STUDY design and plotting overview

STEP 1

Build a STUDY
STEP 2
Build design(s)
STEP 3

Precompute the data

STEP 4

Plot the data

Exercise...

Memory options

Create simple ERP STUDY

〇 ○ ○ Create a new STUDY set -- pop_stu...

Create simple ERP STUDY

This interface creates a simple STUDY and computes its condition grand average ERPs. For each subject, trials for each condition must first be stored in a separate dataset. Create other STUDY using the standard editor.

2
Number of subjects:

When using more than 1 condition, datasets on each line must correspond to the same subject.

Create simple ERP STUDY

Figure 2: Channel ERP
File Edit View Insert Tools Desktop Window Help

View and edit current channels -- pop_chanplot()

STUDY name 'Letter memorization task' - 'STUDY.design 1'

Exercises

Suggestion for exercise

1. From the GUI, select "File > Create STUDY > Simple ERP STUDY"
2. Enter 2 conditions "letter-ignore" and "letter-memorize"
3. In the column for "letter-ignore" select datasets "ignore.set" for 3 subjects S01, S02, S03 (in the STUDY folder)
4. In the column for "letter-memorize" select datasets "probe.set" for 3 subjects S01, S02, S03 (in the STUDY folder)
5. Press OK.

Select independent variable
condition
duration
duration
init_index
init_time
inset
pres_trial
This is a categorical var.
$\hat{\imath}$

Select variable values
ignore
memorize
probe
ignore \& memorize

\square Delete cluster information (to allow loading new datasets, set new components for clustering, etc.)

Other design examples

Other design examples

Select independent var
dataprob
indexinsession
presentation
prevevent
session
type
stimulusType
This is a categorical var.

Select variable values

audio
blank
both
light
audio \& light
Combine selected values

Design Matrix: Audio preceeded by different stimulus types

session
type
This is a categorical var.

Select variable values

evoked

spontaneous

Combine selected values
Delete all pre-computed datafiles for this STUDY design

Cancel
Ok

STUDY design and plotting overview

STEP 1

Build a STUDY

STEP 2
Build design(s)
STEP 3
Precompute the data
STEP 4
Plot the data
Exercise...

Precompute data measures

Choose which

 channel rel to plot (sel. all| All CZ | |
| :---: | :---: |
| All C2 All C4 All C6 All T8 All TP9 Al TP7 All CP5 All CP3 All CP1 | |
| Plot ERPs | |
| Plot ¢ pectra | |
| Plot E ${ }^{\text {P }}$ | Pimage |
| Plo E | RSPs |
| P ot | ITCs |

STATS

Params
Params
Params

Params
Params

Choose which subject

dow Help \square 国 \square ERP - CZ, probe

| HIl subiects |
| :--- | :--- |
| S01 CZ |
| S02 CZ |
| S03 CZ |
| S04 CZ |
| S05 CZ |
| S06 CZ |
| S07 CZ |
| S08 CZ |
| S09 CZ |

Help

ERP plotting options

Help

Select subject(
STATS

Time limits (ms) [low high]
Plot limits [low high]
Lowpass plotted data [Hz]

ERP plotting format

Plot first variable on the same panelPlot second variable on the same panel

Multiple channels selection
Plot channels in scalp array

- Plot topography at time (ms)

200300
Average selent:u channels

Cancel

Computing Spectrum

Computing ERSP

Set ERSP/ITC plotting parameters -- pop_erspparams()

ERSP/TC plotting options

Time range in ms [Low High]
Freq. range in Hz [Low High]
Power limits in dB [Low High]

Plot scalp map at time [ms]
Plot scalp map at freq. [Hz] ITC limit ($0-1$) [High]
Compute common ERSP baseline (assumes additive baseline)

std_stat() function in EEGLAB

Exercises

1. Load "stern.study" file in STUDY folder
2. Edit STUDY design and delete current variable
3. Create a new indep. Variable design to compare Ignore vs. Memorize letter
4. Recompute spectrum and ERP.
5. Plot spectrum and ERP for electrode Fz
6. Plot scalp topography at 10 Hz (spectrum) and $200-300 \mathrm{~ms}$ (ERP) for both conditions
7. Spectrum for electrode Fz within 1 to 50 Hz and compute parametric statistics (with and without FDR correction)
8. Plot scalp topography at 10 Hz for both conditions using permutation statistics cluster correction (Fieldtrip - statistics)
