Time-Frequency Analysis of Biophysical Time series

June 20, 2011 Thirteenth EEGLAB Workshop, Aspet, France

Tim Mullen
(with majority of slides modified from those of Arnaud Delorme)

Frequency analysis

synchronicity of cell excitation determines amplitude and rhythm of the EEG signal

WOOMOMOMODNON
30-60 Hz Gamma

18-21 Hz Beta

9-11 Hz Alpha

4-7 Hz Theta
0.5-2 Hz Delta

1 second

Frequency analysis

Stationary signals

Stationary signal

Stationary

By looking at the Power spectrum of the signal we can recognize three frequency Components (at $2,10,20 \mathrm{~Hz}$ respectively).

Fourier's Theorem

Nyquist frequency: Aliasing

e.g. 100 Hz signal sampled at 120 Hz

> Alias (20 Hz)

Nyquist Frequency:
Max frequency that can be uniquely recovered at sampling rate of f_{s}

$$
f_{N}=f_{s} / 2
$$

$$
\begin{aligned}
& f_{\text {alias }}(N)=\left|f+N f_{s}\right| \\
& f_{s}=\text { sampling rate }
\end{aligned}
$$

Euler's Formula

phase shift angular frequency
instantaneous complex power (amplitude and

Euler's Formula

phase shift angular frequency $\theta=\pi / 2 \quad \omega=2 \pi f$
instantaneous complex power (amplitude and

Euler's Formula

phase shift angular frequency

$$
\theta=\pi / 2 \quad \omega=2 \pi f
$$

instantaneous complex power (amplitude and phase)

Another version:
$e^{i(\omega t+\theta)}=\cos (\omega t+\theta)+i \sin (\omega t+\theta)$

Real part
Cosine component

Imaginary part
Sine component
$\theta=\angle S(\omega, t)$

$$
=\operatorname{Re}\left\{A e^{i(\omega t+\theta)}\right\}=\operatorname{Re}\{S(\omega, t)\}
$$

$$
\searrow
$$

Phasers
 $$
\left\{\begin{array}{l} \text { ZAP } \\ Z \sim W \end{array}\right.
$$

Rotation velocity ($\mathrm{Rad} / \mathrm{S}$; Hz)
$=$ (angular) frequency ($w ; f$)

Phasors

$$
\begin{aligned}
A \cdot \cos (\omega t+\theta) & =\operatorname{Re}\left\{A e^{i(\omega t+\theta)}\right\} \\
& =\operatorname{Re}\{S(\omega, t)\}
\end{aligned}
$$

Polar animations courtesy Wikipedia

Fourier Transform

Time \rightarrow Frequency

Forward transform
$S(f)=\frac{1}{N} \sum_{t=0}^{N-1} x(t) e^{-2 \pi i t / t N}$

N = number of samples

Frequency \rightarrow Time

Inverse transform

$$
x(t)=\frac{1}{N} \sum_{f=0}^{N} S(f) e^{2 \pi i f / N}
$$

Tapered sinusoid

Performing Fourier transform by convolution with a (optionally tapered) complex sinusoid

Tapering

$f(x)$

Tapering
Smoothly decay signal to zero at endpoints to avoid discontinuity

Gibbs Phenomenon "Rippling" effect due to discontinuities in signal (e.g. edges of the truncated signal)

Frequency Response

Spectral phase and amplitude

Spectral phase and amplitude

Average of squared absolute values

The Welch method

Spectral power

Average of squared amplitudes

The Welch method

Non-Stationary Signals

- Bursts, chirps, evoked potentials, ...

Spectrogram or ERSP

Spectrogram or ERSP

Spectrogram or ERSP

Power spectrum and event-related spectral (perturbation)

$$
E R S(f, t)=\frac{1}{n} \sum_{\substack{k=1 \\ \text { Ensemble } \\ \text { average }}}^{n}\left|S_{k}(f, t)\right|^{2}
$$

Scaled to dB $10 \log _{10}$
Here, there are n trials
Each trial is time-locked to the same event (hence "event-related" spectrum) The ERS is the average power across event-locked trials

Absolute versus relative power

To compute the ERSP, we just subtract the prestimulus ERS from the whole trial

Wavelets factor

Wavelet (0)= FFT

Wavelet (1)

1 Hz

$2 \mathrm{~Hz} \cdots \sim \sqrt{ }$

Time-frequency resolution trade off

Wavelet

High freq. resolution
low time-resolution

Low freq. resolution high time-resolution

Time-frequency resolution trade off

Wavelet

High freq. resolution
low time-resolution

Low freq. resolution high time-resolution

Time-frequency resolution trade off

High freq. resolution
low time-resolution

Wavelet

Low freq. resolution high time-resolution

Difference between FFT and wavelets

FFT

The Uncertainty Principle

A signal cannot be localized arbitrarily well both in time/ position and in frequency/ momentum.

