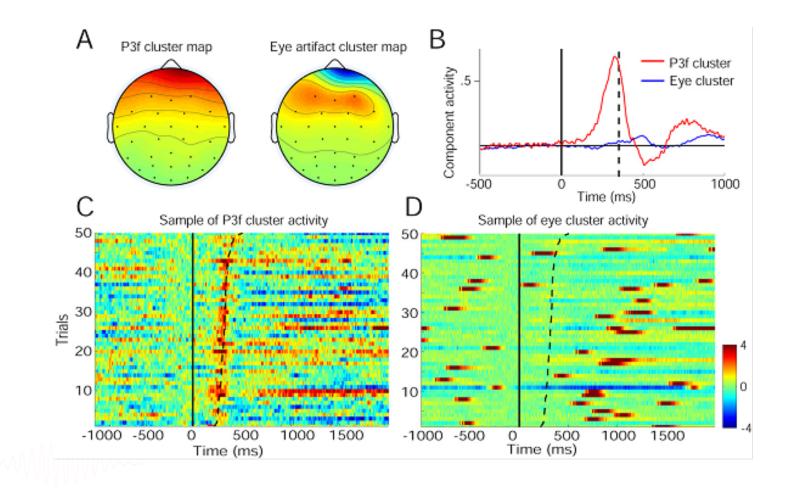
ICA-based Artifact Removal

Coriginal

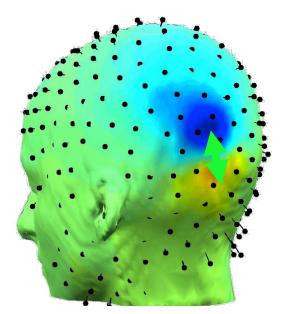


Artifact removal using ICA

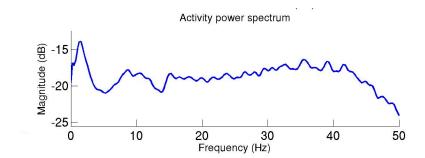


