

Time-frequency decomposition

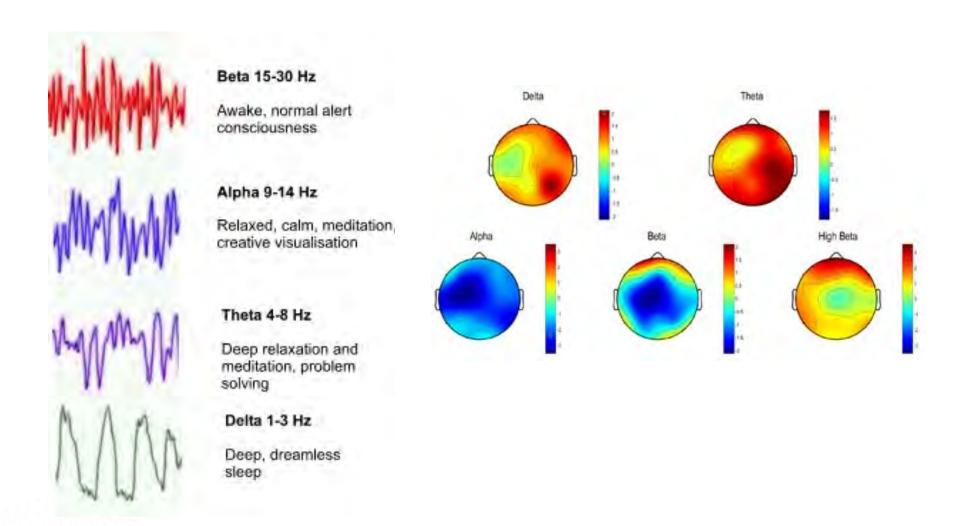
Theory and Practice

EEGLAB Workshop XX Sheffield, England Day 3, 9:00-10:45

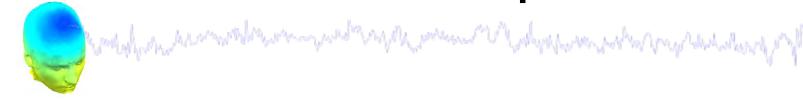
- Signals EEG
- Goals
 - Describe dynamic characteristics of brain activity
 - Describe relation between different regions of brain
- Approaches
 - Time domain
 - Frequency domain
 - Time/Frequency

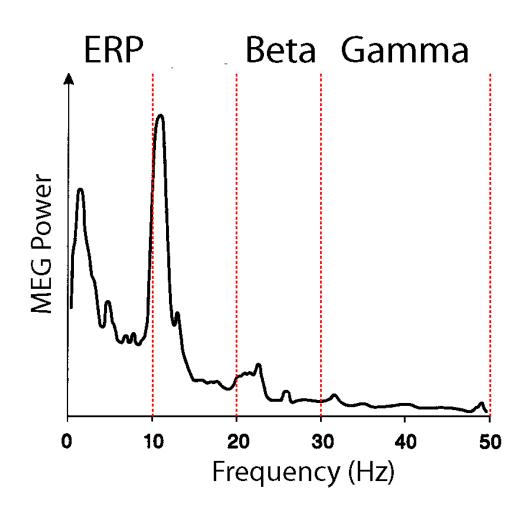
Different meanings traditionally given to different frequency bands

