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Biophysics of EEG

Hans Berger (1873-
1971)

Synchronicity of cell excitation (due to recurrent cortico-cortical and
cortico-thalamo-cortical projections) determines amplitude and
rhythm of the EEG signal
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Common Oscillatory Modes in EEG

1 second

4-7 Hz Theta

9-11 Hz Alpha

18-21 Hz Beta

30-60 Hz Gamma

0.5-2 Hz Delta

Simulated Real



Sinusoids

θ = π / 2

A=1.2

t

ω = 2π f = 2π  rad/sec

phase shift angular frequency

1.2

-1.2

0 π/2 π 3π/2 2π-π/2
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Wide-sense stationary signals

The first and second moments (mean and
variance) of the data distribution do not
depend on time.



Wide-sense stationary signals
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Slide courtesy of Petros Xanthopoulos, Univ. of Florida
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By looking at the power spectrum of the signal we can observe three frequency 
components (at 2Hz, 10Hz, and 20Hz respectively).

Power spectrum 
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Wide-sense stationary signals



Fourier’s Theorem

Any stationary, continuous 
process can be exactly 
described by an infinite 
sum of sinusoids of 
different amplitudes and 
phases. 

pseudospectrum a well-defined region of the complex plane, which can in gen-

eral be quite different from the spectrum. The significance of the pseudospec-

trum is that if the original matrix is perturbed by a small amount, then the

perturbed eigenvalues are scattered in the region described by the pseudospec-

trum. The initial growth phenomenon described above can also be related to

the pseudospectrum. For more details, the interested reader is referred to the

definitive text on pseudospectra by Trefethen and Embree.7

5.3 Fourier Analysis

Fourier (fig. 5.2) analysis plays a central role in signal processing. The reasons

for this are many: some are mathematical, but other reasons arise from the

nature of signals that one observes in the world. Fourier representations are

ubiquitous in physics; this may be epitomized by the fact that even the unit of

time is defined via frequency, based on a narrow spectral peak corresponding to

an atomic resonance. The invariance of physical laws under translational in-

variance in space and time directly lead to the use of Fourier representations in

terms of spatial and temporal frequencies.

Fourier analysis has also played an important role in neuroscience, partic-

ularly in vision and audition. The responses of neurons in early visual and

auditory areas are formulated in terms of functions which have various degrees

of localization in the Fourier domain. Nevertheless, it is often believed that

Fourier analysis is useful only for analyzing ‘‘linear’’ systems, and that bio-

Figure 5.2: French mathematician and physicist Jean Baptiste Joseph Fourier
(1767–1830) developed the theory of Fourier expansions in his studies of heat
conduction. Fourier actively participated in the French Revolution and held a
variety of military and administrative positions.

7. L. N. Trefethen, M. Embree. Spectra & Pseudospectra: The Behavior of Nonnormal Matrices. Princeton,
NJ: Princeton University Press, 2005.
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Jean Baptiste Joseph Fourier 
(1768 –1830)



Figure, courtesy of Ravi Ramamoorthi & Wolberg
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Aliasing and the Nyquist Frequency

1 cycle

Signal: f = 100 Hz

Sampling: fs = 80 Hz

Alias: falias(N) = 20 Hz

falias (N ) = f − Nfs
fs = sampling rate

fN = fs / 2

Nyquist Frequency:

The maximum frequency that can be uniquely 
recovered at a sampling rate of fs

Quiz: What is N in the 
example above?

Alias: falias(N) = 60 Hz

Quiz: What should fN be for f =100Hz?



Euler’s Formula

θ = π / 2

A=1.2

t

= Re{Aei(ωt+θ )} = Re{S(ω, t)}

ω = 2π f = 2π  rad/sec
phase shift angular frequency

1.2

-1.2
0 π/2 π 3π/2 2π-π/2

A ⋅cos(ωt +θ ) = A
2
ei(ωt+θ ) + A

2
e−i(ωt+θ )

any real-valued sinusoid can be expressed as the sum 
of two complex numbers...