There exists a lower bound to the Heisenberg product:

$$
\Delta t \Delta f \geq 1 /(4 п)
$$

$$
\Delta f=1 \mathrm{~Hz}, \Delta t=80 \mathrm{msec} \text { or } \Delta f=2 \mathrm{~Hz}, \Delta t=40 \mathrm{msec}
$$

Modified wavelets

Wavelet (0.8)

Wavelet (0.5)

$$
C_{f \max }=\frac{f_{\max }}{f_{\min }} C_{\min }(1-q)
$$

Wavelet (0.2)

mMOMMM
muMODMDMMrm

Inter trial coherence (ITC)

same time, different trials

complex numerator
Phase ITC

$$
\operatorname{ITPC}(f, t)=\frac{1}{n} \sum_{k=1}^{n} \frac{S_{k}(f, t)}{\left|S_{k}(f, t)\right|}
$$

Normalized
(no amplitude information)

complex numerator
Phase ITC

$$
\operatorname{ITPC}(f, t)=\frac{1}{n} \sum_{k=1}^{n} \frac{S_{k}(f, t)}{\left|S_{k}(f, t)\right|}
$$

Normalized
(no amplitude information)

Power and inter trial coherence

Attend left-stim left

ITC

Attend left-stim right

ITC

Difference

ITC

APlot component time frequency -- pop_newtimef()

Component number

Sub epoch time limits [min max] (msec)
Frequency limits [min max] (Hz) or sequence
Baseline limits [min max] (msec) (0->pre-stim.)
Wavelet cycles [min maxffact] or sequence
ERSP color limits [max] (min=-max)
ITC color limits [max]
Bootstrap significance level (Ex: 0.01 -> 1\%)
Optional newtimef() arguments (see Help)
Plot Event Related Spectral Power
\checkmark Plot Inter Trial Coherence
Filename: r Channels p
Frames per Epochs
Events
Sampling ra Epoch start Epoch end Average refe Channel loc ICA weights Dataset size

File Edit View Insert Tools Desktop 魚indow Help

Inerease

1	\# freq bins		
-1000 1996	Us-200 ${ }^{\text {unlumpoints }}$	\checkmark	\square Log spaced
	Use limits, padding 1	\checkmark	
0	Use civisive baseline	\checkmark	\square No baseline
30.5	Use limits	\checkmark	\square Use FFT
	\square see log power (set)		
	\square plot ITC phase (set)		
	\square FDR correct (set)		

Sub epoch time limits [min max] (msec)
Frequency limits [min max] (Hz) or sequence
Baseline limits [min max] (msec) (0->pre-stim.)
Wavelet cycles [min max/fact] or sequence
ERSP color limits [max] (min=-max)
ITC color limits [max]
Bootstrap significance level (Ex: 0.01 -> 1\%)
Optional newtimef() arguments (see Help)

-1000 1996	Use 200 time points	\checkmark	Log spacedNo baselineUse FFT
	Use limits, padding 1	\checkmark	
0	Use divisive baseline	\checkmark	
30.5	Use limits	\checkmark	
	\square see log power (set)		
	\square plot ITC phase (set)		
-	\square FDR correct (set)		
tphase',)		

Evoked versus induced

- Evoked = ERSP of the average ERP
- Induced = usually standard ERSP
- Real induced
(1) standard ERSP with ERP regressed out of every trial
(2) standard ERSP minus ERSP of the average ERP scaled for averaging effect

In any case, looking at the ITC provides the amount of synchronization in the timefrequency decomposition that account for ERPs

Component time-frequency

cross-coherence amplitude and phase

2 components, comparison on the same trials

Event-related phase coherence

$$
\operatorname{ERPCOH}^{a, b}(f, t)=\frac{1}{n} \sum_{k=1}^{n} \frac{S_{k}^{a}(f, t) S_{k}^{b}(f, t)^{*}}{S_{k}^{a}(f, t)\| \|_{k}^{b}(f, t)}
$$

Only phase information component a

Cross-coherence amplitude and phase

Two EEG channels

Cortex

Scalp channel coherence \rightarrow source confounds!

MANY EEG channels

Separate out Independent EEG Components
source dynamics!

Plot data spectrum using EEGLAB

$\begin{array}{ll}\text { 'winsize', } 256 & \text { (change FFT window length) } \\ \text { 'nfft', 256 } & \text { (change FFT padding) } \\ \text { 'overlap', } 128 & \text { (change window overlap) }\end{array}$

Exercise

- ALL

Start EEGLAB, from the menu load sample_data/ eeglab_data_epochs_ica.set
or your own data (epoch, reject noise if not done already)

- Novice

From the GUI, Plot spectral decomposition with 100% data and 50% overlap ('overlap'). Try reducing window length ('winsize') and FFT length ('nfft')

- Intermediate

Same as novice but using a command line call to the pop_spectopo() function. Use GUI then history to see a standard call ("eegh").

- Advanced

Same as novice but using a command line call to the spectopo() function.

Exercise - newtimef

- Novice

From the GUI, pick an interesting IC and plot component ERSP. Try changing parameters window size, number of wavelet cycles, padratio,

- Intermediate

From the command line, use newtimef() to tailor your time/ frequency output to your liking. Look up the help to try not to remove the baseline, change baseline length and plot in log scale. Enter custom frequencies and cycles (2 slides back).

- Advanced

Compare FFT, the different wavelet methods (see help), and multi-taper methods (use timef function not newtimef). Enter custom frequencies and cycles. Look up newtimef help to compare conditions. Visualize single-trial timef-frequency power using erpimage.

Advanced

time-frequency functions

- Tftopo(): allow visualizing time-frequency power distribution over the scalp

Advanced

time-frequency functions

- ERPimage: allow visualizing timefrequency power or phase in single trials

ERPimage

Across frequency study

$$
A P C O H{ }^{a, b}\left(f_{1}, f_{2}, t\right)=\sum_{k=1}^{n}\left|F_{k}^{a}\left(f_{1}, t\right)\right| \frac{F_{k}^{b}\left(f_{2}, t\right)}{\left|F_{k}^{b}\left(f_{2}, t\right)\right|} / \sqrt{n \sum_{k=1}^{n}\left|F_{k}^{a}\left(f_{1}, t\right)\right|^{2}}
$$

Subjects

Clustering across subjects

Brain dynamic movie

Dipole density

Spectral analysis

Dynamical brain movies

5 Hz

Cross-coh amplitude RT lock ($p=0.01$)