Godfill Charles and the control of the second of the secon

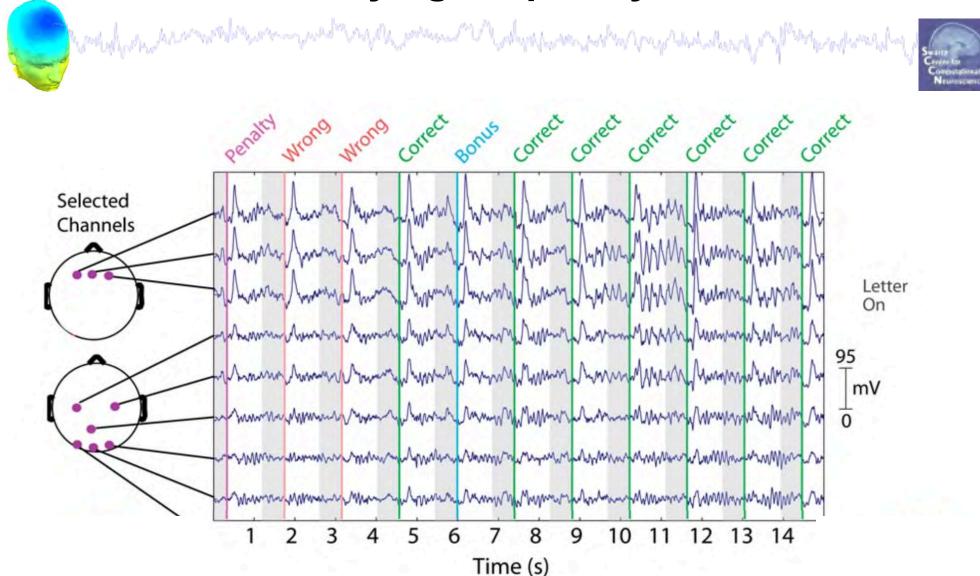


MEEG spectrum

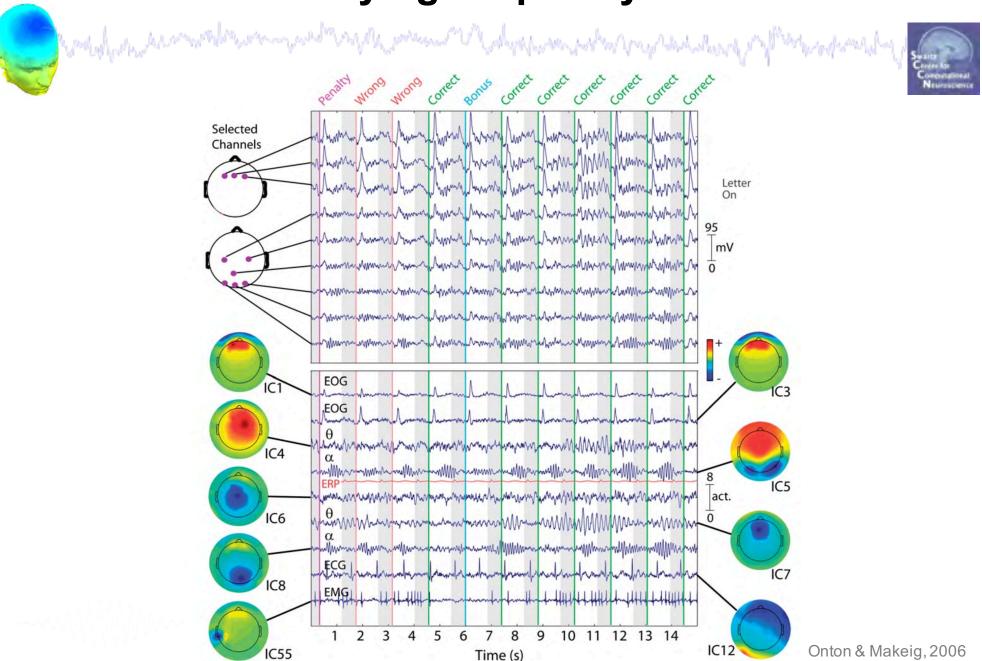




Time varying frequency content

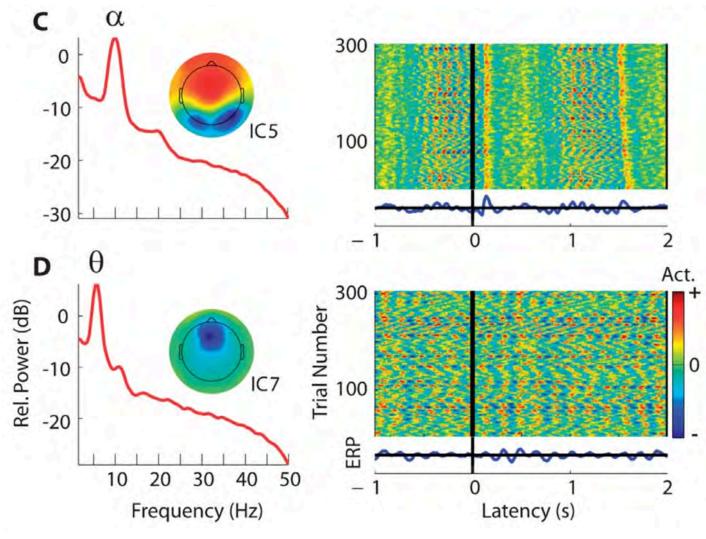


Time-varying frequency content

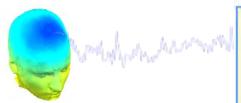


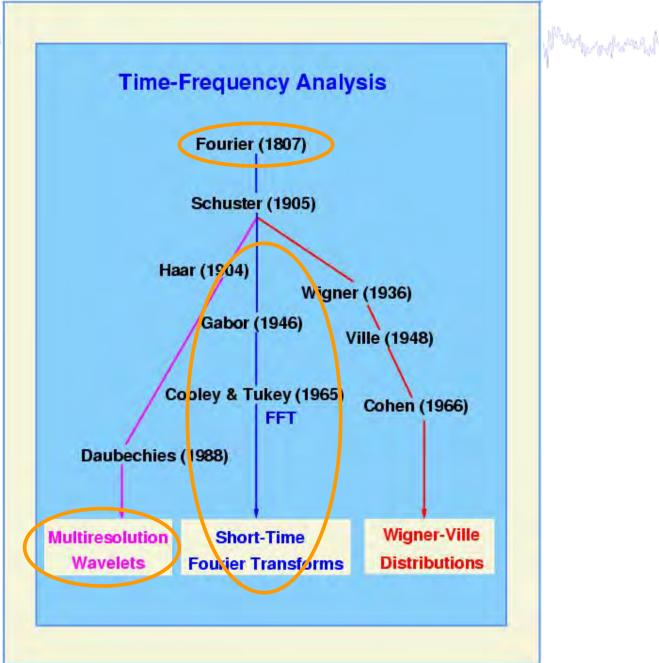
Power Spectrum does not describe temporal variation

and the first of the second and the second



Onton & Makeig, 2006





Plan

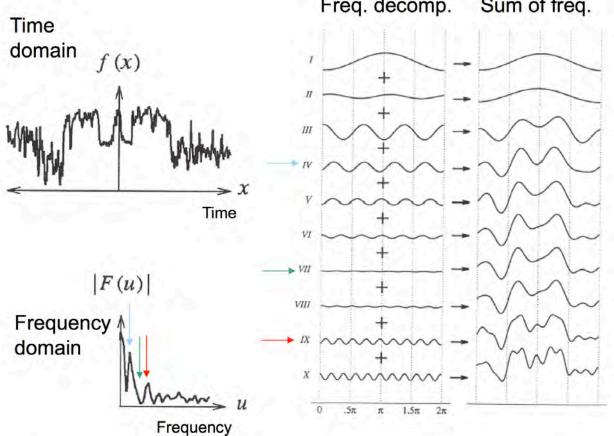
A Marie Commence of the Commen

- Part 1: Frequency Analysis
 - Power Spectrum
 - Approaches
 - FFT
 - Welch's Method
 - Windowing
- Part 2: Time-Frequency Analysis
 - Short Time Fourier Transform
 - Wavelet Transform
 - ERSP
- Part 3: Coherence Analysis
 - Inter-Trial Coherence
 - Event-Related Coherence

Part 1: Frequency Analysis

- Goal: What frequencies are present in signal?
- What is power at each frequency?
- Principle: Fourier Analysis

Fourier Analysis

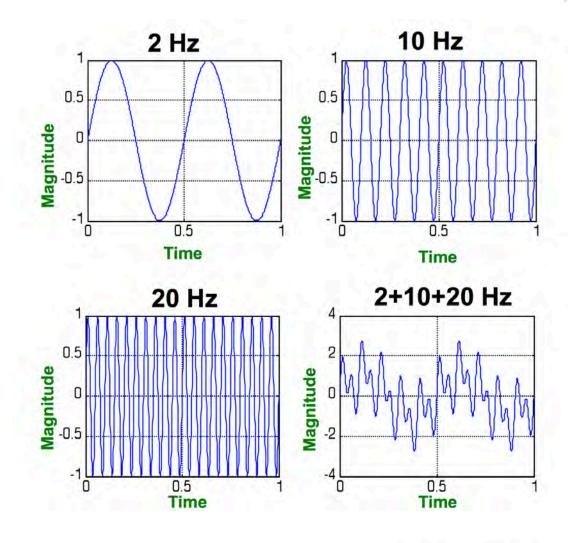


Forward transform
$$F(u) = \int_{-\infty}^{+\infty} f(x)e^{-2\pi i u x} dx$$

Inverse transform
$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{2\pi i u x} du$$

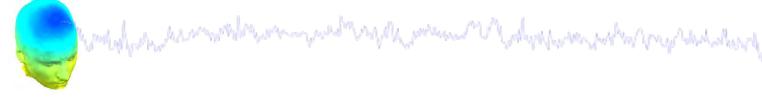
Figure, courtesy of Ravi Ramamoorthi & Wolberg

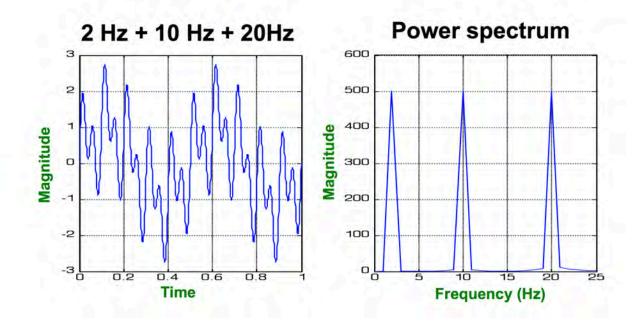
"Stationary" sinusoidal signals



Slide courtesy of Petros Xanthopoulos, Univ. of Florida

Simplest case of frequency analysis





By looking at the Power spectrum of the signal we can recognize three frequency Components (at 2,10,20Hz respectively).