θ = ∠S(ω, t)
      = π / 2S(ω ,t) = A

Phasor

Amplitude

Phase

𝐴𝑒#(%&'()

phasor
𝐴𝑒#(Shorthand phasor notation:



Phasors

animations courtesy Wikipedia

Rotation velocity (Rad/S; Hz)
= (angular) frequency (w; f)

θ = ∠S(ω, t)
      = π / 2S(ω ,t) = A

Phasor

Amplitude

Phase

𝐴𝑒#(%&'()



Euler’s Formula

ei(ωt+θ ) = cos(ωt +θ )+ isin(ωt +θ )

Imaginary part
Sine  component

Real part
Cosine  component

Another view: a phasor as a complex sinusoid



Phasors: Example
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Discrete Fourier Transform

Forward transform

S( f ) = 1
N

x(t)
t=0

N−1

∑ e−2πift/N

N = number of samples Fast Fourier Transform (FFT)

Inverse transform

x(t) = 1
N

S( f )
f =0

N−1

∑ e2πift/N

Time à Frequency Frequency à Time

e±(2π ift+θ ) = cos(2π ft +θ )± isin(2π ft +θ )

Power reflects the covariance between the original signal and a complex
sinusoid at frequency f. Or you can think of it as the proportion of the signal
variance explained by a sinusoid at frequency f



missed 
peak?

Zero-padding
The DFT/FFT of a sequence of length N produces
power estimates at N frequencies evenly distributed
between 0 and the sampling rate (Fs), or floor(N/2+1)
frequencies between 0 and the Nyquist rate, Fn=Fs/2.

Padding the signal with Q zeros achieves the following:

1) Allows enforcement of signal
length as a power of two
enabling FFT

2) Produces a smoother spectrum
by increasing the number of
frequency bins between 0 and
Fs from N to N+Q (intermediate
points are sinc interpolates)

Zero-padding does not increase 
frequency resolution (number of 
independent degrees of freedom)

padding

0…0 0…0



Tapering

Gibbs Phenomenon
“Rippling” effect due to discontinuities in signal (e.g. edges of the truncated signal)

• Infinite number of frequencies required to approximate discontinuities
• This means infinite (or very large) number of samples required (not possible)

What can we do?

Fourier’s Theorem lets us exactly represent any length N, continuous, stationary 
signal using a weighted sum of N sinusoids. Discontinuous functions must be 
approximated.

This is the so-called Dirichlet kernel or function that we will encounter

repeatedly and which is plotted in figure (5.4). It can be seen from the figure

that the partial sums have a sharp central peak. The height of this peak is

obtained by setting t¼0 in the sum to obtain fN (0)¼2Nþ1. As N increases,

this peak becomes sharper and narrower; however, its integral over time re-

mains constant at 2p (the reader should show this by integrating the series

for the partial sum, term by term). In the large N limit, this sum becomes a

‘‘delta function’’; however, the oscillations around the central lobe also grow in

height so that the area of each lobe goes to a constant value. This is not a very

nice delta function; in fact, this oscillatory behavior is the source of the trouble

when dealing with the convergence properties of Fourier series (and the source

of bias in spectral estimation). We will discuss this in greater detail in later

sections.

As a final example, consider the case

cn ¼ i((#1)n#1)=n (5:67)

Here i¼
ffiffiffiffiffiffiffiffi
#1

p
. Note that in the two previous examples, the Fourier coefficients

cn are real, whereas in this example they are imaginary. The partial sums

constructed by summing from n¼#N to n¼N are real, however. The partial

sums for increasing N are shown in figure 5.5. As N??, the series converges

to a step function. However, there are oscillatory overshoots on both sides of

the step. The important point is that asN becomes large, these overshoots move

Figure 5.4: Convergence of Fourier series: second example, equation 5.66.
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closer to the step, but tend to a fixed limiting height. It can be shown that the

limiting size of the overshoot is about 10% of the height of the jump on either

side (the precise factor is 1
2p

R p
!p sinc(x)dx, where sincðxÞ ¼ sinðxÞ

x ). Clearly, this is

not uniform convergence; limN??maxt|f(t)! fN (t)| is finite. This is the well

known Gibbs’s phenomenon (the oscillatory overshoots are sometimes referred

to as Gibbs’s ripples or Gibbs’s oscillations).