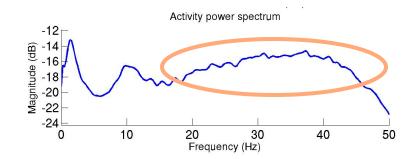


IC39



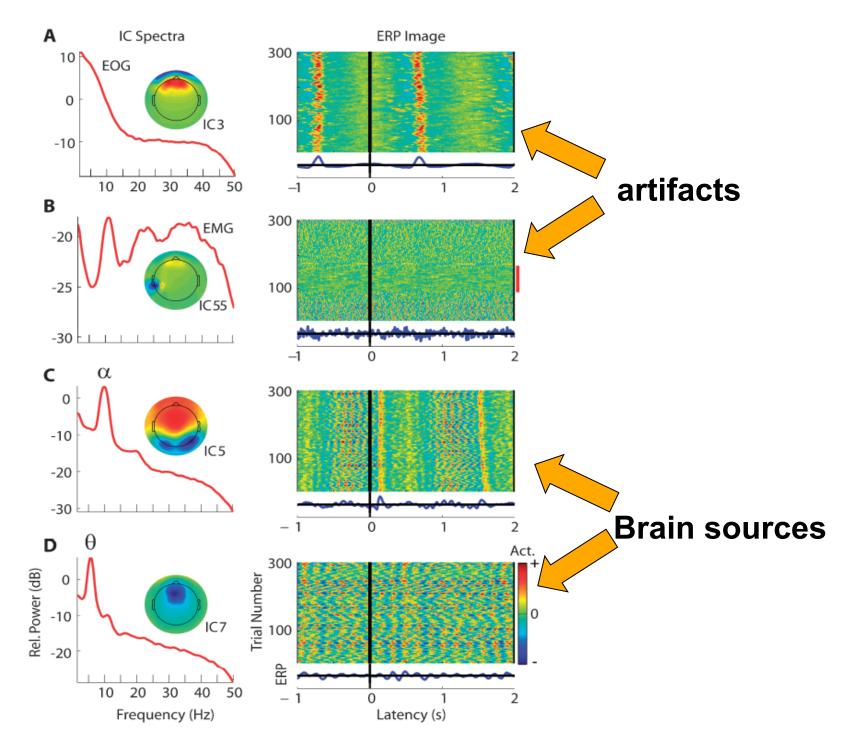
Two Neck Muscle Processes





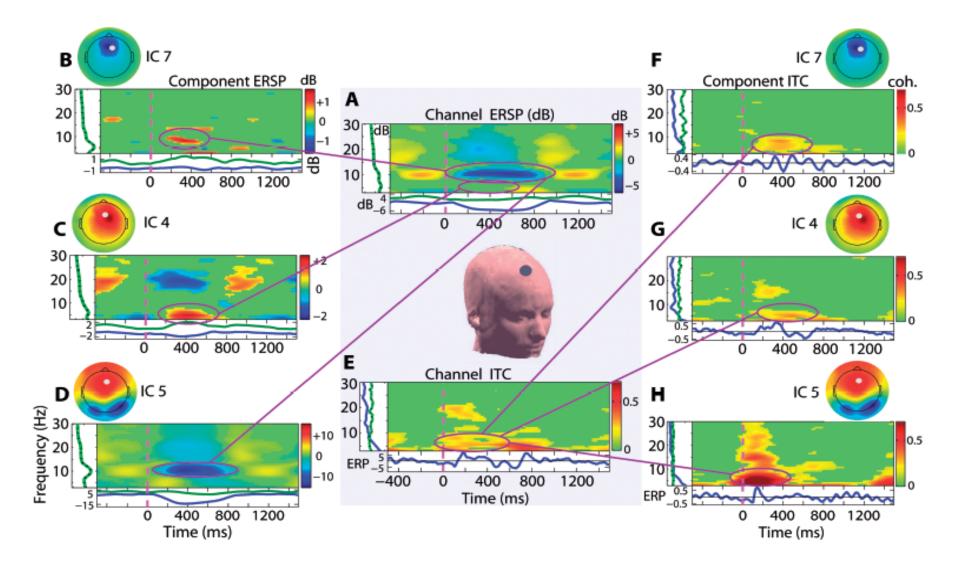
IC31