Slide courtesy of Petros Xanthopoulos, Univ. of Florida

Power Spectrum. Approach 1: FFT

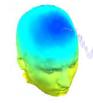
- Why not just take FFT of our signal of interest?
- Advantage fine frequency resolution
 - $-\Delta F = 1 / signal duration (s)$
 - E.g. 100s signal has 0.01 Hz resolution
 - But, do we really need this?
- Disadvantage bias and variance
 - Solution: e.g. Welch's method
- Disadvantage no temporal resolution
 - Solution 1: Short-Time Fourier Transform

Amplitude and phase

- Power spectra describe the amount of a given frequency present
- NOT a complete description of a signal: We also must know the *phase* at each frequency
- FFT/STFT/Wavelet return an amplitude and phase at each time and frequency (represented as complex #).
- To find power, we compute the magnitude, which discards phase.

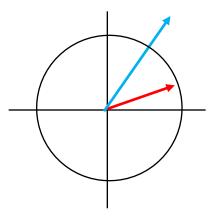
Phasor representation

A Marian May May Marian Ma

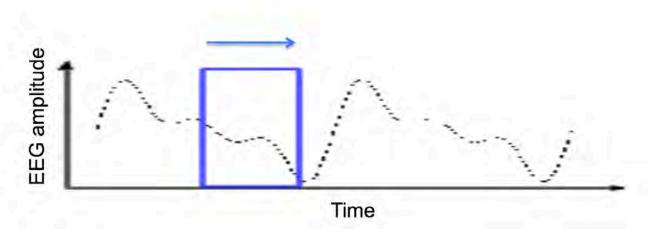


• A complex number x + yi can be expressed in terms of amplitude and phase: $ae^{i\theta}$

```
amplitude* exp(i*phase)
amplitude = sqrt(x^2 + y^2); phase = atan(y/x);
```

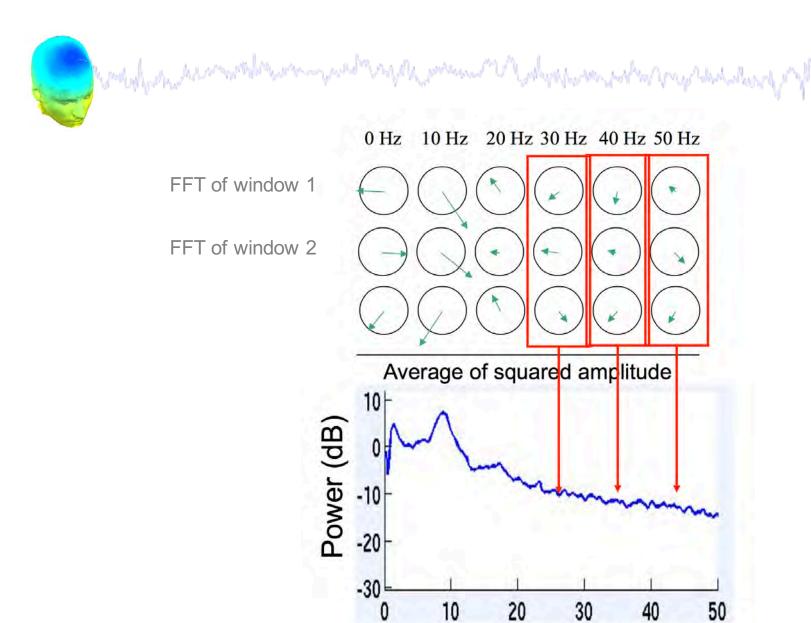


Approach 2: Welch's Method



Calculate power spectrum of short windows, average. Advantage: Smoother estimate of power spectrum

Frequency resolution set by window length
e.g. 1s window -> 1 Hz resolution
In practice: taper, don't use rectangular window

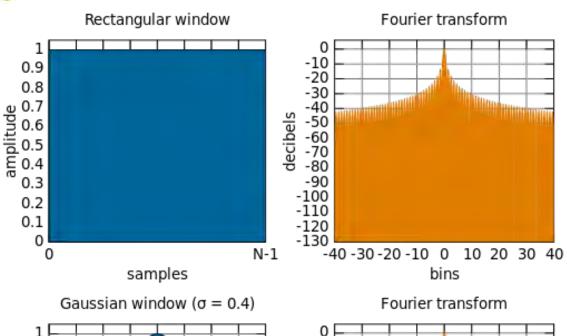


Frequency (Hz)

Windowing

- When we pick a short segment of signal, we typically window it with a smooth function.
- Windowing in time = convolving (filtering) the spectrum with the Fourier transform of the window
- No window (=rectangular window) results in the most smearing of the spectrum
- There are many other windows optimized for different purposes: Hamming, Gaussian...

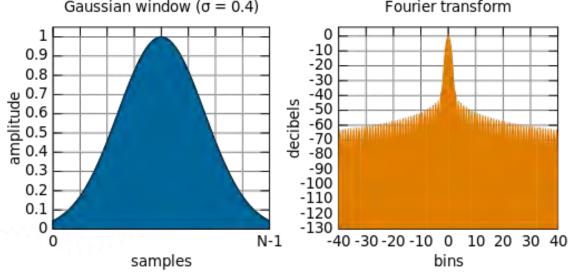
Windows and their Fourier transforms



Narrowest main peak, but

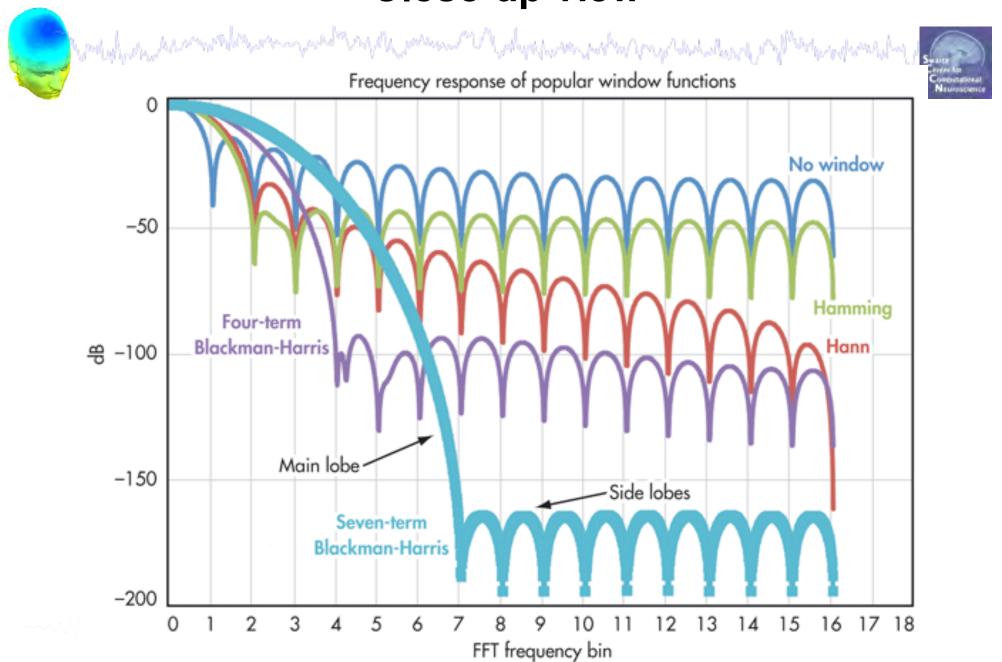
Highest side-lobes

Most spectral 'smearing'