How can this be fixed? There is a classical procedure for series such as these

known as Cesaro summation, which has a direct analog in spectral estimation

to be studied later. Consider the partial sums fN(t) defined above. The idea is that

convergence can be improved by taking the average of the first N partial sums,

defined as

SN(t) ¼
1

N þ 1

XN

n ¼ 0

fn(t) (5:68)

The corresponding partial sums SN(t) are shown in figure 5.6. It can be seen

that the Gibbs’s ripples have been diminished and the partial sums now con-

verge more gracefully to a step. Note that if the limit exists, then fN(t) and SN(t)

converge to the same limit at any given t; what the procedure above achieves is

that the nonuniformity of the convergence is now removed. By rearranging the

terms in the sum, it can be shown that the Cesaro partial sum is in fact a partial

sum of the Fourier series obtained by taking the original series and multiplying

by a ‘‘taper’’ before computing the partial sum. It is important to note that this is
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Figure 5.5: Convergence of Fourier series: third example, equation 5.67.
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Tapering

Smoothly decay signal to zero at endpoints to smooth 
discontinuity

EEG 0

1

Taper

Tapered 
EEG

X



Tapering

Tapering reduces the effect
of the Gibbs phenomenon
making it easier to identify
“true” peaks in the spectrum
from spurious ripple peaks
(minimized broadband bias
or “spectral leakage”)

The cost is increased width
of central peak (narrowband
bias).

This kernel also integrates to unity and becomes more sharply peaked, like

the Dirichlet kernel, and therefore behaves like a delta function for large T. In

contrast with the Dirichlet kernel, however, the Fejer kernel is non-negative,

and is a nicer way to approach delta function. The Dirichlet kernel is not

absolutely integrable in the large T limit, namely |DT( f )| when integrated over

frequency gives a value that diverges as log(T), whereas |FT( f )| when inte-

grated over frequency is a constant.

The usage of taper functions leads naturally to the question: are there tapers

which are in some sense optimal? The answer to this question will of course

depend on how one defines optimality. In addition, however, there is another

question: tapering a finite data segment downweights the two edges of the data

window compared to the center of the window. This leads to loss of data, which

seems artificial. Is there a way to rectify this and gain back the lost edges of the

window? There is an elegant answer to this problem, which also provides an

optimal set of tapers in a precise sense. This leads us to the spectral concentration

problem, studied in a fundamental series of papers by Slepian, Landau, and

Pollack13–17.

0 5
0

0.2

0.4

0.6

0.8

1

 f/T

Dirichlet
Fejer

Figure 5.9: The Fejer kernel, corresponding to the triangular taper, compared
with the Dirichlet kernel, corresponding to the rectangular taper. Note the
broadening of the central lobe and the reduction of the side lobes. Both kernels are
normalized to unity at zero frequency.

13. D. Slepian and H. O. Pollack. Prolate spheroidal wave functions, Fourier analysis and
uncertainty—I. Bell Sys. Tech. J. 40, 43–64, 1961.

14. H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and
uncertainty—II. Bell Sys. Tech. J. 40, 65–84, 1961.
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Average of squared absolute values

Ta
pe

rin
g 

EE
G

Given K windows:

• Variance is reduced by a
factor of K

• Frequency resolution also
reduced by a factor of K

FF
T

Spectral Estimation via Welch’s Method

SWelch ( f ) =
1
K

Sk ( f )
k=1

K

∑

• Tapering also results in data 
loss à decreased frequency 
resolution (increased 
narrowband bias)

• Can we mitigate data loss?