Some Independent EMG Components

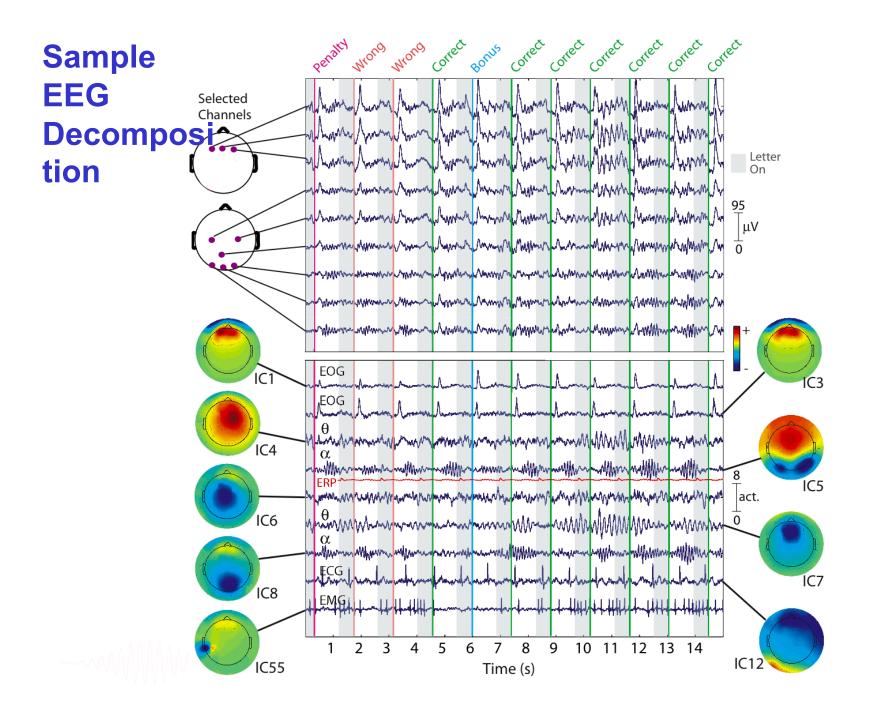


Credit: J. Onton

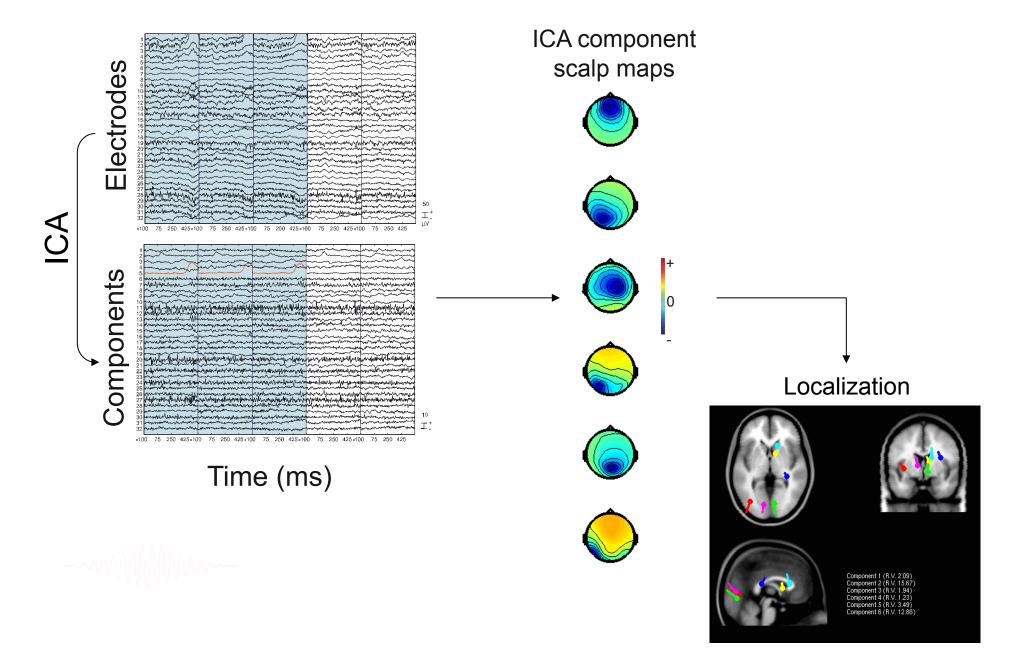
Why analyze source activity instead of channels?