Wider main peak, and much lower side-lobes

Close-up view



Part 2: Time-Frequency Analysis

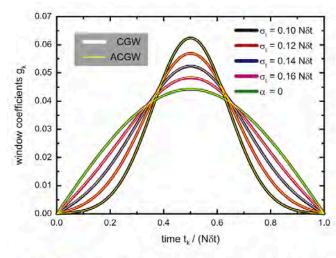
- Short-Time Fourier Transform
 - Find power spectrum of short windows
 - "Spectrogram"
- Advantage: Can visualize time-varying frequency content
- Disadvantage: Fixed temporal resolution is not optimal

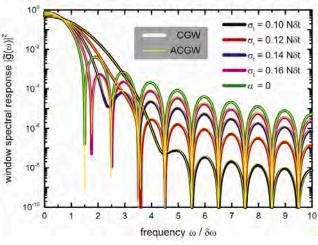
Time-Frequency Uncertainty

lander to proportion of the property of the second second second second second second second second second second

Swaitz Christe Kn Computational Neuroscience

- You cannot have both arbitrarily good temporal and frequency resolution!
 - $-\sigma_t * \sigma_f \ge 1/2$
- If you want sharper temporal resolution, you will sacrifice frequency resolution, and vice versa.
- (Optimal: Confined Gaussian)



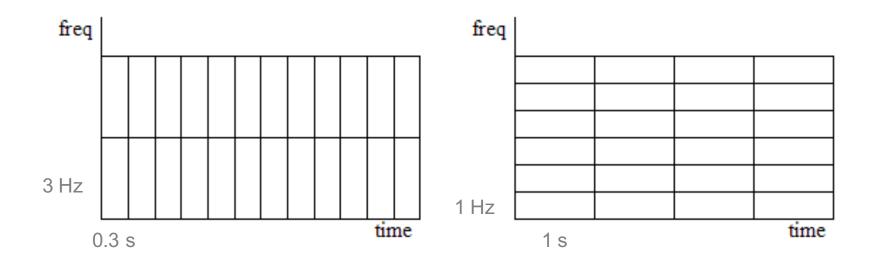


Starosielec S, Hägele D (2014) Discrete-time windows with minimal RMS bandwidth for given RMS temporal width. Signal Processing 102:240–6.

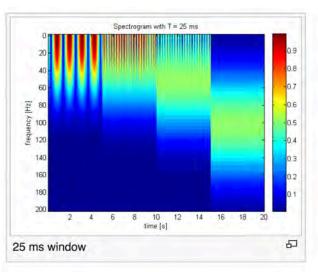
Consequence for STFT

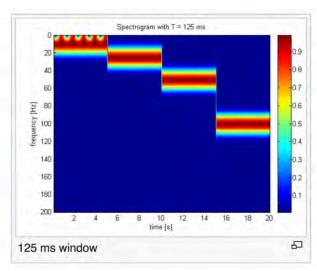
Shorter Windows poorer frequency resolution

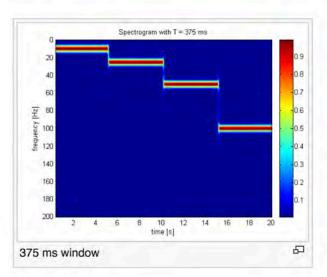
Longer Windows finer frequency resolution

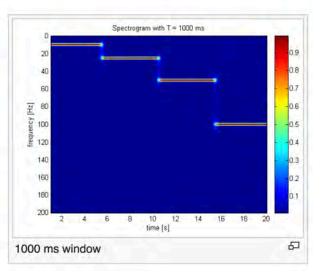


Time-Frequency Tradeoff





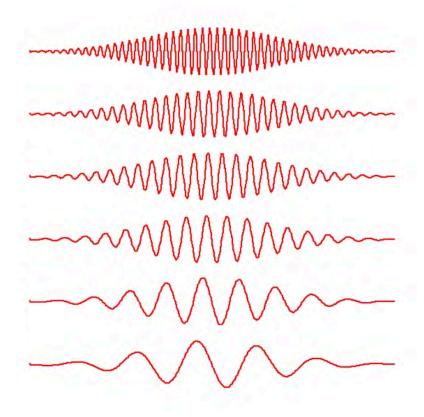


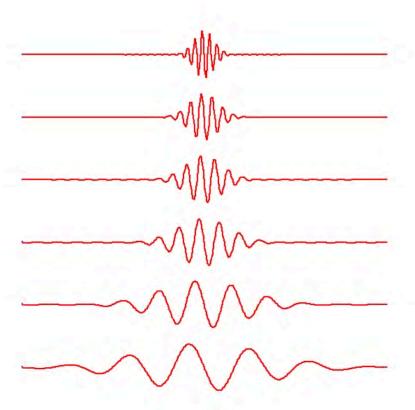


A better way: Wavelet transform

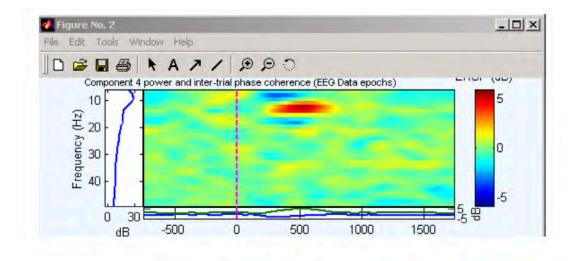
- Wavelet transform is a 'multi-resolution' time-frequency decomposition.
- Intuition: Higher frequency signals have a faster time scale
- So, vary window length with frequency!
 - longer window at lower frequencies
 - shorter window at higher frequencies

