

Mining Event-related Brain Dynamics II

Scott Makeig Institute for Neural Computation University of California San Diego

> Santa Margherita Ligure, Italy April, 2016

What is EEG?

- Brain electrical activity
- A small portion of *cortical* brain electrical activity
- An even smaller portion of *total* brain electrical activity
- But which portion?
- Triggered and modulated how?
- With what functional significance?

The very broad EEG point-spread function

Simulated EEG summing 30 cortical sources (animation at 1/5th real time)

Akalin Acar & Makeig 2010

S. Makeig 2007

Phase cones (Freeman) Avalanches (Plenz)

[1M Sources Movie]

The spatiotemporal field dynamics of cortex and brain have not yet been imaged on multiple spatial scales!

Alan Friedman

The very broad EEG point-spread function

Akalin Acar & Makeig 2010

Effects of volume conduction on scalp EEG

Simulated EEG summing TWO cortical alpha band source activities (animated at 1/5th real time)

Two cortical sources

Their summed scalp projection

[2 Sources Movie]

Effects of volume conduction on scalp EEG

phenomena of interest

Two cortical sources

epiphenomena

Their summed scalp projection

Blind EEG Source Separation by ICA

Information-based Signal Processing

Non-brain effective source processes

... and also separates cortical brain IC processes

Julie Onton & S. Makeig (2006)

Independent Component Dipolarity

Measured by residual variance *not* accounted for by the best fitting single (or dual) equivalent dipole model.

Onton, Makeig (2006)

Three Eras of EEG Studies

Figure 1. Relative number of PubMed citations retrieved by 'All Fields' search terms: 'EEG,' 'ERP,' and 'Brain Oscillations.' The percent of citations for each search term relative to the total number of citations returned by a search for any of the three terms is plotted relative to the other two search terms. For visual clarity, 'Brain Oscillations' citations are graphed with a green dotted line according to the Y-axis labels on the right; 'EEG' with a blue solid line and 'ERP' with a red dashed line according to the Y-axis labels on the left.

Loo & Makeig, 2015

Blind EEG Source Separation by ICA

Perception & Attention

Onton & Makeig, 2005

Blind EEG Source Separation by ICA

Spatial Navigation

A Passive Spatial Navigation Paradigm

'Turner' and 'Nonturner' subjects use different spatial orienting styles

Klaus Gramann & S. Makeig, 2010

Two parietal component clusters

Medial prefrontal component cluster

Clusters distinguishing Turners & Nonturners

Brain imaging during movement – How?

- Current advances in miniaturization, computer power, and informationbased signal processing mine possible anew maging modality:
- → Mobile Brain/Body Imaging (MoBI)

Concept:

Brain/body

Combine whole-head Ees, eaging gaze tracking, and whole-body of the motion capture recording in a real-world 3-D environment.

Mobile Brain/Body Imaging

~1,000,000 GHz

Record what the brain does, What the brain experiences, And what the brain organizes.

Brain imaging during motor behavior?

 Nearly all brain imaging studies (MEG, PET, fMRI, and EEG) are conducted in rigidly static stated or prone positions with only the most minimal fill moven allowed.

- In all modalities but EEG,
- Muscle and movements contribution

- ors are **heavy**. ('noise') signals.
- But this limitation is highly artificial. Nearly all our life colves active movements and interactions within a 3-D environment.
- → Brain activity during free movement in 3-D space

has never been observed or modeled!

Brain imaging **natural cognition** -- actions & **interactions**

Mobile Brain/Body Imaging (MoBI)

Record simultaneously, during naturally motivated behavior,
What the brain does (high-density EEG)
What the brain experiences (sensory scene recording)
What the brain organizes (body & eye movements, psychophysiology)

2. Then –

Use evolving signal processing methods to find, model, and measure non-stationary (context- and intention-related) functional relationships among these data modalities.

MoBI Lab at SCCN, UCSD

Lab Streaming Layer software for synchronous multi-stream, multi-platform recording and feedback – freely available on Google Code.

XDF file format for multimodal time series data.

SNAP framework for experiment control Moril AB multistream browser and analysis environment.

http://thesciencenetwork.org/programs/inc-sccn-open-house/inc-sccn-open-house-hi-lite-reel

Now possible – Inexpensive 'MoBI-In-A-Box' Systems

< \$500

< \$1000

LSL software drivers exist for all these (and more) devices

MoBI Lab: Two-Person Mirroring Experiment

Photo: T Bel Bahar & E Tumer, 2011

Development of Shared Attention – A Mom and Child MoBI Experiment

Gedeon Deak et al., 2011

Measuring Musical Engagement Through Expressive Rhythm

How can we measure listeners' engagement?

G Leslie & S Makeig,

Expressive 'conducting'

The Heart is a Lonely Hunter (1968)

Two conditions: - Fully Engaged - Less Engaged

The Conducting Experiment

G Leslie & S Makeig,

Modeling Musical Engagement

Live translation of the conducting gesture to moving dot

Average Conducting Cycle

G Leslie & S Makeig,

Survey respondents by Internet location

G Leslie & S Makeig,

dL

→ R

1.58

0

-0.58

Blind EEG Source Separation by ICA

Clinical Research

Data Analysis

ADHD Working Memory

(Lenartowizc et al., J. Neurosci., 2014)

Auditory Deviance Response

The deepest mental trap in electrophysiology is the word/concept "THE" !!!

