Time-Frequency Analysis of Biophysical Time series

June 20, 2011 Thirteenth EEGLAB Workshop, Aspet, France

Tim Mullen

(with majority of slides modified from those of Arnaud Delorme)

Frequency analysis

synchronicity of cell excitation determines amplitude and rhythm of the EEG signal

 30-60 Hz Gamma

 30-60 Hz Gamma

 18-21 Hz Beta

 9-11 Hz Alpha

4-7 Hz Theta

0.5-2 Hz Delta

1 second

Frequency analysis

monorphine Beta

MMM Theta

Manual March Delta

 $\sqrt{-1}$ Low Delta

Stationary signals

Stationary signal

By looking at the Power spectrum of the signal we can recognize three frequency Components (at 2,10,20Hz respectively).

Slide courtesy of Petros Xanthopoulos, Univ. of Florida

Fourier's Theorem

Nyquist frequency: Aliasing

e.g. 100 Hz signal sampled at 120 Hz

Euler's Formula

Euler's Formula

Euler's Formula

Fourier Transform

N = number of samples

Fast Fourier Transform (FFT)

Frequency

Spectral phase and amplitude

Spectral power

Non-Stationary Signals

• Bursts, chirps, evoked potentials, ...

Spectrogram or ERSP

Spectrogram or ERSP

Spectrogram or ERSP

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

Power spectrum and event-related spectral (perturbation)

Scaled to dB 10Log₁₀

Here, there are *n* trials

Each trial is time-locked to the same *event* (hence "event-related" spectrum) The ERS is the average power across event-locked trials

Absolute versus relative power

Wavelets factor

Time-frequency resolution trade off

High freq. resolution low time-resolution

Low freq. resolution high time-resolution

1 1 1

Time-frequency resolution trade off

Wavelet

Low freq. resolution high time-resolution

1 1 1

Time-frequency resolution trade off

Difference between FFT and wavelets

🚺 Figure No. 4 _ 🗆 🗵 File Edit Tools Window Help ▶ A ↗ / ��� ♡ 🗅 📂 🔚 🎒 Component 4 power and inter-trial phase coherence (EEG Data epochs) رصف 10 (Hz) 20 (Hz) 30 40 2 0 -2 -4 <u></u>_4 ₽ -10 30 -500 0 500 1000 1500 dВ

FFT

Pure wavelet

The Uncertainty Principle

A signal <u>cannot</u> be localized arbitrarily well <u>both</u> in time/ position <u>and</u> in frequency/ momentum.

There exists a lower bound to the *Heisenberg product:*

 $\Delta t \Delta f \ge 1/(4\pi)$

 $\Delta f = 1Hz, \Delta t = 80 \text{ msec or } \Delta f = 2Hz, \Delta t = 40 \text{ msec}$

Modified wavelets

Inter trial coherence (ITC)

Power and inter trial coherence

4

<u>F</u>ile

Evoked versus induced

- Evoked = ERSP of the average ERP
- Induced = usually standard ERSP
- Real induced
 - (1) standard ERSP with ERP regressed out of every trial
 - (2) standard ERSP minus ERSP of the average ERP scaled for averaging effect

In any case, looking at the ITC provides the amount of synchronization in the timefrequency decomposition that account for ERPs

Component time-frequency

cross-coherence amplitude and phase

2 components, comparison on the same trials

COHERENCE = mean(phase vector)

Event-related phase coherence

$$ERPCOH^{a,b}(f,t) = \frac{1}{n} \sum_{k=1}^{n} \underbrace{S_{k}^{a}(f,t)S_{k}^{b}(f,t)^{*}}_{S_{k}^{a}(f,t)S_{k}^{b}(f,t)}$$
Only phase information component b
Only phase information component a

Cross-coherence amplitude and phase

Distractor picture

Scalp channel coherence → source confounds!

source dynamics!

Plot data spectrum using EEGLAB

Exercise

• ALL

Start EEGLAB, from the menu load *sample_data/ eeglab_data_epochs_ica.set* or your own data (epoch, reject noise if not done already)

Novice

From the GUI, Plot spectral decomposition with 100% data and 50% overlap ('overlap'). Try reducing window length ('winsize') and FFT length ('nfft')

Intermediate

Same as novice but using a command line call to the *pop_spectopo()* function. Use GUI then history to see a standard call ("eegh").

Advanced

Same as novice but using a command line call to the *spectopo()* function.

Exercise - newtimef

Novice

From the GUI, pick an interesting IC and plot component ERSP. Try changing parameters window size, number of wavelet cycles, padratio,

• Intermediate

From the command line, use newtimef() to tailor your time/ frequency output to your liking. Look up the help to try not to remove the baseline, change baseline length and plot in log scale. Enter custom frequencies and cycles (2 slides back).

Advanced

Compare FFT, the different wavelet methods (see help), and multi-taper methods (use timef function not newtimef). Enter custom frequencies and cycles. Look up newtimef help to compare conditions. Visualize single-trial timef-frequency power using erpimage.

Advanced time-frequency functions

• Tftopo(): allow visualizing time-frequency power distribution over the scalp

Advanced time-frequency functions

 ERPimage: allow visualizing timefrequency power or phase in single trials

ERPimage

Across frequency study

$$APCOH^{a,b}(f_1, f_2, t) = \sum_{k=1}^{n} \left| F_k^a(f_1, t) \right| \frac{F_k^b(f_2, t)}{\left| F_k^b(f_2, t) \right|} / \sqrt{n \sum_{k=1}^{n} \left| F_k^a(f_1, t) \right|^2}$$

Dynamical brain movies

CM P3b P3f Ra ITC G -2 dB 400 600 Time (ms) 803 1300 1200 -400 -230 0 200 -406 ms

5 Hz