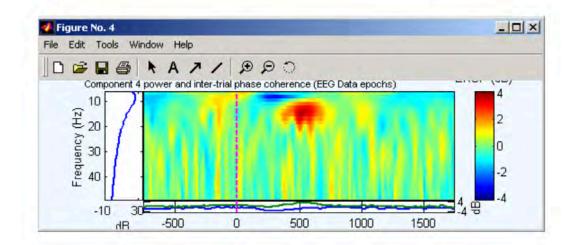
Comparison of FFT & Wavelet

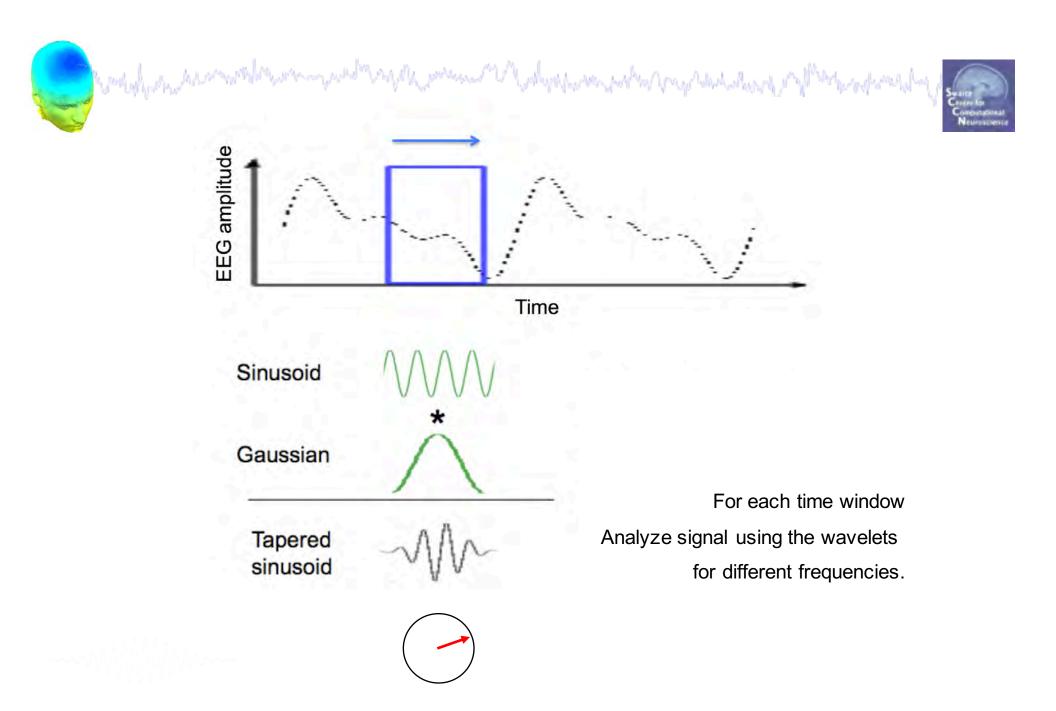




Scaled versions of one shape Constant* number of cycles







Exercise

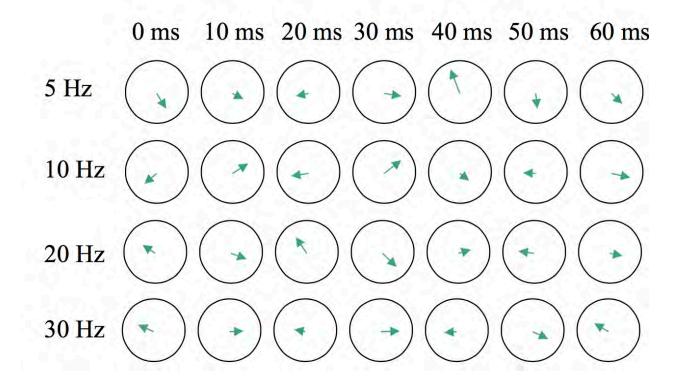
Create a signal

```
>> t = 0:0.01:100;
>> x = sin(2*pi*10*t); plot(t,x)
```

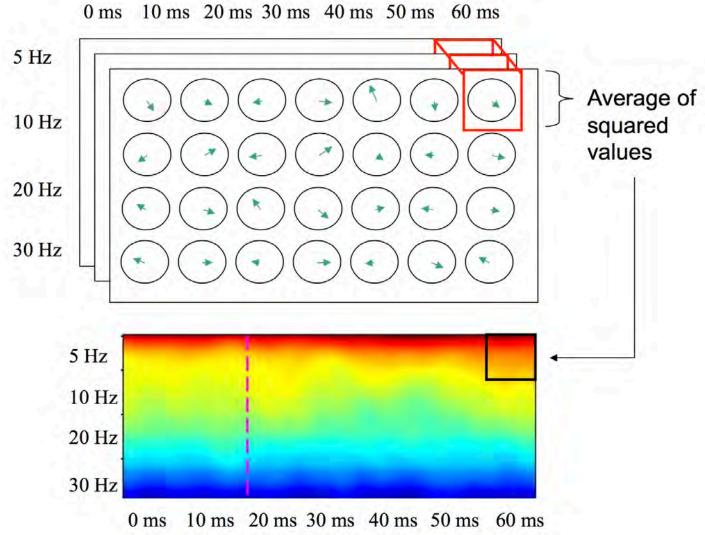
Find FFT

```
>> F = fft(x);
>> F(1:3) %complex
>> power = F.*conj(F);
```


Spectrogram of one window of data

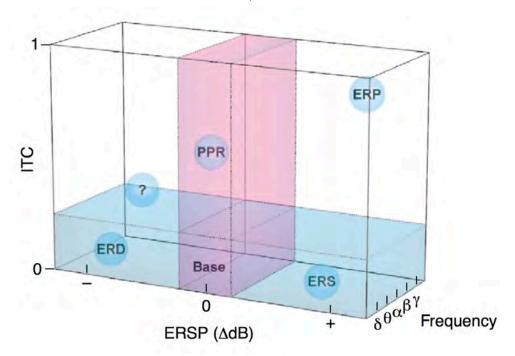


Computing Spectrogram Power

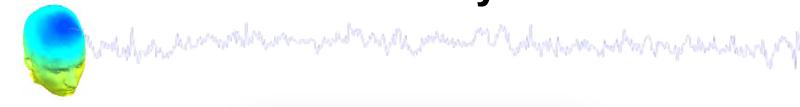


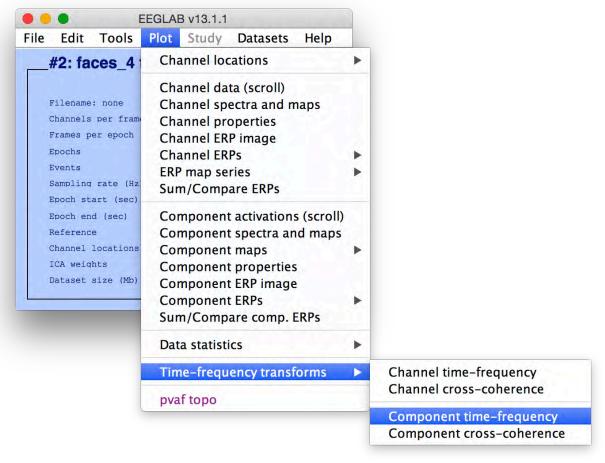
Definition: ERSP

- Event Related Spectral Perturbation
- Change in power in different frequency bands relative to a baseline. ERS, ERD



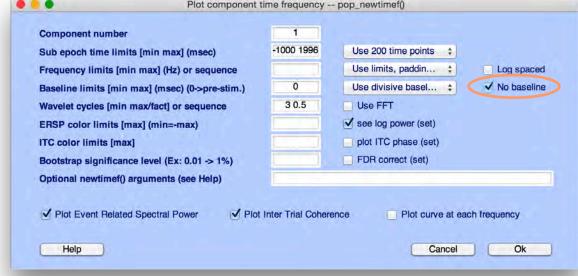
Try it out



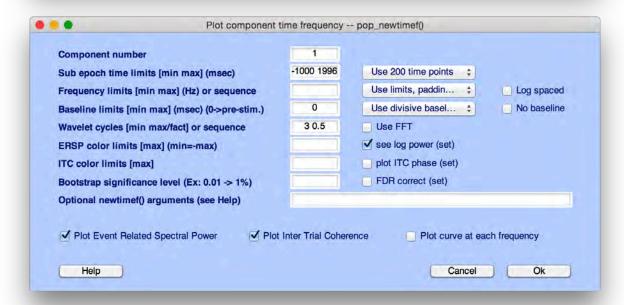


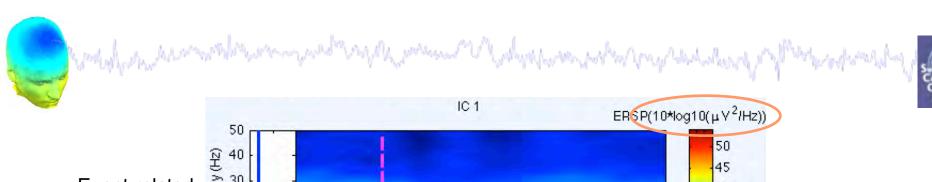
Display ERS vs. ERSP

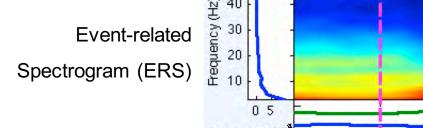
Event-related Spectrogram (ERS)

