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« Signals — EEG

e (Goals

— Describe dynamic characteristics of brain activity
— Describe relation between different regions of brain

* Approaches
— Time domain
— Frequency domain
— Time/Frequency
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Different meanings traditionally given to different
frequency bands

Beta 15-30 Hz

Awake, normal alert
consciousness

Alpha 9-14 Hz

Relaxed, calm, meditation,
creative visualisation

Theta 4-8 Hz

Deep relaxation and
meditation, problem
solving

Delta 1-3 Hz
Deep, dreamless
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MEEG spectrum

ERP ~  Beta Gamma
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Time-varying frequency content
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Power Spectrum does not describe temporal variation
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-
Multiresolution Short-Time Wigner-Ville
Wavelets / ier Transf4 Distributions

S. Makeig, 2005
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Plan

Part 1: Frequency Analysis
— Power Spectrum
« Windowing

Part 2: Time-Frequency Analysis
— Short Time Fourier Transform
— Wavelet Transform

— ERSP

Part 3: Coherence Analysis
— Inter-Trial Coherence
— Event-Related Coherence
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Part 1: Frequency Analysis

L RN,
N

« Goal: What frequencies are present in signal?
* What is power at each frequency?

« Considerations

— Amplitude & phase
— Windowing
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Fourier Analysis
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“Stationary” sinusoidal signals
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Slide courtesy of Petros Xanthopoulos, Univ. of Florida

EEGLAB Workshop XXIl, Nov 17-21, 2016, UCSD —John Iversen— Time-Frequency 11



Simplest case of frequency analysis
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2Hz +10 Hz + 20Hz Power spectrum
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By looking at the Power spectrum of the signal we can recognize three frequency
Components (at 2,10,20Hz respectively).

Slide courtesy of Petros Xanthopoulos, Univ. of Florida

Bonus
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Power Spectrum. Approach 1: FFT

Why not just take FFT of our signal of interest?

Advantage — fine frequency resolution
— AF =1/ signal duration (s)
— E.g. 100s signal has 0.01 Hz resolution
— But, do we really need this?

Disadvantage — bias and variance
— Solution: e.g. Welch’'s method

Disadvantage — no temporal resolution
— Solution 1: Short-Time Fourier Transform
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Phasor representation

* A complex number x + yi can be expressed in terms of
amplitude and phase: ae’®

amplitude*exp(i*phase)
amplitude = sqrt(x"2 + y~2); phase = atan(y/x);

-
N

%

Bonus
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Approach 2: Welch’s Method

EEG amplitude

Time

Calculate power spectrum of short windows, average.
Advantage: Smoother estimate of power spectrum

Frequency resolution set by window length
e.g. 1s window -> 1 Hz resolution
In practice: taper, don’t use rectangular window
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Windowing

When we pick a short segment of signal, we typically
window it with a smooth function.

Windowing in time = convolving (filtering) the spectrum
with the Fourier transform of the window

No window (=rectangular window) results in the most
smearing of the spectrum

There are many other windows optimized for different
purposes: Hamming, Gaussian...

Bonus
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Windows and their Fourier transforms
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Close-up view

Frequency response of popular window functions

- A AMAAM

Four-term
8 -100 | Blackman-Harris L

AA N

~150 o—Side lobes

Seven-term
Blackman-Harris

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
FFT frequency bin Bonus
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Part 2: Time-Frequency Analysis

» Short-Time Fourier Transform
— Find power spectrum of short windows
— “Spectrogram”

* Advantage: Can visualize time-varying frequency content

« Disadvantage: Fixed temporal resolution is not optimal
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EEG amplitude
’0

—

Sinusoid /\ / \/\ / \/
*
Gaussian / \
For each time window

Tapered ) \/\/\/\ Analyze signal using the wavelets
sinusoid for different frequencies.

@ Phasor representation:
amplitude*exp(i*phase)
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Computing Spectrogram Power
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Amplitude and phase

Power spectra describe the amount of a given frequency
present

NOT a complete description of a signal: We also must
know the phase at each frequency

FFT/STFT/Wavelet return an amplitude and phase at
each time and frequency (represented as complex #).