Average of squared absolute values

Overlap-add method results in 
reduced data loss due to 
tapering, while preserving 
spectral variance reduction J

Spectral Estimation via Welch’s Method

SWelch ( f ) =
1
K

Sk ( f )
k=1

K

∑

…

Overlap 50%
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Trial Averaging
0 Hz 10 Hz 20 Hz 30 Hz 40 Hz 50 Hz

Po
w

er
 (d

B)

Frequency (Hz)

Average of squared amplitude

Trial 1

Trial n

Trial 2

Averaging spectra over n
independent trials leads to 
further reduction of 
variance by a factor of n …

1
n

Sk ( f )
2

k=1

n

∑



Non-stationary signals include bursts, chirps, evoked potentials, …

Non-Stationary Signals

ChirpBurst Evoked potential



Spectrogram or ERSP

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

5 Hz

10 Hz

20 Hz

30 Hz

FFT



Spectrogram or ERSP

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

5 Hz

10 Hz

20 Hz

30 Hz

5 Hz

10 Hz

20 Hz

30 Hz

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

Average of 
squared
values

Trials



ERS( f , t) = 1
n

Sk ( f , t)
2

k=1

n

∑

Complex number

Scaled to dB 10Log10

Power spectrum and 
event-related spectral (perturbation)

Here, there are n trials
Each trial is time-locked to the same event (hence “event-related” spectrum)
The ERS is the average power across event-locked trials

Ensemble
average



Absolute versus relative power

Absolute = ERS

Relative = ERSP (dB or %)

To compute the ERSP, 
we just subtract the pre-
stimulus ERS from the 
whole trial



The Uncertainty Principle

A signal cannot be localized 
arbitrarily well both in  
time/position and in 
frequency/momentum.
There exists a lower bound to 
the Heisenberg product: 

Δt Δf ≥ 1/(4π)
or      Δf ≥ 1/(4πΔt)

Δf = 1Hz, Δt = 80 msec or 
Δf = 2Hz, Δt = 40 msec

Werner Karl Heisenberg 
(1901 – 1976)

e.g. here are two possible (Δf, Δt) pairs:

Note: Δf means “difference between successive frequencies” or the inverse of the frequency resolution. Ditto for Δt. 



Time-Frequency Tradeoff

Natural biophysical processes may exhibit sustained changes in
narrowband low-frequency oscillations along with rapidly-changing (e.g.
“burst”) high-frequency oscillations.

Witzel, et al, 2011

The Short-Time Fourier Transform 
has a constant temporal resolution 
for all frequencies. 

Can we adapt the time-frequency 
resolution tradeoff for individual 
frequencies to improve spectral 
estimation?

Yes, we can!



Complex
Sinusoid

Tapered 
sinusoid
(wavelet)

We estimate the time-
varying power at 10 Hz by 
convolving EEG signal 
with a tapered 10 Hz 
complex sinusoid (Morlet
wavelet)

Window
(Taper)

Wavelet Analysis

X

Covariance

EEG

X

10 Hz 

10 Hz burst

Real Part (cosine)
Imaginary Part (sine)

Power |S(f,t)| = |Re + Im|

0 time ->



Wavelet Time-Frequency Image

Cov.

