STUDY design and plotting overview

STEP 1

Build a STUDY
STEP 2
Build design(s)

STEP 3

Precompute the data
STEP 4
Plot the data
Exercise...

Memory options

Memory options - pop_editoptions()

STUDY options (set these checkboxes if you intend to work with studies)

If set, keep at most one dataset in memory. This allows processing hundreds of datasets within studies.
If set, save not one but two files for each dataset (header and data). This allows faster data loading in studies.
If set, write ICA activations to disk. This speeds up loading ICA components when dealing with studies.

Memory options

If set, use single precision under Matlab $7 . x$. This saves RAM but can lead to rare numerical imprecisions.
If set, use memory mapped array under Matlab $7 . x$. This may slow down some computation.

ICA options

If set, precompute ICA activations. This requires more RAM but allows faster plotting of component activations.
If set, scale ICA component activities to RMS (Root Mean Square) in microvoll (recommended).
Import epoch info
V.

Import event info
Folder options
If set, when browsing to open a new dataset assume the folderidirectory of previous dataset.
∇.

Option file: C:VJsers'yulieiDocumentsiMATLABifunctionsladminfuncieeg_options.m

Create study
Load existing study
Save current study
Save current study as
Clear study
Memory and other options
Save history *
Quit

Memory options should change when using STUDY vs single dataset

Build a STUDY

Waty

Build a STUDY, cont'd

Edit dataset info

Experimental design

1×2 unpaired

Patients	Controls
Group A	Group B

1x2 paired
Stim A Stim B

2x2 unpaired

	Patients	Controls
Old	Group A	Group B
Young	Group C	Group D

enter for Computational
Neuroscience Neuroscience

2x2 paired \& unpaired
Patients
Controls

Drug A
Drug B

\square Dataset info (condition, group, ...) differs from study info. [set] = Overwrite dataset info.
\square Delete cluster information (to allow loading new datasets, set new components for clustering, etc.)

Build a STUDY, alternative method

Edit dataset info

Important note: Removed datasets will not be saved before being deleted from EEGLAB memory
$<$
Page 1 \square
\square Update dataset info - datasets stored on disk will be overwritten (unset = Keep study info separate).
Delete cluster information (to allow loading new datasets, set new components for clustering, etc.)

1x3 design

Create design

Select STUDY design

Audio versus light all subjects
All stimulus type - non dual subjects only
Add design
Blank versus other stimulus type - non dual subjects only
Audio preceeded by different stimulus types
Audio versus ligh accross sessions - non dual subjects only
Audio versus light accross presentation - non dual subjects only

Rename design
Delete design

Independent variable 2

None
group
${ }^{\text {group }}$ stimulusType
presentation
session
prevevent

Ind. var. 2 values

Combine selected values
Unpaired statistics *

Use only specific datasetsAtrialsDelete all datafiles associated with this STUDY designSave the STUDY

Select STUDY design

Audio versus light all subjects
All stimulus type - non dual subjects only
Blank versus other stimulus type - non dual subjects only

Add design
Rename design
Delete design

Independent variable 2

None
group
stimulusType
presentation
pression
session
prevevent
prevevent

Ind. var. 2 values

\square

Independent variable 1

None
group stimulusType
presentation
session
prevevent

Ind. var. 1 values
audio
$\frac{\text { blank }}{}$ both
both

Audio versus ligh accross sessions - non dual subjects only Audio versus light accross presentation - non dual subjects only

Subjects
c1
c2
c3
c4
c5
c6
c7
c8
nd1
nd2
nd3
nd4
nd5
nd6
nd7
nd8
Select all subjects

Use only specific datasetsAtrials $\quad \square$ 'stimulusType',\{'audio'\}Delete all datafiles associated with this STUDY designSave the STUDY

STUDY design and plotting overview

STEP 1
 Build a STUDY

STEP 2
Build design(s)

STEP 3

Precompute the data
STEP 4
Plot the data
Exercise...