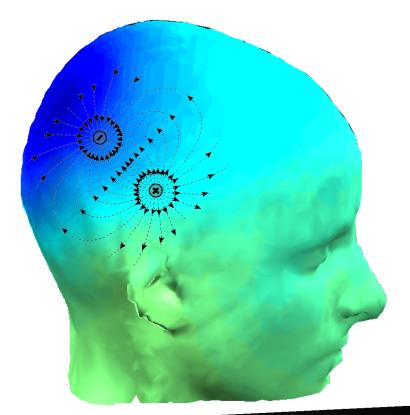


Credit: J. Onton



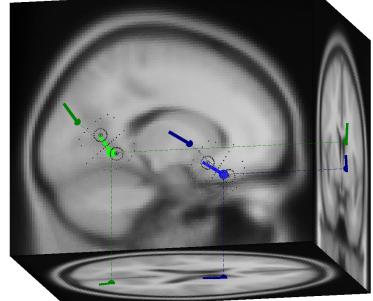
Localization

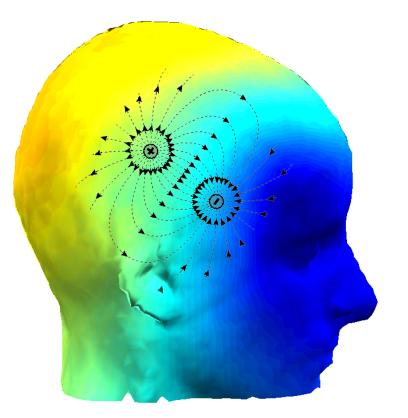


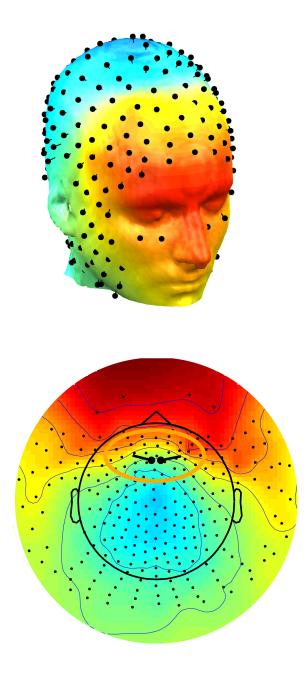


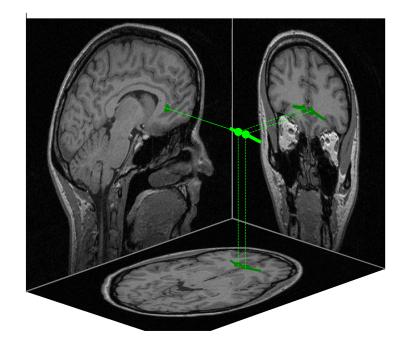
Dipolar Scalp Projections

ICA creates a spatial filter for each temporally independent source

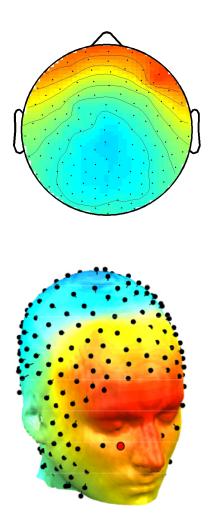




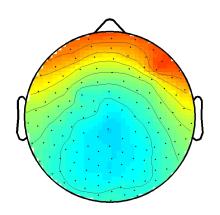


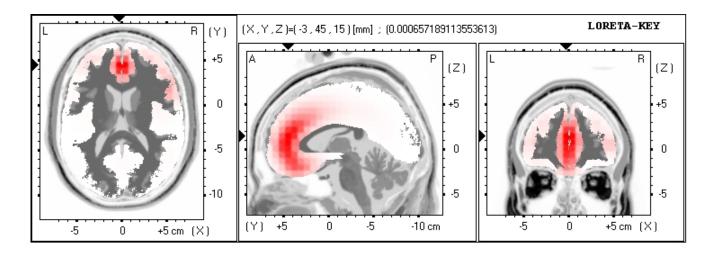


