

Time-frequency measures

Theory and Practice

EEGLAB Workshop XXII
UCSD
Day 1, 11:30

Signals – EEG

Goals

- Describe dynamic characteristics of brain activity
- Describe relation between different regions of brain

Approaches

- Time domain
- Frequency domain
- Time/Frequency

Different meanings traditionally given to different frequency bands

Long the second and t

Beta 15-30 Hz

Awake, normal alert consciousness

Alpha 9-14 Hz

Relaxed, calm, meditation, creative visualisation

Theta 4-8 Hz

Deep relaxation and meditation, problem solving

Delta 1-3 Hz

Deep, dreamless sleep

MEEG spectrum

Time-varying frequency content

Power Spectrum does not describe temporal variation

annowing and who may are any many the man have made in the contraction of the contraction

Onton & Makeig, 2006

S. Makeig, 2005

Plan

- Part 1: Frequency Analysis
 - Power Spectrum
 - Windowing
- Part 2: Time-Frequency Analysis
 - Short Time Fourier Transform
 - Wavelet Transform
 - ERSP
- Part 3: Coherence Analysis
 - Inter-Trial Coherence
 - Event-Related Coherence

Part 1: Frequency Analysis

- Goal: What frequencies are present in signal?
- What is power at each frequency?
- Considerations
 - Amplitude & phase
 - Windowing

Fourier Analysis

Figure, courtesy of Ravi Ramamoorthi & Wolberg

"Stationary" sinusoidal signals

Bonus

Slide courtesy of Petros Xanthopoulos, Univ. of Florida

Simplest case of frequency analysis

Stationary

By looking at the Power spectrum of the signal we can recognize three frequency Components (at 2,10,20Hz respectively).

Slide courtesy of Petros Xanthopoulos, Univ. of Florida

Power Spectrum. Approach 1: FFT

- Why not just take FFT of our signal of interest?
- Advantage fine frequency resolution
 - $-\Delta F = 1 / signal duration (s)$
 - E.g. 100s signal has 0.01 Hz resolution
 - But, do we really need this?
- Disadvantage bias and variance
 - Solution: e.g. Welch's method
- Disadvantage no temporal resolution
 - Solution 1: Short-Time Fourier Transform

Phasor representation

A complex number x + yi can be expressed in terms of amplitude and phase: ae^{iθ}

```
amplitude*exp(i*phase)
amplitude = sqrt(x^2 + y^2); phase = atan(y/x);
```


Approach 2: Welch's Method

Calculate power spectrum of short windows, average.

Advantage: Smoother estimate of power spectrum

Frequency resolution set by window length

e.g. 1s window -> 1 Hz resolution

In practice: taper, don't use rectangular window

Windowing

- When we pick a short segment of signal, we typically window it with a smooth function.
- Windowing in time = convolving (filtering) the spectrum with the Fourier transform of the window
- No window (=rectangular window) results in the most smearing of the spectrum
- There are many other windows optimized for different purposes: Hamming, Gaussian...

Windows and their Fourier transforms

Narrowest main peak, but

Highest side-lobes

Most spectral 'smearing'

Wider main peak, and much lower side-lobes

Close-up view

Part 2: Time-Frequency Analysis

- Short-Time Fourier Transform
 - Find power spectrum of short windows
 - "Spectrogram"
- Advantage: Can visualize time-varying frequency content
- Disadvantage: Fixed temporal resolution is not optimal

Computing Spectrogram Power

Amplitude and phase

- Power spectra describe the amount of a given frequency present
- NOT a complete description of a signal: We also must know the *phase* at each frequency
- FFT/STFT/Wavelet return an amplitude and phase at each time and frequency (represented as complex #).
- To find power, we compute the magnitude, which discards phase.

Time-Frequency Uncertainty

mapy when we would have marked and the work of the wor

Swartz
Center for
Computational
Neuroscience

- You cannot have both arbitrarily good temporal and frequency resolution!
 - $-\sigma_t * \sigma_f \ge 1/2$
- If you want sharper temporal resolution, you will sacrifice frequency resolution, and vice versa.
- (Optimal: Confined Gaussian)

Starosielec S, Hägele D (2014) Discrete-time windows with minimal RMS bandwidth for given RMS temporal width. Signal Processing 102:240–6.