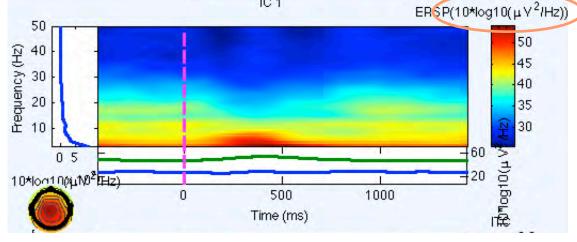


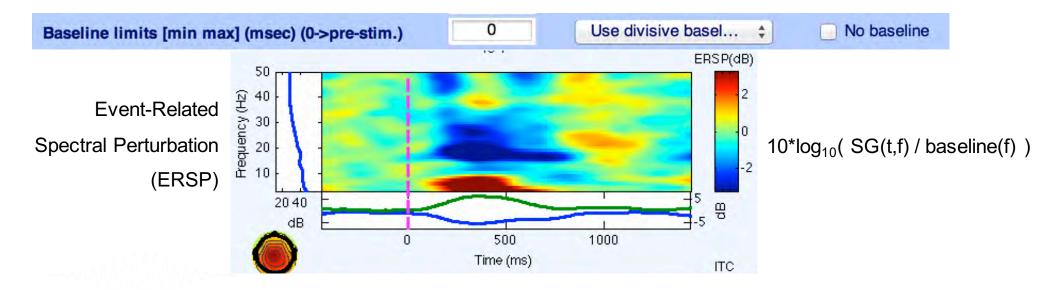
Event-Related
Spectral Perturbation
(ERSP)



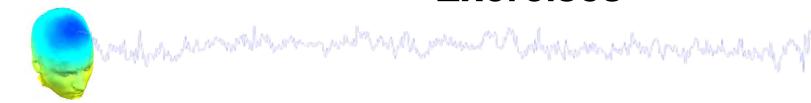








Exercises



- Try different baseline methods
 - divisive
 - standard deviation (express spectral perturbations in #sd relative to baseline sd)
- Try different wavelet specifications

Wavelet cycles [min max/fact] or sequence

3 0.5

- Default: 3 0.5
 - 3 cycles
 - What is the 0.5? Try 0. Try 1...

Wavelet Specification

Wavelet cycles [min max/fact] or sequence

3 0.5

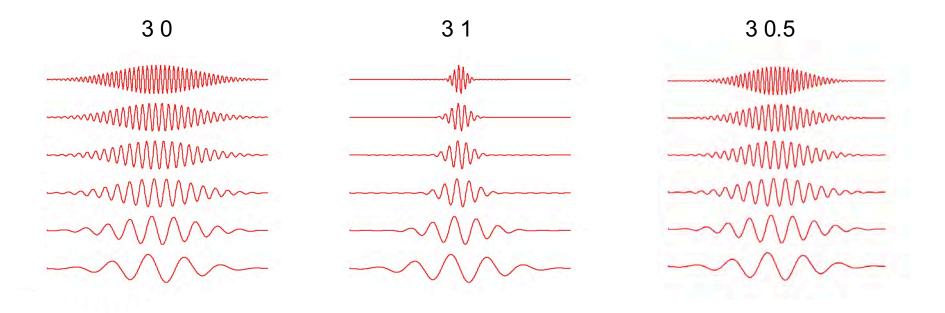
Answer: The first #cycles controls the basic duration of the wavelet in cycles.

The second factor controls the degree of shortening of time windows as frequency increases

0 = no shortening = FFT (duration remains constant with frequency)

1 = pure wavelet (#cycles remains constant with frequency)

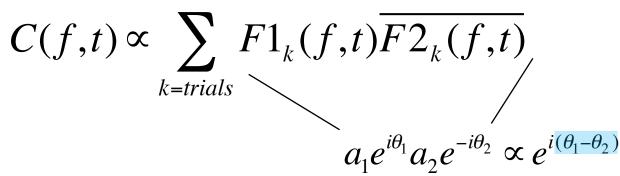
0.5 = intermediate, a compromise that reduces HF time resolution to gain more frequency resolution

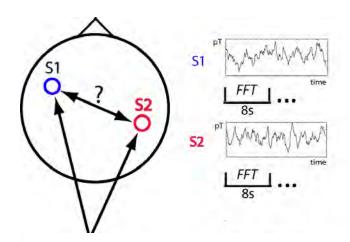


Part 3: Coherence Analysis

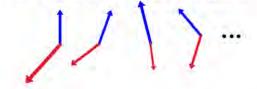
- Goal: How much do two signals resemble each other
- Coherence = complex version of correlation: how similar are power and phase at each frequency?
- Variant: phase coherence (phase locking, etc.) considers only phase similarity, ignoring power
 - Regular coherence is simply a power-weighted phase coherence

Coherence

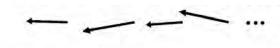


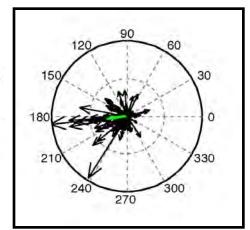


Fourier time series F_{S1} and F_{S2}



Phase difference between \$1 and \$2,





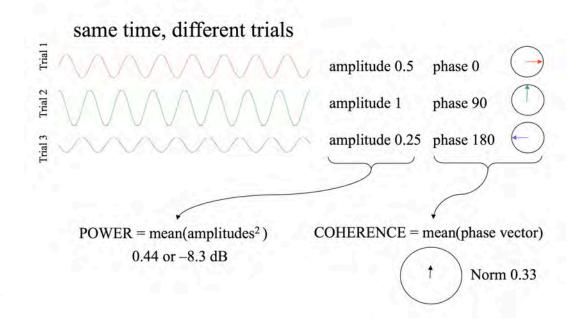
Part 3a: Inter-Trial Coherence

- Goal: How much do different trials resemble each other?
- Phase coherence not between two processes, but between multiple trials of the same process
- Defined over a (generally) narrow frequency range

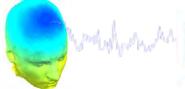
EEGLAB's Inter-Trial Coherence is phase ITC