Precompute data measures

Time range in ms [low high]
Plot scalp map at latency [ms]

- Plot first variable on the same panel

\square Plot second variable on the same panel

Statistical method to use
Parametric $\stackrel{\star}{*}$

ป Compute first variable statistics

\square Compute second variable statistics
\square Use single trials (when available)
\square Use False Discovery Rate to correct for multiple comparisons
STUDY name 'Sternberg' - 'S
Select channel to plot St
All ruo
All FT10
All FT10
All C5
All C3
All C1
All CZ
All C2 All CA

Time range in ms [low high]
Plot scalp map at latency [ms]

\downarrow Plot first variable on the same panel
\square Plot second variable on the same panel

Statistical method to use
Parametric $\stackrel{\star}{*}$

STUDY name 'Sternberg' - 'S

Select channel to plot
MII ruo
All FT1
All FT10
All C5
All C5
All C3

All CZ
All C2
All CA
Figure 4: Channel ERP

ERP - CZ

- Compute first variable statistics
\square Compute second variable statistics
Use single trials (when available)
ป Use False Discovery Rate to correct for multiple comparisons
\qquad

\downarrow Plot first variable on the same panel
\square Plot second variable on the same panel

Statist wal mu thod to use
Parametric \uparrow

Plot limits in uV [low high] Display filter in Hz [high]

STUDY name 'Sternberg' - '
Select channel to plot

S03 All	
S04 All	
S05 All	
S06 All	
S07 All	
S08 All	
S09 All	
	Plot ERP(s)
	Plot spectra
	Plot ERSP(s)
	Dint ITClel

\square \checkmark Con . oute first variable statistics \square Comp ite second variable statistics \square Use s ngle trials (when available) \checkmark Usr False Discovery Rate to correct for multiple comparisons

Computing Spectrum

 Swartz Swarizer orContation Computational

Select and compute component measures for later clustering -- pop_precomp()

Pre-compute channel measures for STUDY 'Sternberg' - 'STUDY.design 1'
Channel list (default:all)

List of measures to precompute

ERPs\downarrow
Power spectrum

Timeffreq. parameters
'cycles', [30.5], 'nfreqs', 100
Test
Use 'timerange' option to select time range, see "help std_spec"Save single-trial measures for single-trial statistics - requires disk spaceRecompute even if present on disk

Computing ERSP

Time range in ms [Low High] $\quad-5001000$ Plot scalp map at time [ms] Freq. range in Hz [Low High]

Power limits in dB [Low High] \square Plot scalp map at time [ms] Plot scalp map at freq. [Hz] ITC limit (0-1) [High]

\square Compute common ERSP baseline (assumes additive baseline)

2. Pre-compute measures

3. Cluster components

View and edit clusters

Plot cluster data

Study 'Attention': 181 of 181 components clustered
Choose
which
cluster

Create now cluster
Rename selected cluster
Merge clustersSave STUDY set to disk

Cancel
\square

Select component(s) to plot

Elie Edit Yiew Insert Iools Deskton Mindow Help

Plot cluster data

Choose which cluster

Study 'Attention': 181 of 181 components clustered
Save STUDY set to disk

Cancel
\square
\square

Select component(s) to plot

\section*{| All components |
| :--- |
| SO1 IC | 501 IC6}

S05 IC9
S06 IC. 12
Plot scalp map(s)

$$
\begin{aligned}
& \text { Params } \\
& \hline \text { Params } \\
& \hline \text { Params } \\
& \hline
\end{aligned}
$$

/home/julie/WorkshopSD2

Help
\qquad
 \square

Plot cluster data

000
Set ERP plotting parameters -- pop_erpparams()

묨 Ш

Time range in ms [low high] Plot scalp map at latency [ms]

Plot limits in UV [low high] Display filter in Hz [high]
Plot conditions on the same panePlot groups on the same panel

Statistical method to use

Parametric
 $\stackrel{\rightharpoonup}{*}$

Statistical threshold ($\mathrm{p}<$)Compute group staticsCompute group statisticsUse single trials (when available)Use False Discovery Rate to correct for multiple comparisons

Set spectrum plotting parameters -- pop_specparams()

Plot limits [low high]
Subtract individual subject mean spectrumPlot conditions on the same panelPlot groups on the same panel

\downarrow Compute ERSP baseline across conditions
Ш

Exercises

Suggestion for exercises:

Load stern.study in STUDY folder
From the GUI, plot grand average ERP for all channels.
Experiment with statistics.
Build a STUDY design to compare Ignore letter grouped with Memorize letter with Probe letters. Recompute spectrum and plot spectrum for electrode Fz using statistics. Do the same for the frontal midline component cluster (cluster 19).

