

Evaluating ICA Components

EEGLAB Workshop XX Sheffield, England Day 1, 11:45-12:30

Independent Component Analysis

Review: ICA in Plain English

Source activation = unmixing * Channel data

Channel data = mixing (topo) * Source activation

Results of ICA Decomposition in EEG struct

English → MATLAB

Source activation = unmixing * Channel data

Channel data = mixing (topo) * Source activation

```
EEG.icaact = (EEG.icaweights*EEG.icasphere) * EEG.data
         EEG.data = EEG.icawinv * EEG.icaact
```


Now what...?

Part 1

Getting an overview of your ICs

Part 2

Classifying/Evaluating ICs

Part 3

Detailed look at IC properties

ERP

Spectrum

ERP images

ERSP

Part 1

Getting an overview of your ICs

Part 2

Classifying/Evaluating ICs

Part 3

Detailed look at IC properties

ERP

Spectrum

ERP images

ERSP

(Example Datasets)

/faces continuous/faces_4.set

ftp://sccn.ucsd.edu/pub/julie/EEGLAB_Workshop/FacesData.zip
Linked from: http://sccn.ucsd.edu/wiki/Online_EEGLAB_Workshop

Edit → Dataset Info → Enter Comments

A convenient 'trick'...

An interactive overview of ICs

Step 0: Quality of Decomposition

Examining IC Properties

IC Topography topoplot()

IC Properties

Manner of the second se

ERP Image & ERP erpimage()

Power Spectrum spectopo()

Click to expand...

Part 1

Getting an overview of your ICs

Part 2

Classifying/Evaluating ICs

Eye Artifacts

Muscle Artifacts

Other Artifacts

Brain ICs

Part 3

Detailed look at IC properties

FRP

Spectrum

ERP images

ERSP

Evaluating ICs

Over time, most EEGLAB users develop a heuristic sense of which ICs might be brain vs. artifact.

Heuristics are generally based on:

Topography

Component Activities (scroll)

ERP

Power Spectrum

IC Classification is typically used to 'clean' data—study likely brain activity without artifacts

There are some efforts to automate this process, but doing it by hand is a good place to start to build intuition

Topography

IC 4 – eyeblink

Plot → Component Activations (scroll)

IC 4 Activation – eyeblink

IC 9 – lateral eye movement

IC 9 Activation – lateral eye movement

IC 12, 18 - Muscle

IC 12, 18 Activation – Muscle

IC 17, 25 – Bad channels

IC 2, 7 – Cardiac

Artifacts

Brain ICs

Brain ICs

Brain ICs

IC Classification...so far

IC Properties

Part 1

Getting an overview of your ICs

Part 2

Classifying/Evaluating ICs

Part 3

Detailed look at IC properties

ERP

Spectrum

ERP images

ERSP

Component ERPs

A step back: Electrode-level ERP

Traditional ERP: Time-locked activity at each channel

ERP at two channels

Definition: The data envelope

Definition: IC Envelope

Key: Scalp ERP peaks are often the sum of multiple independent source processes

Component ERP envelope

ERP peak- and IC Component-topographies

Component 3 ERP envelope

Component 1 ERP envelope

have opposite sign at this latency.

Component 1 & 3 ERP envelope

pvaftopo plugin (Makoto Miyakoshi)

Top 6 IC contributions to data ERP envelope

Non-artifact IC contrib. to data ERP envelope

Non-artifact IC contrib. to data ERP envelope

Compare: Effect of removing artifacts

IC ERP difference

What is the IC ERP difference between these 2 conditions?

IC ERP difference

IC ERP difference

IC Properties

Part 1

Getting an overview of your ICs

Part 2

Classifying/Evaluating ICs

Part 3

Detailed look at IC properties

ERP

Spectrum

ERP images

ERSP

Plot component power spectrum

Different frequency for topographies

IC Properties

Part 1

Getting an overview of your ICs

Part 2

Classifying/Evaluating ICs

Part 3

Detailed look at IC properties

ERP

Spectrum

ERP images

ERSP

Component ERP image

ERP Image basics

ERP Image basics

EEGLAB Workshop XX, Sept 2-5, 2015, Sheffield, England –John Iversen– Evaluating ICA components

ERP Images: smoothing across trials

Component ERP Image: Sort by RT

Component ERP Images: Sort by phase

Component ERP Images: ITC

Component ERP Images: Sort by amplitude

Component ERP Images: Amplitude vs. Activations

IC Properties

Part 1

Getting an overview of your ICs

Part 2

Classifying/Evaluating ICs

Part 3

Detailed look at IC properties

ERP

Spectrum

ERP images

ERSP

Definition: ERSP

Event Related Spectral Perturbation

Change in power in different frequency bands relative to a baseline. ERS, ERD

Plot IC ERSP

Plot IC ERSP

Further Resources

Some attempts to automate the IC classification:

"Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals"

Irene Winkler, Stefan Haufe and Michael Tangermann (2011)

http://www.behavioralandbrainfunctions.com/content/7/1/30

Bigdely-Shamlo's EyeCatch (2013)

https://www.researchgate.net/publication/257602145 EyeCatch Datamining over half a million EEG independent components to construct a fullyautomated eye-component detector

Practicum (15:45 – 17:00 today)

"MyMana ALL

- Download then load faces_4.set, epoch on face

Novice, Intermediate

- From the GUI, open the 'Reject component by map' interface
- Explore and classify several additional ICs: muscle, channel, brain
 - ~ Justify your classification
- Redo the "Plot → Component ERPs → With component maps" excluding your additional artifacts. What change do you observe?
- Pick a brain IC. Plot an ERP Image
 - ~ Try sorting by phase, is there any relationship to the IC activation pattern? What about power in a frequency band of choice?

Intermediate

- Plot ERP Image sorted by response latency
- 'Align') Figure out how to realign trials to response latency instead

(Hint

- Plot ERSPs for selected ICs
 - ~ Explore parameter options. Why is each useful?
- Plot component cross-coherence for pairs of ICs

ALL (Time permitting)

- Create second dataset, epoched on object
- Examine ERP differences between the conditions using "Plot → Component ERPs → With component maps (compare)"
- For ICs most different between conditions, compare ERP Image, ERSP

IC Classification...so far

Realigning Trials: Stimulus vs. Response