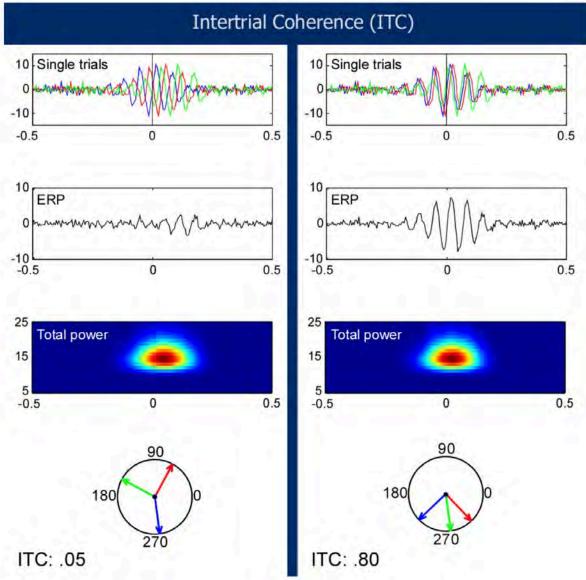
$$ITPC(f,t) = \frac{1}{n} \sum_{k=1}^{n} \frac{F_k(f,t)}{|F_k(f,t)|}$$

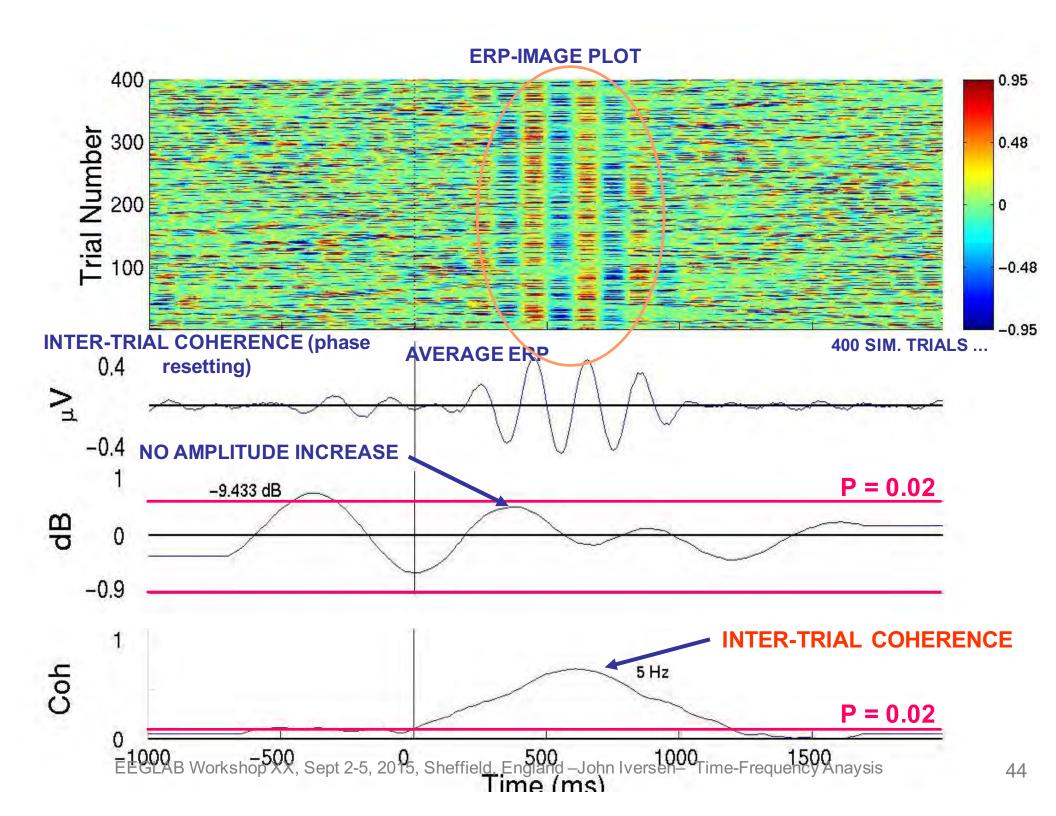
Normalized (no amplitude information)

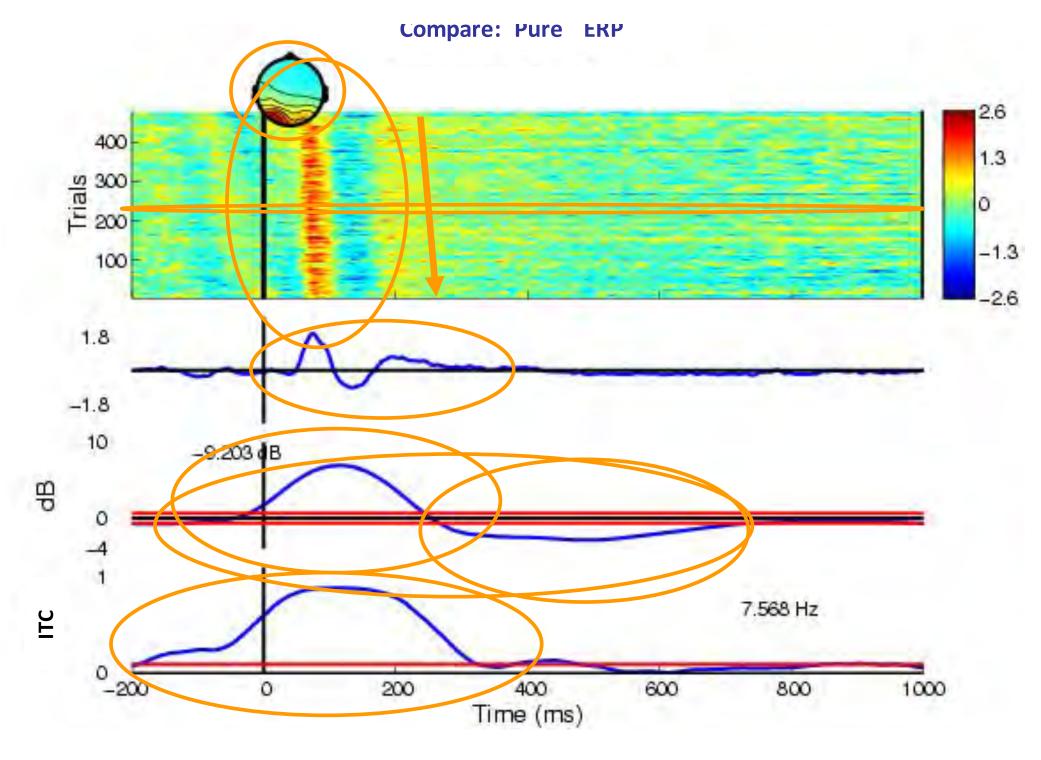


ITC Example (3 trials)