To find power, we compute the magnitude, which
discards phase.
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Time-Frequency Uncertainty

You cannot have both
arbitrarily good temporal
and frequency resolution!
— 0t 0¢21/2

If you want sharper

temporal resolution, you will

sacrifice frequency
resolution, and vice versa.

(Optimal: Confined
Gaussian)
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width. Signal Processing 102:240—6.

EEGLAB Workshop XXIl, Nov 17-21, 2016, UCSD —John Iversen— Time-Frequency 24



Consequence for STFT

Computational
N eeeeee ience

Shorter Windows Longer Windows

poorer frequency resolution finer frequency resolution
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Time-Frequency Tradeoff

Cer ;
Computational

Neuroscience

Signal: 10, 25, 50, 100 Hz
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A better way: Wavelet transform
-

« Wavelet transform is a ‘multi-resolution’ time-frequency
decomposition.

* Intuition: Higher frequency signals have a shorter time
scale

* So, vary window length with frequency!
— longer window at lower frequencies
— shorter window at higher frequencies
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Comparison of FFT & Wavelet bases
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Comparison of FFT & Wavelet

Computational
Neuroscle"ce
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Definition: ERSP

« Event Related Spectral Perturbation

« Change in power in different frequency bands relative to
a baseline. ERS , ERD
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Try it out (faces_4.set)

Computational
Neuroscle"ce

[ NON | EEGLAB v13.1.1
File Edit Tools Jdlidl Study Datasets Help
___#2:faces 41 Channellocations >
Channel data (scroll)
Filename: none Channel spectra and maps

Channels per fram(  Channel properties
Frames per epoch  Channel ERP image
EROch= Channel ERPs >
BERHER ERP map series >
Sum/Compare ERPs

Sampling rate (Hz

Epoch start (sec)

Epoch end (sec) Component activations (scroll)

Reference Component spectra and maps

Channel locations Component maps | 2

ICA weights Component properties

bataset size (M2)|  Component ERP image
Component ERPs 4

— Sum/Compare comp. ERPs
>

Data statistics

Time-frequency transforms > Channel time-frequency

Channel cross-coherence

Component time-frequency

Component cross-coherence

pvaf topo
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Display ERS vs. ERSP
v watt

Computational

\ﬁ__%, [ JON ) Plot component time frequency -- pop_newtimef() Neltottieace
Component number 1
Sub epoch time limits [min max] (msec) -1000 1996 | Use 200 time points 4 |
Frequency limits [min max] (Hz) or sequence | Use limits, paddin... % | [ Log spaced
Baseline limits [min max] (msec) (0->pre-stim.) 0 | Use divisive basel... % | v No baseline
Eve n t- re I ated Wavelet cycles [min max/fact] or sequence 305 [ | Use FFT

ERSP color limits [max] (min=-max) [2] see log power (set)

S pect rogram ( ERS ) ITC color limits [max] " plot ITC phase (set)
Bootstrap significance level (Ex: 0.01 > 1%) [ | FDR correct (set)

Optional newtimef() arguments (see Help)

( Plot Event Related Spectral Power (¥ Plot Inter Trial Coherence [ | Plot curve at each frequency
Help [ Cancel | [ Ok |
[ JON ) Plot component time frequency -- pop_newtimef()
Component number 1
Sub epoch time limits [min max] (msec) -1000 1996 | Use 200 time points 4 |
Frequency limits [min max] (Hz) or sequence | Use limits, paddin... 4 | [ | Log spaced
Baseline limits [min max] (msec) (0->pre-stim.) 0 | Use divisive basel... % | [ ] No baseline
Eve n t_ Re I ated Wavelet cycles [min max/fact] or sequence 30.5 [ ] Use FFT
ERSP color limits [max] (min=-max) (¥ see log power (set)

ITC color limits [max] || plot ITC phase (set)

S p e Ct ra I P e rt u rb a tl on Bootstrap significance level (Ex: 0.01 -> 1%) || FDR correct (set)

Optional newtimef() arguments (see Help)
(ERSP)

(¥ Plot Event Related Spectral Power (¥ Plot Inter Trial Coherence [_| Plot curve at each frequency
Help [ Cancel | [ Ok )
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Wavelet Specification

Wavelet cycles [min max/fact] or sequence 30.5

Answer: The first #cycles controls the basic duration of the wavelet in cycles.