Consequence for STFT

Shorter Windows

poorer frequency resolution

Longer Windows

finer frequency resolution

Time-Frequency Tradeoff

Signal: 10, 25, 50, 100 Hz

A better way: Wavelet transform

- Wavelet transform is a 'multi-resolution' time-frequency decomposition.
- Intuition: Higher frequency signals have a shorter time scale
- So, vary window length with frequency!
 - longer window at lower frequencies
 - shorter window at higher frequencies

Comparison of FFT & Wavelet bases

Scaled versions of one shape Constant* number of cycles

Comparison of FFT & Wavelet

Definition: ERSP

- **Event Related Spectral Perturbation**
- Change in power in different frequency bands *relative to* a baseline. ERS, ERD

Try it out (faces_4.set)

Display ERS vs. ERSP

Plot component time frequency -- pop_newtimef() Component number -1000 1996 Use 200 time points Sub epoch time limits [min max] (msec) Use limits, paddin... Log spaced Frequency limits [min max] (Hz) or sequence 0 Use divisive basel... \$ ✓ No baseline Baseline limits [min max] (msec) (0->pre-stim.) **Event-related** 3 0.5 Use FFT Wavelet cycles [min max/fact] or sequence see log power (set) ERSP color limits [max] (min=-max) Spectrogram (ERS) plot ITC phase (set) ITC color limits [max] FDR correct (set) Bootstrap significance level (Ex: 0.01 -> 1%) Optional newtimef() arguments (see Help) ✓ Plot Event Related Spectral Power ✓ Plot Inter Trial Coherence Plot curve at each frequency Help Cancel Ok Plot component time frequency -- pop_newtimef() 1 Component number -1000 1996 Use 200 time points Sub epoch time limits [min max] (msec) Use limits, paddin... Frequency limits [min max] (Hz) or sequence Log spaced 0 Use divisive basel... \$ No baseline Baseline limits [min max] (msec) (0->pre-stim.) **Event-Related** 3 0.5 Wavelet cycles [min max/fact] or sequence Use FFT ✓ see log power (set) ERSP color limits [max] (min=-max) ITC color limits [max] plot ITC phase (set) Spectral Perturbation FDR correct (set) Bootstrap significance level (Ex: 0.01 -> 1%) Optional newtimef() arguments (see Help) (ERSP) ✓ Plot Event Related Spectral Power ✓ Plot Inter Trial Coherence Plot curve at each frequency

Help

Cancel

Ok

ERS and ERSP

Wavelet Specification

Answer: The first #cycles controls the basic duration of the wavelet in cycles.

The second factor controls the degree of shortening of time windows as frequency increases

0 = no shortening = FFT (duration remains constant with frequency)

1 = pure wavelet (#cycles remains constant with frequency)

0.5 = intermediate, a compromise that reduces HF time resolution to gain more frequency resolution

Part 3: Coherence Analysis

- Goal: How much do two signals resemble each other
- Coherence = complex version of correlation: how similar are power and phase at each frequency?
- Variant: phase coherence (phase locking, etc.) considers only phase similarity, ignoring power
 - Regular coherence is simply a power-weighted phase coherence

Coherence

Fourier time series F_{S1} and F_{S2}

Phase difference between \$1 and \$2,

Part 3a: Inter-Trial Coherence

- Goal: How much do different trials resemble each other?
- Phase coherence not between two processes, but between multiple trials of the same process
- Defined over a (generally) narrow frequency range

EEGLAB's Inter-Trial Coherence is phase ITC

Phase ITC

$$ITPC(f,t) = \frac{1}{n} \sum_{k=1}^{n} \frac{F_k(f,t)}{|F_k(f,t)|}$$

Normalized (no amplitude information)

ITC Example (3 trials)

Slide courtesy of Stefan Debener

Multiple possible origins of an ERP

- Event Related Potential can result from
 - ITC increase (with no change in power)
 - ITC & Power change

Putting it all together

Exercise

All: Compute ERSP/ITC for a component of your choice

Compute ERP Image (with ERSP and ITC displayed*)

Use all of this information to explain the origin of the Evoked Response

Question: Which changes are significant? Use the options in ERP Image and ERSP dialogs to set significance threshold e.g. 0.01. Do the results survive?

Part 3b: Event Related Coherence

Goal: How similar is the event-related response of two signals

Typically between channels (problematic due to volume)

conduction)

or between ICs

TWO SIMULATED THETA PROCESSES

Try it!

● ● Plot component cross-coherence pop_newcrossf()	
First component number	1
Second component number	3
Epoch time range [min max] (msec)	-1000 1996
Wavelet cycles (0->FFT, see >> help timef)	3 0.5
[set]->log. scale for frequencies (match STUDY)	
[set]->Linear coher / [unset]->Phase coher	
Bootstrap significance level (Ex: 0.01 -> 1%)	
Optional timef() arguments (see Help)	'padratio', 1
✓ Plot coherence amplitude	✓ Plot coherence phase
Help	Cancel Ok

Event-Related Coherence Exercise

- Examine event-related coherence between two ICs
 - Which pair did you pick, and why? What do you predict?
 - What did you learn?
- Explore other options:
 - Significance threshold
 - Figure out how to subtract a baseline
 - Phase vs. Linear Coherence