Rissling et al., 2014

PEAK AMPLITUDES	ERP	r²	
Foolp Flootrode (Fa)			
Scalp Electrode (FZ)	D2-2	0.11	
Functional Canacity (LIPS	RON	0.11	
K pum jor Temporal	NON	0.12	MMN P3a RON MMN P3a RON
Working Memory (LNS Reorder)	RON	0.15	
Verbal IQ (WRAT)	RON	0.15	
Immediate Verbal Memory (CVLT)	RON	0.28	
Delayed Verbal Memory (CVLT)	RON	0.26	
Functional Capacity (UPSA)	MMN	0.48	
Functional Capacity (UPSA)	RON	0.26	
R Inferior Frontol			
Negative Symptoms (SANS)	RON	0.36	
Psychosocial Functioning (301)	KUN	0.24	A S MAR
Auditory Attention (LNS Forward)	MMN	0.38	-2 µV -2
Working Memory (LNS Reorder)	MMN	0.30	
Verbal IQ (WRAT)	MMN	0.46	Contri S7
Ventral Mid Engulate			
Positive Symptoms (SAPS)	RON	0.29	
Negative Symptoms (SANS)	P3a	0.36	
Immediate Verbal Momory (CV/LT)	RON .	0.41	
Delayed Verbal Memory (CVLT)	RON	0.24	
Verbal IQ (WRAT)	RON	0.29	
Executive Functioning (WCST)	RON	0.24	
Anterior Cingulate			
Functional Status (GAF)	MMN	0.18	
Functional Status (GAF)	RON	0.17	
Immediate Verbal Memory (CVLT)	RON	0.25	
Delayed Verbal Memory (CVLT)	RON	0.17	
Medial Consitorrontal			
Positive Symptoms (SAPS)	P3a	0.40	
Negative Symptoms (SANS)	P3a	0.54	
Psychosocial Functioning (SOF)		0.37	
Functional Capacity (UPSA)	РЗа	0.32	
Dorsal Mid Cingulate			
Verbal IQ (WRAT)	P3a	0.15	
Executive Functioning (WCST)	MMN	0.18	

	PEAK LATENCIES	ERP	r²	
	Scalp Electrode (Fz)			ADR
	n/a K superior Temporal			MMN P3a RON MMN P3a RON
	Functional capacity (UPSA) Delayed Verbal Memory (CVLT) R Inferior Frontal	MMN MMN	0.25 0.17	
	Negative Symptoms (SANS) Psychosocial Functioning (SOE)	RON RON	0.51 0.25	Ptg 4
<	Executive Functioning (WCST) Executive Functioning (WCST)	MMN P3a	0.30 0.28	
	Negative Symptoms (SANS)	P3a	0.33	-2 µV -2
	Psychosocial Euroctioning (SOE)	P3a	0.33	Contri S7
	Verbal IQ (WRAT)	MMN	0.25	
	Executive Functioning (WCST)	P3a	0.30	
	Anterior Cingulate			
	Functional Capacity (UPSA)	RON	0.17	
	Verbal IQ (WRAT)	MMN	0.24	
	Auditory Attention (LNS-Forward)	MMN	0.17	
	Medial Orbitofrontal			
	Negative Symptoms (SANS)	RON	0.41	
	Positive Symptoms (CAPC)	PON	0.40	
	Auditory Attention (LNS-Forward)	MMN P3a	0.29	
	Dorsal Mid Cingulate	104	0.02	
	Negative Symptoms (SANS)	MMN	0.20	
	Negative Symptoms (SANS)	РЗа	0.17	
	Global Functioning (GAF)	RON	0.24	
	Functional Capacity (UPSA)	P3a	0.13	

HeadIT

A Human Electrophysiology, Anatomic Data, and Integrated Tools Resource

Home Studies FAQ						
SVP Target Detection	Presents bursts of 12/s satellite image clips, some with an embedded target airplane image.					
uditory-Visual Attention hift	Young and older adults perform a visual-auditory cued attention shift paradigm.					
uditory Two-Choice esponse Task with an nored Feature ifference	Equally probable longer and shorter tones were so categorized by subjects using a choice manual response. Subjects were asked to ignore the slightly higher pitch of 10% of the tones.					
eward Two-Back CPT	Visual two-back Continuous Performance Test with auditory feedback					
lodified Sternberg /orking Memory Task	Visual letter memory task (recall black letters; ignore green)					

HeadIT.org

Arthur Tsai et al., NeuroImage, 2014

Embodied Cognition & Agency

SCCN Open Source Software Tools for MATLAB etc.

Tools now available -- but a two-cultures problem ...

S Makeig, 2012

The Beginning fEEG, BCI, MoBI, NFB, BrainStim...