The second factor controls the degree of shortening of time windows as frequency increases
0 = no shortening = FFT (duration remains constant with frequency)
1 = pure wavelet (#cycles remains constant with frequency)

0.5 = intermediate, a compromise that reduces HF time resolution to gain more
frequency resolution

30 31 30.5
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Part 3: Coherence Analysis

* Goal: How much do two signals resemble each other

« Coherence = complex version of correlation: how similar
are power and phase at each frequency?

« Variant: phase coherence (phase locking, etc.) considers
only phase similarity, ignoring power
— Regular coherence is simply a power-weighted phase coherence
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Coherence
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Part 3a: Inter-Trial Coherence

1

X

 (Goal: How much do different trials resemble each other?

* Phase coherence not between two processes, but
between multiple trials of the same process

* Defined over a (generally) narrow frequency range
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EEGLAB'’s Inter-Trial Coherence is phase ITC

Phase ITC 1 7
L A
ITPC(f,t) =— ) (1.0
n =3 | (f.1)

(no amplitude information)

same time, different trials

amplitude 0.5 phase 0 @
amplitude 1 phase 90 @

amplitude 0.25 phase 180 @

13 b X J

—

POWER = mean(amplitudes?) COHERENCE = mean(phase vector)

0.44 or -8.3 dB
Norm 0.33
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ITC Example (3 trials)

Intertrial Coherence (ITC)

S 7]
@« 10} Single trials : 1 10t Single trials ‘ 1
NV ‘ : ‘
0 futosbilepprnciatykY W’M”“ O tlipinrrsii il | mﬂW"
10 - 1 01
05 0 o5 05 0 R
10 10
ERP ERP
0 0 W/\/\/\/\/\N%
6 -10
05 0 o5 @ 05 0 L
25
Total power Total power
. -
5
05 5@ 05 0 =

180[ 180

270
ITC: .05 ITC: .80

Slide courtesy of Stefan Debener
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Multiple possible origins of an ERP

Event Related Potential can result from
— ITC increase (with no change in power)
— ITC & Power change

=] T
T =
B
: ERP
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O PPR ' |
e
| Bt
| ERD [T
| ge® e —— el
0 -SSR Bl aae— 1
- -y © o
0 T 2
+ 9% Frequency
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ERPIMAGE showing ERP arising from only ITC
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Compare: ERP arising from both
ITC and increased power
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Putting it all together

y v—‘/

ONON®) Figure 5
File Edit View Insert Tools Desktop Window Help
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Exercise

All: Compute ERSP/ITC for a
component of your choice

Compute ERP Image (with ERSP
and ITC displayed®)

Use all of this information to explain
the origin of the Evoked Response

Question: Which changes are
significant? Use the options in ERP
Image and ERSP dialogs to set
significance threshold e.g. 0.01. Do
the results survive?
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Part 3b: Event Related Coherence

vartz S50
Center

Computational
Neuroscience

« (Goal: How similar is the event-related response of two

signals

— Typically between channels (problematic due to volume

conduction)
— or between ICs

EEGLAB v13.1.1

File Edit Tools [Jgl§ Study Datasets Help

~__#f2: faces_4

Filename: none
Channels per fram
Frames per epoch
Epochs

Events

Sampling rate (Hz
Epoch start (sec)
Epoch end (sec)
Reference

Channel locations
ICA weights
Dataset size (Mb)

Channel locations

Channel data (scroll)
Channel spectra and maps
Channel properties
Channel ERP image

Channel ERPs
ERP map series

Sum/Compare ERPs

Component activations (scroll)
Component spectra and maps
Component maps
Component properties
Component ERP image
Component ERPs

ﬁ Sum/Compare comp. ERPs

Data statistics

pvaf topo

>

Time-frequency transforms > Channel time-frequency

Channel cross-coherence

Component time-frequency

Component cross-coherence
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Try it!
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Event-Related Coherence Exercise

« Examine event-related coherence between two ICs
— Which pair did you pick, and why? What do you predict?
— What did you learn?

* Explore other options:
— Significance threshold
— Figure out how to subtract a baseline
— Phase vs. Linear Coherence
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