EEG
10 Hz burst
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By convolving stretched and 
scaled versions of the “mother” 
wavelet with the EEG signal, we 
determine the time-frequency 
distribution of power

Power
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Some Wavelet Families

Morlet Daubechies_4 Daubechies_20 Coiflet_3

Haar_4 Symmlet_4 Meyer_2 Battle_3



Trading Frequency for Time
(and vice versa)

Wide window
(temporally diffuse)

Narrow window
(temporally compact)

10 Hz

10 Hz

8.5 Hz

11.5 Hz
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G
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hi corr

low corr
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hi corr

hi corr

10 Hz

High Freq. resolution
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Adapted from http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10

FFT versus Wavelets

From http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10 

fixed time res
no freq res

From http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10 

fixed freq res
no time res

From http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10 

fixed time res
fixed freq res

From http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10 

variable time res
variable freq res

equal time 
and freq

resolution

high time res
low freq res

equal time 
and freq

resolution

http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf


Wavelet scale expansion factor

Wavelet (0)

1Hz

2Hz

4Hz

6Hz

8Hz

10Hz

constant window size (time resolution) for 
increasing frequency à increasing # cycles 
with frequency. 

window size decreases by a factor of 2 for 
each octave (power of 2) à constant # of 
cycles at each frequency

Scale

Wavelet (1)

scale expansion factor (q)



Wavelet scale expansion factor

Cfmax =
fmax
fmin

Cfmin (1− q)

Number of cycles at highest frequency for an expansion factor of q:

Larger expansion factor produces larger scale decrements (increased 
time resolution, lower frequency resolution) for increasing frequency

Fr
eq

ue
nc

y

Wavelet (0.8) Wavelet (0.5) Wavelet (0.2)



Wavelet(0)
(STFT)

In between

Wavelet (1)

Wavelet scale expansion factor

scale expansion factor (q)



Slide courtesy of Stefan Debener

Phase 
Resetting

Induced Response Evoked Response



Inter-Trial Coherence (ITC) 

amplitude 0.5     phase 0

amplitude 1        phase 90

amplitude 0.25   phase 180

POWER = mean(amplitudes2 )

0.44 or –8.3 dB

Tr
ia

l 1
Tr

ia
l 2

Tr
ia

l 3

ITC = |mean(norm’d phase vectors)|

Magnitude: 0.33

t

1

0.5

.25

Tallon-Baudry, et al, 1996

>> EEG = pop_newtimef(EEG,..., ’plotitc’,’on’);
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Time-Frequency Analysis of 
Biophysical Time series:

Practicum



Plot periodogram (spectrum) using 
Welch’s method

‘winsize’, 256 (change FFT window length) 
‘nfft’, 256 (change FFT padding)
‘overlap’, 128 (change window overlap)



Plot IC ERSP



Mask IC ERSP

0.01

Pure green denotes 

non-significant points



Plot IC ERSP

Increase 
# freq bins

padratio = 1 padratio = 2



Plot IC ITC
Shows the actual

dominant phase 

of the signal

‘plotphase’, ‘on’



To visualize both low and high frequencies
freqs  = exp(linspace(log(1.5), log(100), 65));
cycles = [ linspace(1, 8, 47) ones(1,18)*8 ];
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Component time-frequency



Exercise
• ALL

Start EEGLAB, from the menu:
load 
<eeglab_root>/sample_data/eeglab_data_epochs_ica.set
or your own data

• Novice
From the GUI, Plot spectral decomposition with 
100% data and 50% overlap (‘overlap’). Try 
reducing window length (‘winsize’) and FFT length 
(‘nfft’)

• Intermediate
Same as novice but using a command line call to 
the pop_spectopo() function. Use GUI then history 
to see a standard call (“eegh”).

• Advanced
Same as novice but using a command line call to 
the spectopo() function.

Overlap 50%

Padding



Exercise - newtimef

• Novice
From the GUI, pick an interesting IC and plot component 
ERSP. Try changing parameters window size, number of 
wavelet cycles, padratio,

• Intermediate
From the command line, use newtimef() to tailor your 
time/frequency output to your liking. Look up the help to try 
not to remove the baseline, change baseline length and plot 
in log scale. Enter custom frequencies and cycles.

• Advanced
Compare FFT, the different wavelet methods (see help), and 
multi-taper methods (use timef function not newtimef). Enter 
custom frequencies and cycles. Look up newtimef help to 
compare conditions. Visualize single-trial time-frequency 
power using erpimage.