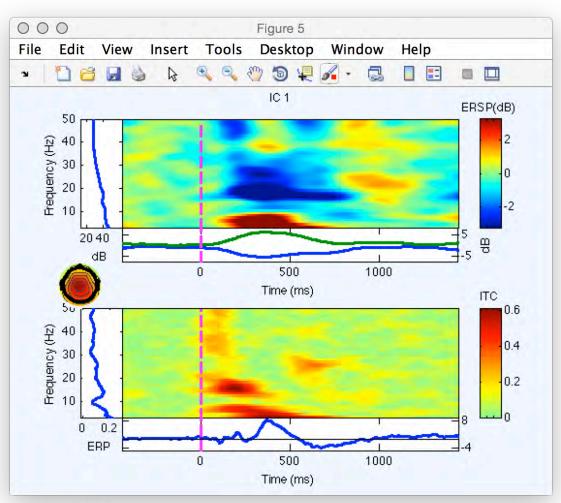






EEGLAB Workshop XX, Sept 2-5, 2015, Sheffield, England –John Iversen– Time-Frequency Anaysis 45
J. Onton & S. Makeig, 2005

Putting it all together



Exercise

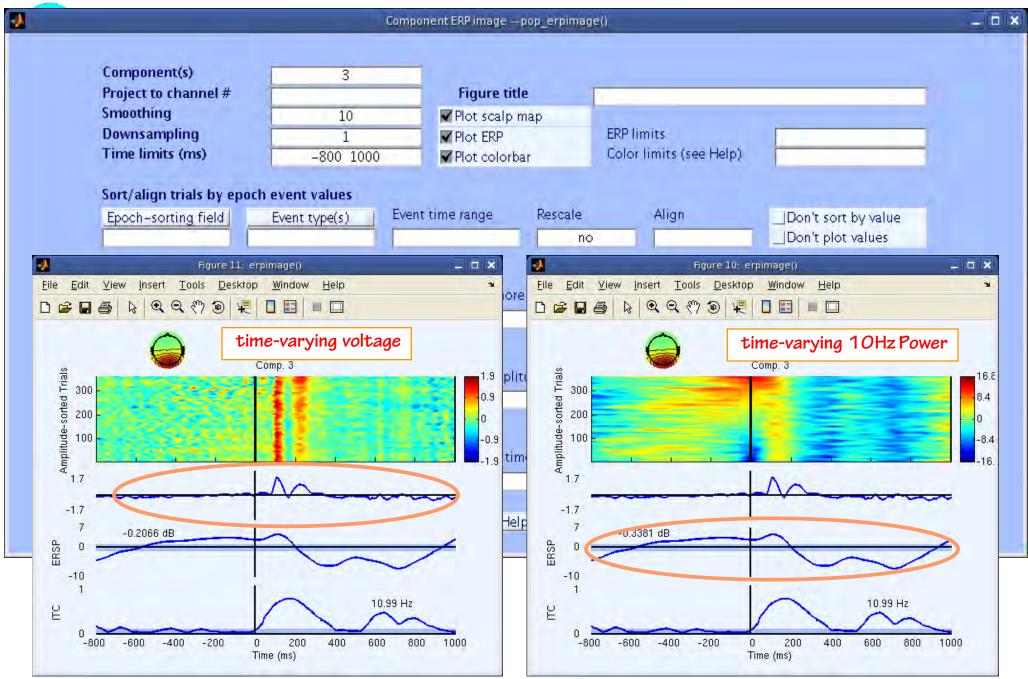
All: Compute ERSP/ITC for a component of your choice

Compute ERP Image (with ERSP and ITC displayed*)

Use all of this information to explain the origin of the Evoked Response

Question: Which changes are significant? Use the options in ERP Image and ERSP dialogs to set significance threshold e.g. 0.01. Do the results survive?

Component ERP Image: Activation vs. Amplitude



Part 3b: Event Related Coherence

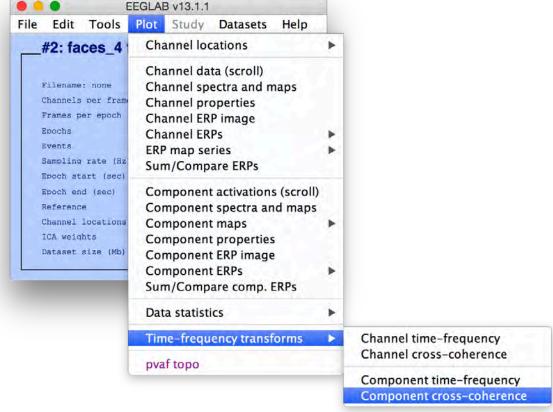
Swalitz Cerese for Combinational Neuroscience

Goal: How similar is the event-related response of two signals

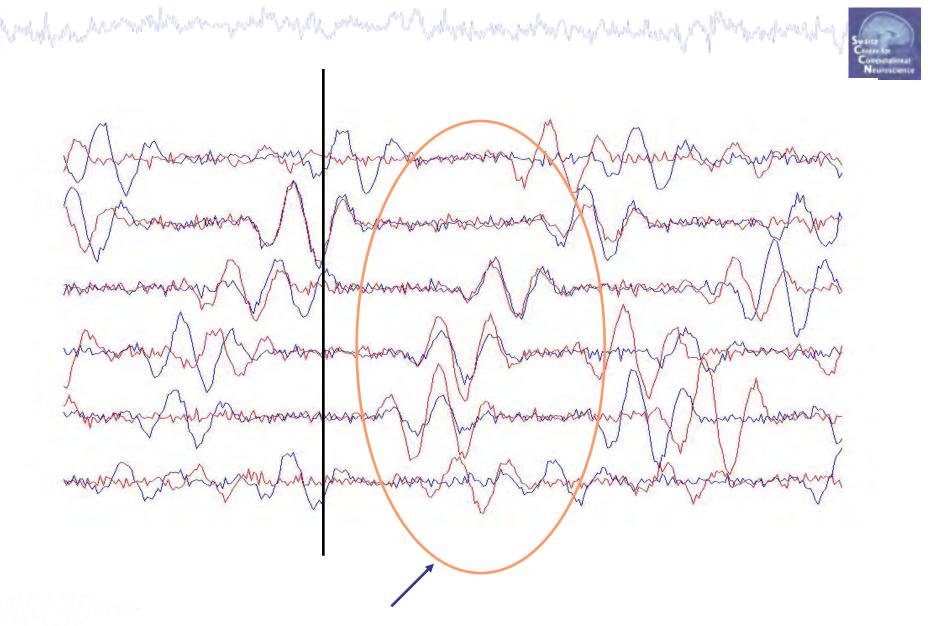
Typically between channels (problematic due to volume

conduction)

or between ICs



TWO SIMULATED THETA PROCESSES



Event-related

Try it!

Plot component cross-coherence pop_newcrossf()	
First component number	1
Second component number	3
Epoch time range [min max] (msec)	-1000 1996
Wavelet cycles (0->FFT, see >> help timef)	3 0.5
[set]->log. scale for frequencies (match STUDY)	
[set]->Linear coher / [unset]->Phase coher	
Bootstrap significance level (Ex: 0.01 -> 1%)	
Optional timef() arguments (see Help)	'padratio', 1
✓ Plot coherence amplitude	✓ Plot coherence phase
Help	Cancel Ok

Event-Related Coherence Exercise

- Examine event-related coherence between two ICs
 - Which pair did you pick, and why? What do you predict?
 - What did you learn?
- Explore other options:
 - Significance threshold
 - Figure out how to subtract a baseline
 - Phase vs. Linear Coherence