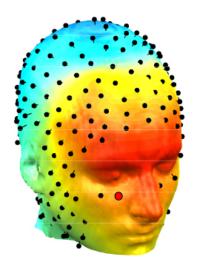
Localization of activity

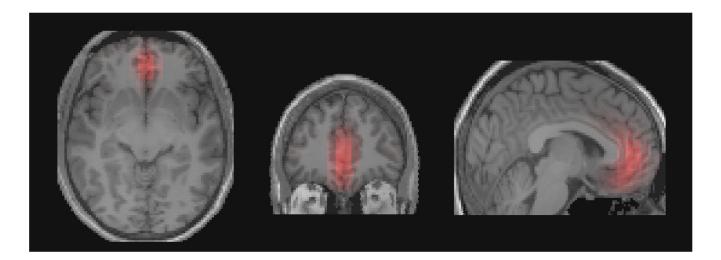


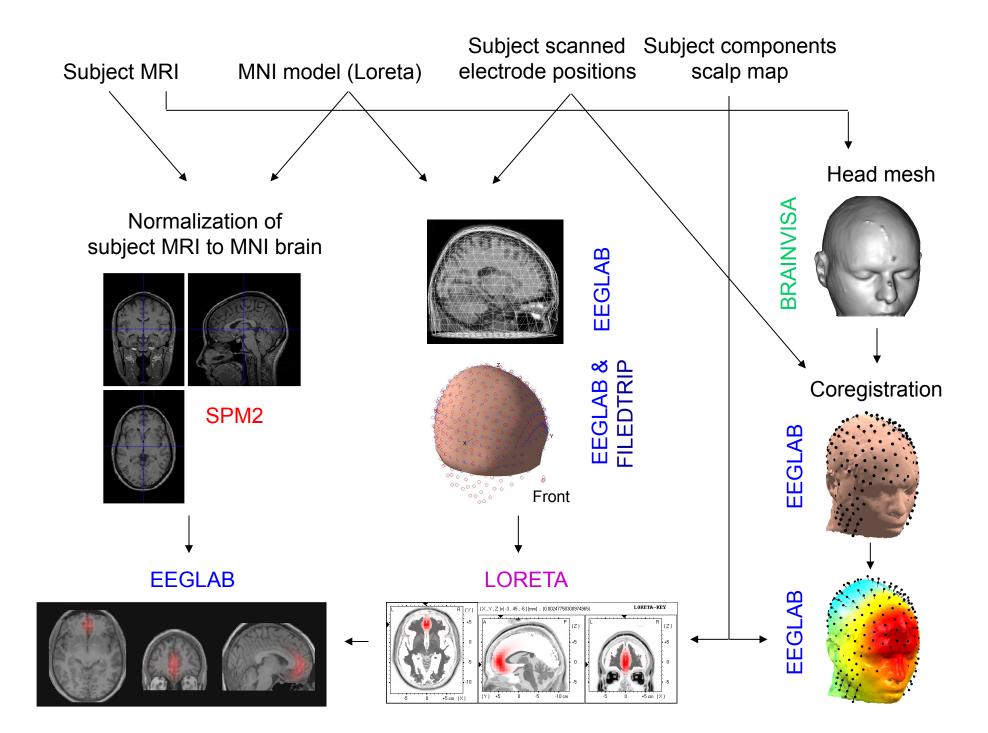
Localization of activity



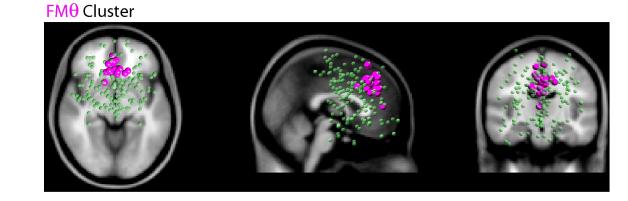


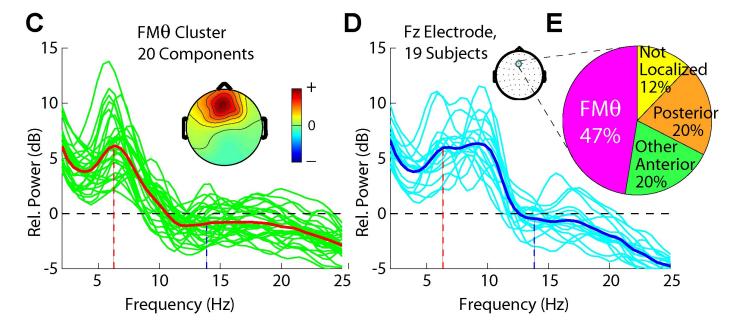






For example: frontal midline theta cluster

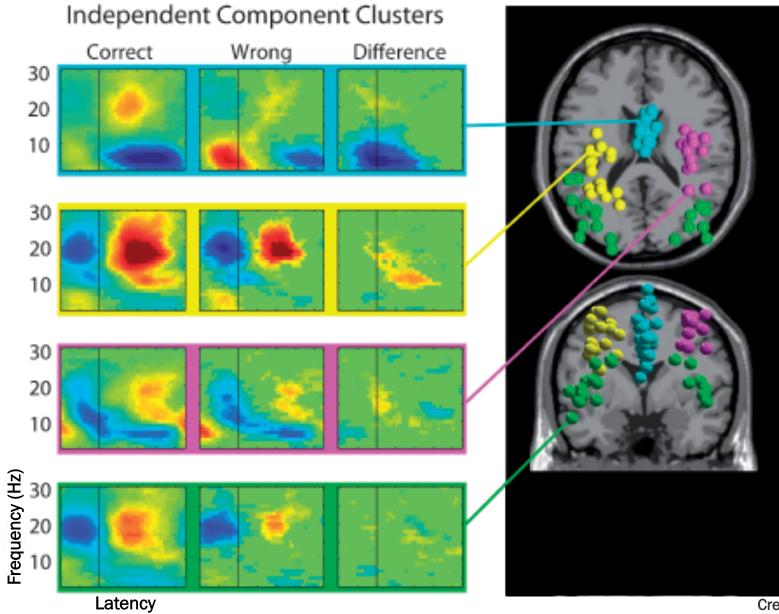




Β

Onton, Delorme and Makeig, NeuroImage 27 (2005) 341 - 356

Goal: to cluster matching ICs across subjects



Credit J. Onton

